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Phosphorylation is a protein posttranslational modification. It is responsible of the activation/inactivation of disease-related
pathways, thanks to its role of “molecular switch.” The study of phosphorylated proteins becomes a key point for the proteomic
analyses focused on the identification of diagnostic/therapeutic targets. Liquid chromatography coupled to tandem mass
spectrometry (LC-MS/MS) is themost widely used analytical approach. Although unmodified peptides are automatically identified
by consolidated algorithms, phosphopeptides still require automated tools to avoid time-consuming manual interpretation. To
improve phosphopeptide identification efficiency, a novel procedure was developed and implemented in a Perl/C tool called
PhosphoHunter, here proposed and evaluated. It includes a preliminary heuristic step for filtering out the MS/MS spectra
produced by nonphosphorylated peptides before sequence identification. Amethod to assess the statistical significance of identified
phosphopeptides was also formulated. PhosphoHunter performance was tested on a dataset of 1500MS/MS spectra and it was
comparedwith two other tools:Mascot and Inspect. Comparisons demonstrated that a strong point of PhosphoHunter is sensitivity,
suggesting that it is able to identify real phosphopeptides with superior performance. Performance indexes depend on a single
parameter (intensity threshold) that users can tune according to the study aim. All the three tools localized >90% of phosphosites.

1. Background

Phosphorylation is a chemical reaction taking place in cells,
in which a phosphate group (PO

4
) is added, by a kinase, to

the amino acids serine, threonine, and tyrosine of a protein.
It is a posttranslational modification (PTM) that affects both
the biological action of the protein and the molecular weight
by increasing the mass of the involved amino acids of about
80Da. The phosphorylation mechanism plays a crucial role
under both normal and pathological conditions.

The characterization of a target protein in terms of
localization of the phosphorylation sites has become a topic
of interest in proteomics, fostering the development of many
analytical approaches [1–3]. Tandem mass spectrometry
(MS/MS) coupled with liquid chromatography (LC) is the
most widely used approach for such kind of studies [4, 5].
Briefly, the LC-MS/MS analysis of phosphorylated peptides
includes the following:

(1) enzymatic digestion of the proteins in a biological
sample, to obtain a pool of shorter peptides;

(2) separation and isolation of peptides from other com-
pounds through LC, usually combined to a phospho-
peptide enrichment methodology such as immobi-
lized metal affinity chromatography (IMAC) or metal
oxide affinity chromatography (MOAC);

(3) MS/MS analysis of the isolated peptides;
(4) evaluation of the MS/MS spectra through suitable

algorithms in order to identify phosphopeptides and
the localization of their phosphorylated amino acids.

MS is used tomeasure themass/charge ratio (m/z) of charged
molecules with high precision [6]. MS/MS is based on two
mass analyzers.The first one allows to select, after ionization,
a peptide in a given m/z range. Then, the selected peptide
(called precursor) undergoes fragmentation via, for example,
the traditional collision induced dissociation (CID) method,
to form ions that are detected by the second mass analyzer
[7].

The output ofMS/MS is the representativemass spectrum
of each analyzed precursor, that is, a list of all the m/z
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values of the detected ions generated by fragmentation of the
precursor with the corresponding intensities. Therefore, the
representative mass spectrum contains indirect information
about the mass of the amino acids belonging to the sequence
of an ionized peptide. All the detected MS/MS spectra are
usually processed to filter out noise and hence to select the
most relevant peaks, as proposed, for example, in [8, 9].
Finally, the resulting spectrum must be processed by means
of proper algorithms to identify the amino acid sequence of
the peptide.

Peptide identification algorithms are typically based on
the comparison between the experimental MS/MS spectra
and the so-called theoretical MS/MS spectra, obtained by
applying, for each protein sequence, suitable enzymatic
digestion rules (in silico digestion) followed by an in silico
fragmentation of the obtained peptides. Theoretical MS/MS
spectra could be stored in a suitable peptide database (called
target database), built starting from a set of known proteins
annotated in a reliable public database, such as Swiss-Prot
[10].

The comparison between detected and theoretical
MS/MS spectra can be carried out through a similarity
scoring function and the peptides in the target database are
ranked according to their scores. The experimental MS/MS
spectrum is finally associated with the peptide with the
highest score.

A less rough procedure involves an alternative step in
which the statistical significance of each peptide in the
ranked list is assessed [11–19]. The most common approach
to the evaluation of statistical significance is based on the
parallel analysis of a random sequence database (called decoy
database), created by reversing or shuffling each amino acid
sequence in the target database. The experimental MS/MS
spectra are compared to the peptides in both the target and
decoy databases. Two separated ranked lists are produced,
according to the obtained scores. The decoy list is used to
assign to each score of the target database the probability that
the score is not different from those of decoy peptides and
then to define a threshold that separates high and low score
values.

Although unmodified peptides are automatically and
efficiently identified by consolidated algorithms (e.g., Pro-
teinProspector [20, 21], Mascot [22, 23], Sequest [24], X!
Tandem [25], and OMSSA [26]), phosphopeptide MS/MS
spectra often require a manual interpretation. This step
represents the main bottleneck of the analysis in terms of
time, because MS/MS technique generates a large amount
of data, and in terms of reproducibility, since the obtained
results have undergone a subjective evaluation.

To make the phosphopeptide analysis more objective,
specific algorithms have been proposed in the literature for
both phosphopeptide identification and phosphosite local-
ization [27–30]. Specific drawbacks of such tools are that
some of them implement postprocessing algorithms which
rely on prior peptide identification via, for example, Sequest
or Mascot [27, 28, 30], thus not providing a fully integrated
analysis workflow; the closed source implementation of some
software tools prevents the manipulation of the algorithms
for optimization purposes [28]; neutral loss peaks, which are

an important feature of phosphopeptides (see Section 2 for
details), are not always taken into account [28]. In this work,
a Perl/C procedure called PhosphoHunter is proposed, which
specifically covers all the steps of phosphopeptide identifi-
cation in a fully automated fashion. The tool is available on
the http://aimed11.unipv.it/PhosphoHunter website for free
download for nonprofit institutions.

PhosphoHunter is able to create the database of phos-
phorylated peptides from a set of proteins of interest, discard
theMS/MS spectra that probably do not correspond to phos-
phopeptides, identify the remaining spectra, and localize the
phosphorylated amino acids via a statistics-based procedure.
It has been tested on a dataset of 1500 publicly available
MS/MS spectra obtained from human peptides [31–35] and
the performance of PhosphoHunter has been evaluated via
comparison with two other software tools: Mascot [22, 23] (a
widely used tool, which is not specific for phosphopeptides
but is used as a benchmark in other works describing
phosphopeptide identification methods [27, 28]) and Inspect
[29] (a phosphopeptide-specific tool).

2. Methods

PhosphoHunter includes the following four main steps (see
Figure 1):

(1) creation of a database of theoretical peptides by in
silico digestion of a set of proteins;

(2) processing of the MS/MS experimental spectra;
(3) comparison between the processed MS/MS spectra

and theoretical peptides;
(4) phosphopeptides identification.

2.1. Database Creation. The database of peptides is created
by following the method proposed in [36]. Starting from
a list of FASTA format protein sequences coming from a
database such as Swiss-Prot, PhosphoHunter carries out the
in silico digestion of the amino acid sequences to obtain the
theoretical peptides.The in silicodigestion follows the specific
rules of the protease actually used during the preparation
of the biological sample. In particular, the create database.pl
script contains the regular expressions corresponding to the
trypsin digestion rules [37]. Trypsin is the only implemented
protease in the current version of the tool, although any other
protease may be considered, since new sets of appropriate
rules can be added by users via Perl script. Specifically, the
create database.pl has to be modified where the #enzymatic
digestion comment is reported and rules have to be overwrit-
ten to perform an in silico digestion with the desired protease.
As an example of that, PhosphoHunter distribution includes
an additional file (create database chymo.pl), where it is
shown how to perform the digestion with a different protease
(i.e., chymotrypsin), whose digestion rules are reported in
[37] (low specificity version).

The target database may be customized in terms of inves-
tigated organism(s), missed cleavages (MCs), and PTMs,
depending on the expected characteristics of the specific
study. For each protein, the theoretical mass of every peptide
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Figure 1: Summary of PhosphoHunter procedure. Block A (implemented via the create database.pl script): a database in FASTA format
is used to create a target database according to appropriate digestion rules and other parameters provided in an input file, such as the
number of allowed consecutive missing cleavages. The database is then used to obtain a decoy database and a single composite database is
obtained from target and decoy databases. Block B (implemented via themerge.pl script): individual dta files, corresponding to experimental
spectra, are merged into a single dta file. Block C: experimental spectra are normalized and processed by discarding charges higher than
4, low-intensity peaks, and peptides not showing neutral loss. The intensity threshold of neutral loss is specified in the input file. Block D:
theoretical and processed spectra are compared according to a scoring function and a list of phosphopeptides with scores is associated with
each spectrum. Block E: for each spectrum, a 𝑝-value is computed for each element of the list and only the peptides with a 𝑝-value below a
specific threshold, defined in the input file (relation not shown in the figure), are kept in the final list. Blocks C, D, and E are all implemented
via the phosphopeptide ID.pl script.

is computed as described in [36].Thewhole set ofmass values
is the theoretical MS spectrum of the protein (also called
theoretical peak list). In the searching step (step #3), the peak
list will be used to compare the peptides in the target database
with the ones in the experimental spectra, to find the most
similar ones.

To test the statistical significance of the results, a decoy
database is built [11–19] by reversing all the protein sequences
of the target database and performing the same in silico
digestion procedure. The two databases (i.e., target and
decoy) are merged into a single database, hereafter called
composite database.

2.2. MS/MS Data Processing. First, all the acquired MS/MS
spectra have to be converted from raw to dta files using the
desired preprocessing algorithm, such as the ones described
in [8, 9]. Each file contains the following data referred to a
single MS/MS spectrum: (i) the m/z value of the precursor,
(ii) the charge of the precursor, and (iii) the list of m/z
and intensity values of all the detected fragment ions. All
the dta files are merged automatically into a single ASCII
file, by using the Perl script merge.pl, included in Phos-
phoHunter distribution. The next subsections describe the
strategy applied to process the resulting ASCII file and to
select the MS/MS spectra that are likely to correspond to
phosphorylated peptides.

2.2.1. Discarding the Highest Charge States. The precursors
(and the related MS/MS spectra) with a charge greater
than four are removed from the ASCII file. In fact, the
interpretation of their MS/MS spectra is typically not reliable
because of the low efficiency of the CID fragmentation [38].

2.2.2. Discarding the Least Intense MS/MS Signals. Given a
precursor, the intensities of its fragment ions are normalized
to the most intense peak. Its normalized intensity is 100.
The fragment ions are sorted by m/z and the m/z values are
split in bins, each containing one hundred peaks. The fifty
less intense peaks of each bin are filtered out, removing a
large part of the noise. In all the steps described below, the
normalized intensity of the peaks in experimental spectra will
be considered.

2.2.3. Neutral Loss Analysis. Phosphorylated peptides with
phosphoserine or phosphothreonine show a typical MS/MS
spectrum often dominated by an intense peak, which corre-
sponds to a neutral loss of H

3
PO
4
[38, 39]. Neutral loss is

a particular behaviour showed by a phosphopeptide during
CID fragmentation. It is due to weakness of the chemical
bond of the phosphate group, which has less energy than
others and competes with the backbone bonds during the
fragmentation of the peptide. Exploiting this feature, the
potential phosphopeptideMS/MS spectra can be qualitatively
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separated from the otherMS/MS spectra, reducing the overall
complexity of the analysis. For each experimental spectrum,
the potential m/z values where a neutral loss peak can
be observed are derived by knowing the precursor mass.
Only the spectra showing peaks in this position (within
a tolerance) with an intensity over a given threshold are
selected; these peaks should correspond to the neutral loss
of H
3
PO
4
. The intensity threshold used by PhosphoHunter

to select the MS/MS spectra is a tunable parameter chosen
by the user. Importantly, the threshold intensity has to be
chosen according to the investigation aims, to minimize
the false discovery rate, to increase the accuracy, or to
optimize other parameters of interest. The selected MS/MS
spectra are then compared to the theoretical spectra in the
composite database, generated in step #1, to identify the
corresponding phosphopeptide sequences and to assess the
statistical significance of the matching.

2.3. Searching Step. To determine the most likely amino acid
sequence corresponding to an experimental MS/MS spec-
trum, two comparisons are performed. First, the precursor
mass value is compared to the theoreticalmass of the peptides
in the composite database, using an absolute mass tolerance
in dalton (Da) or a relative mass tolerance in parts-per-
million (ppm), as specified by the user in the input file. A
match between the theoretical mass 𝑦

𝑖
and the precursor

mass 𝑥
𝑗
occurs if |𝑥

𝑗
− 𝑦
𝑖
| ≤ 𝛿

𝑗
, where 𝛿

𝑗
is the mass

tolerance fixed for the precursormass𝑥
𝑗
. If thismatch occurs,

a second comparison is performed: the MS/MS spectrum
generated by the fragment ions of the precursor is compared
to the theoretical spectrum built from the matching peptide
sequences. This second comparison allows to determine the
amino acid sequence of the peptide generating the acquired
MS/MS spectrum and the phosphorylation sites along the
peptide itself. To better understand how the proposed pro-
cedure generates the theoretical MS/MS spectrum given a
peptide, a detailed description of the fragmentation process
is here provided. During the second stage of the MS/MS,
peptides are fragmented along the backbone [38]. The mass
spectrometer detects only the fragment ions that retain
the precursor charge(s), whereas the neutral fragments are
invisible. Depending on the collision energy, different ion
species can be present. Low energy collision, like those
used in CID (e.g., 25–70 eV), are usually preferred because
higher values of energy produce many fragment ion types,
making the interpretation of the MS/MS spectrum harder.
The ions produced by CID are mainly of b- and y- ion
series. The fragment ions may lose a water molecule (H

2
O,

−18.011 Da) or an ammonia molecule (NH
3
, −17.027Da)

during the fragmentation process, producing further types
of detected masses (m/z) in the MS/MS spectrum. The
fragmentation model implemented in PhosphoHunter to
generate theoretical spectra takes into account the b- and
y-ion series and the neutral loss of water, of ammonia
and of H

3
PO
4
. The spectra comparison strategy is herein

described. Let us consider a peptide in the database. Given
its amino acid sequence, we immediately know the total
number of possible phosphorylation sites, corresponding to

all the serine, threonine, and tyrosine. If the total number of
phosphorylated sites of this peptide is also known, two cases
may occur: either the number of possible phosphorylation
sites is equal to the number of actually modified amino acids
or it is greater. In the former case, there is not uncertainty
on the localization of the phosphorylation sites and then the
only possibleMS/MS spectrum is generated from the peptide
sequence. For example, if the peptide SCPEDCK has a phos-
phorylated site, since it has only one serine and no threonine
or tyrosine, only the MS/MS spectrum of the sCPEDCK is
created (where the modified serine is represented by a lower
case “s”). Conversely, if the localization of phosphorylation
sites is uncertain a theoretical spectrum for each possible
situation is created. For example, considering the peptide
FSAASSASK (with four serine residues) and assuming that
the precursor mass allows us to infer that two amino acids
are phosphorylated, the conceived procedure generates the
theoretical spectrum for the following peptides: FsAAsSASK,
FsAASsASK, FsAASSAsK, FSAAssASK, FSAAsSAsK, and
FSAASsAsK. All the resulting theoretical MS/MS spectra
are then compared with the experimental one by using a
scoring function to correctly localize the phosphorylation
sites. As before, the comparison is performed using a mass
tolerance (in Da or in ppm, specified by the user in the input
file). The scoring function implemented in PhosphoHunter
ranks the peptides in the composite database according to
the (weighted) number ofmatches between experimental and
theoretical MS/MS spectra. More precisely, let us consider a
peptide in the database whose theoretical MS/MS spectrum
matches 𝑀 peaks (the fragment ions) of the experimental
MS/MS spectrum within the given mass tolerance. The
comparison between spectra is performed by scoring each
matching peak by the following sigmoid function:

𝑦 (𝐼
𝐸

𝑗
) =

2

1 + 𝑒
−𝐼
𝐸

𝑗

− 1, (1)

where 𝐼𝐸
𝑗
is the intensity of the 𝑗th experimental peak that

matches the theoretical MS/MS spectrum. This score assigns
a value between 0 and 1 to each matching peak. The total
peptide score is then computed as

Score =
𝑀

∑

𝑗=1

𝑦 (𝐼
𝐸

𝑗
) =

𝑀

∑

𝑗=1

(

2

1 + 𝑒
−𝐼
𝐸

𝑗

− 1) . (2)

The use of the sigmoid function defined above enables the
weighting of peaks according to their intensity. In fact,
low-intensity peaks may represent actual signal or may be
caused by noise. For this reason, such peaks are considered
more uncertain than high-intensity ones and their weight
in the scoring function is lower. A simple discrete function
assigning 1 to matched peaks would not have enabled the
intensity-dependent weighting of peaks.

2.4. Phosphopeptide Identification. Peptides whose theoreti-
cal spectrum matches at least one peak of the experimental
MS/MS spectrum (here called hits) are ranked through the
scoring function (2). In a statistical framework, it is possible
to find a score threshold (called critical value) able to reject,
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with a desired degree of certainty, the null hypothesis that the
score of a hit is not greater than the ones obtained by chance.
To this aim, the searching step (step #3) is performed in the
composite database (target and decoy) and two separated
and ranked hit lists of true and random peptides, sorted by
decreasing score, are generated.

Since the statistical significance of the score of each hit
in the target list has to be assessed, the number of actually
performed statistical tests is very large [14]. To control the
Type I error of the whole procedure, that is, to avoid a
frequent rejection of the null hypothesis when it is true,
multiple statistical test corrections have to be used. They are
based on the idea that if 𝐾 null hypotheses have to be tested,
the critical value 𝛼 of each single test needs to be lowered
to account for the number of comparisons being performed.
Among all the possible criteria, the Bonferroni correction is
here adopted. In this case, 𝛼 becomes𝛼whole/𝐾, where𝐾 is the
number of target peptides in the composite database that are
tested as null hypotheses.This value can be used to determine
the score threshold from the decoy list. Alternatively, the
distribution of the decoy hit scores of each spectrum can be
used to compute, for each hit of the target list, 𝑃 (𝑆 ≥ 𝑠); that
is, the probability that a score 𝑆 greater than the one of the
considered hit (indicated with 𝑠) can be obtained if the hit
belongs to the decoy database (null hypothesis of the test).
This probability is the 𝑝-value associated with the hit and if
it is lower than 𝛼 it can be used to reject the null hypothesis
that the target peptide randomly matches the experimental
spectrum.

3. Results and Discussion

A dataset of consensus MS/MS spectra was analyzed in
order to assess the performance of PhosphoHunter. Phospho-
peptide identifications were compared with those obtained
using Mascot and Inspect. PhosphoHunter ran on one node
of a computer cluster with the Linux SUSE Enterprise 9.3
distribution.Thenode had aQuad-Core Intel Xeon processor
X5355 with a 8GB RAM.

3.1. Dataset. A test dataset of 1500 MS/MS spectra was used,
selected in accordance with the criteria reported below, from
two publicly available spectral libraries of human peptides
(i.e., the Institute for Systems Biology (ISB) and the National
Institute of Standards and Technology (NIST) libraries of
peptides [31–35]).

(i) The ISB dataset was created by Bodenmiller and
colleagues [31, 32]. They identified the MS/MS spec-
tra using Sequest and the phosphorylation sites
were then validated using the PeptideProphet soft-
ware tool [40, 41]. Peptides, identified from highly
phosphopeptide-enriched protein samples, are both
tryptic and semitryptic. They are characterized, in
terms of PTMs, by the phosphorylation of serine,
threonine, and tyrosine as variable modification and
carboxyamidomethylation of cysteine as fixed mod-
ification. The charge state of the precursors is two
(3336MS/MS spectra) or three (1757MS/MS spectra).

Thewhole dataset contains 5093MS/MS spectra, 4193
of which correspond to phosphopeptides.

(ii) The NIST library contains 12473 MS/MS spectra.
Peptides are tryptic and nontryptic, as above; the con-
sidered PTMs are the carboxyamidomethylation of
cysteine, the oxidation of methionine, and the acety-
lation of several amino acids. The charge state of the
precursors ranges fromone to five (involving 55, 7973,
3817, 627, and 1 MS/MS spectra, resp.). There are no
phosphorylated peptides.

Both datasets report the probability of correct identification
of the amino-acid sequence for each peptide. Starting from
these two sources, a new well annotated test dataset contain-
ing phosphorylated tryptic peptides was built in accordance
with the following criteria.

(1) The MS/MS spectra corresponding to peptides con-
taining the letters B, X, or Z (B, X, and Z are codes
associated with ambiguous amino acids: B is aspartic
acid or asparagine, X is an unknown amino acid, and
Z is glutamine or glutamic acid) were discarded to
avoid the presence of sequences with unknown amino
acids.

(2) The carboxyamidomethylation of cysteine (fixed) and
the phosphorylation of serine and threonine (vari-
able) were the only considered PTMs. Peptides in
which amino acids were modified by other PTMs
were removed. In this context, the phosphorylation
of tyrosine was not considered, since it hardly causes
neutral loss peaks under CID conditions.

(3) Only tryptic peptides were considered.
(4) The MS/MS spectra acquired from precursors with

charge states greater than fourwere not considered for
the reasons discussed in Section 2.

(5) The remaining MS/MS spectra were selected on
the basis of the probability of correct identification,
annotated in the source databases, taking into con-
sideration only the MS/MS spectra with probability
greater than 0.99.This very high probability threshold
allowed us to have a high confidence in the identity of
the peptide when the performance of PhosphoHunter
was tested and compared with Mascot and Inspect.

(6) At the end of the spectrum selection procedure,
750 phosphorylated peptides were considered from
the ISB dataset and 750 MS/MS spectra were also
selected from the NIST dataset to have a balanced
test set (the complete list of spectra considered in this
work is available at http://aimed11.unipv.it/Phospho-
Hunter/Spectra.rar).

Therefore, the test dataset contained 1500 MS/MS spectra.
The charge states of the precursors were two, three, and four
(involving 1141, 332, and 27 MS/MS spectra, resp.).

3.2. Composite Database. A target database was created as
reported in [36]. The database contained Homo sapiens
tryptic peptides, generated starting from the 57.12 release
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Table 1: Number of MS/MS spectra selected through the analysis of
the neutral loss peaks.

Intensity
threshold

Selected MS/MS spectra
Phosphorylated Nonphosphorylated Total %

0 750 488 1238 60.6

10 727 239 966 75.3

20 703 147 850 82.7

30 664 98 762 87.1

40 634 70 704 90.1

50 603 49 652 92.5

60 579 34 613 94.5

70 548 24 572 95.8

80 520 19 539 96.5

90 493 14 507 97.2

100 464 11 475 97.7

Intensity threshold values (from 0 to 100) and number of MS/MS spectra
which pass the neutral loss check, subdivided by phosphorylated and
nonphosphorylated peptides. Percent of phosphorylated peptides over the
total number of selected spectra.

of Swiss-Prot (20,287 human amino acid sequences). A
maximum of two consecutive MCs were allowed for each
tryptic peptide (this parameter is set in the tool input file).
ThePTMs consideredwere the phosphorylation of serine and
threonine (+79.97Da) and the carboxyamidomethylation of
cysteine (+57.02Da). The final number of target peptides in
the database was about 107.This value was used to correct the
critical value 𝛼 in the identification step, when the statistical
significance of the identification results was assessed [42].The
decoy database was generated starting from the same Homo
sapiensproteins, by reversing their sequences to obtain 20,287
new random proteins [12]. These proteins were appended to
the target database, creating the composite one containing
40,574 proteins.

3.3. Phosphopeptide Identification. First,MS/MS spectrawere
processed as reported in step #2 (see Section 2) to prepare
suitable files and to analyze only the spectra that show a
significant neutral loss signal, typical of phosphopeptides.
Neutral loss analysis was performed by tuning the intensity
threshold from 0 to 100 and by using a tolerance of 3Da
divided by precursor charge. The results, in terms of number
of selected spectra, are reported in Table 1, in which eleven
intensity values were considered. Intuitively, the number of
the selected spectra decreases when the intensity threshold
increases. It is worth noting that, even when the threshold
is set to 0, some actually nonphosphorylated spectra are
nevertheless discarded, because only the MS/MS spectra
having one or more specific neutral loss signals of any
intensity were selected (in this case, 488 over 750); on the
other hand, all the spectra corresponding to actually phos-
phorylated peptides were selected. Increasing the threshold
from 0 to 100, the number of nonphosphorylated MS/MS
spectra that passes the check decreases (from 488 to 11),
but this also occurs for the phosphorylated peptides that

decrease from 750 to 462. The neutral loss analysis is highly
specific, as shown by the percentage of phosphorylated
peptides that pass the test, which increases monotonically
with threshold increasing (from 61% without selection to
98% with the highest threshold value). The benefit of using
neutral loss analysis is twofold: lowering the computational
time required for the analysis of the whole dataset (only the
most promising candidates are considered) and limiting the
presence of wrong identifications because a significant part of
nonphosphorylated peptides is filtered out.Then, theMS/MS
spectra that passed the neutral loss checkwere searched in the
composite database (step #3) and the target and decoy ranked
lists were generated for each spectrum. The mass tolerance
used was 7 ppm for the precursor ion masses and 0.8Da for
the fragment ions. The 𝑝-values were computed for all the
target hits and the ones with a 𝑝-value smaller than 𝛼 were
considered as statistically significant.The 𝛼whole value was set
to 0.05 and it was corrected for multiple testing, using the
number of peptides in the target database. Therefore, 𝛼 was
set to 5 ⋅ 10−9.

Using the hit lists, two analyses were conducted to answer
the two typical questions addressed in this kind of study:
that is, are phosphorylated peptides correctly recognized?
Are phosphorylation sites correctly recognized?

The first question can be addressed by PhosphoHunter
in two ways: considering as a phosphorylated peptide each
corresponding spectrum that passes the neutral loss check
and has either at least one entry in the target hit list or
at least one significant entry in the target hit list. The
results of this analysis, performed on the test dataset, are
summarized in Tables 2 and 3, respectively. Both tables
illustrate the performance of PhosphoHunter in terms of
true positives, false positives, true negatives, false negatives,
sensitivity, specificity, overall accuracy, false discovery rate
(FDR), precision (already reported as percentage in Table 1),
and 𝐹-measure [43, 44]. By increasing the intensity threshold
from 0 to 100, the number of false positives decreases
from 488 to 11 and from 240 to 3 for all the hits and the
significant ones, respectively. Consequently, the specificity
increases. On the other hand, unfortunately, the number
of false negatives increases as well and thus the sensitivity
decreases. Focusing on FDR as a measure of Phospho-
Hunter performance, it achieved values of about 0.05 when
the intensity threshold was set to 60 and 40 (the latter
when statistical validation was considered). Although the
choice of preferring a high specificity or sensitivity depends
on the particular problem under investigation, both the
overall accuracy and 𝐹-measure, which make a compromise
between the two different choices, suggest, for this study,
an optimal threshold of 20–30. However, the neutral loss
intensity threshold remains a tunable parameter for the
analyst and it has to be set in accordance with his/her
preferences. Interestingly, according to the computed indexes
reported in Tables 2 and 3, it is to remark that the per-
formances of PhosphoHunter in presence of the statistical
validation are better than those without this validation. In
particular, FDR, precision, recall, 𝐹-measure, accuracy, and
specificity are systematically better with statistical validation
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Table 2: Performance of PhosphoHunter in terms of phosphorylated spectra detection (1500MS/MS spectra analyzed: 750 phosphorylated
peptides + 750 nonphosphorylated peptides) without statistical validation.

Intensity threshold TP FP FN TN Sens Spec Acc FDR Prec 𝐹

0 750 488 0 262 1.000 0.349 0.675 0.394 0.606 0.755

10 727 239 23 511 0.969 0.681 0.825 0.247 0.753 0.847

20 703 147 47 603 0.937 0.804 0.871 0.173 0.827 0.879

30 664 98 86 652 0.885 0.869 0.877 0.129 0.871 0.878

40 634 70 116 680 0.845 0.907 0.876 0.099 0.901 0.872

50 603 49 147 701 0.804 0.935 0.869 0.075 0.925 0.860

60 579 34 171 716 0.772 0.955 0.863 0.055 0.945 0.850

70 548 24 202 726 0.731 0.968 0.849 0.042 0.958 0.829

80 520 19 230 731 0.693 0.975 0.834 0.035 0.965 0.807

90 493 14 257 736 0.657 0.981 0.819 0.028 0.972 0.784

100 464 11 286 739 0.619 0.985 0.802 0.023 0.977 0.758

TP: true positive, spectra of phosphorylated peptides passing the neutral loss check and for which at least a hit was found; FP: false positive, spectra of
nonphosphorylated peptides passing the neutral loss check and for which at least a hit was found; FN: false negative; TN: true negative; Sens: sensitivity or
recall, TP/(TP + FN); Spec: specificity, TN/(TN + FP); Acc: accuracy, (TP + TN)/all spectra; FDR: false discovery rate, FP/(TP + FP); Prec: precision, TP/(TP
+ FP); 𝐹 : 𝐹-measure, 2 ∗ precision ∗ recall/(precision + recall).

Table 3: Performance of PhosphoHunter in terms of phosphorylated spectra detection (1500MS/MS spectra analyzed, 750 phosphorylated
peptides + 750 nonphosphorylated peptides) with the statistical validation.

Intensity threshold TP FP FN TN Sens Spec Acc FDR Prec 𝐹

0 743 240 7 510 0.991 0.680 0.835 0.244 0.756 0.857

10 721 129 29 621 0.961 0.828 0.895 0.152 0.848 0.901

20 697 77 53 673 0.929 0.897 0.913 0.099 0.901 0.915

30 659 50 91 700 0.879 0.933 0.906 0.071 0.929 0.903

40 630 35 120 715 0.840 0.953 0.897 0.053 0.947 0.890

50 599 23 151 727 0.799 0.969 0.884 0.037 0.963 0.873

60 575 18 175 732 0.767 0.976 0.871 0.030 0.970 0.856

70 544 12 206 738 0.725 0.984 0.855 0.022 0.978 0.833

80 516 9 234 741 0.688 0.988 0.838 0.017 0.983 0.809

90 489 6 261 744 0.652 0.992 0.822 0.012 0.988 0.786

100 460 3 290 747 0.613 0.996 0.805 0.006 0.994 0.758

TP: true positive, spectra of phosphorylated peptides passing the neutral loss check and for which at least a hit was found; FP: false positive, spectra of
nonphosphorylated peptides passing the neutral loss check and for which at least a hit was found; FN, false negative; TN: true negative; Sens: sensitivity or
recall, TP/(TP + FN); Spec: specificity, TN/(TN + FP); Acc: accuracy, (TP + TN)/all spectra; FDR: false discovery rate, FP/(TP + FP); Prec: precision, TP/(TP
+ FP); 𝐹 : 𝐹-measure, 2 ∗ precision ∗ recall/(precision + recall).

than without validation, while, on the other hand, sensitivity
becomes lower due to the restrictive contribution of 𝑝-value.
In conclusion, Tables 2 and 3 demonstrate the usefulness of
both the neutral loss check and the statistical validation of
the results.

The second question concerned the ability to correctly
identify the phosphorylated peptide sequences and even the
phosphorylation sites along the peptide with a certain degree
of confidence. PhosphoHunter generates a ranked scored list
of hits at the end of its workflow. The desirable situation is
to obtain a very short list (ideally only one hit) in which
the true peptide is present in the first position with a
score significantly higher than other ones. For example, let
FsAASSASK be the amino acid sequence corresponding to
one MS/MS spectrum in which the first serine is phos-
phorylated. Through the identification step, PhosphoHunter
includes several sequences in the candidates list. If both the

FsAASSASK and FSAAsSASK peptides are included, it is
clear that both of them have the correct amino acid sequence,
but the phosphorylation site is correctly identified only in the
first one. For each spectrum we verified if the right sequence
and the right phosphorylation site were included in the hit
list, considering eleven neutral loss thresholds. Results are
summarized in Table 4 both considering all the hits and only
the statistically significant ones.The sequences of all the spec-
tra that pass the neutral loss check are correctly identified.
Among these sequences, about 91% have correctly detected
phosphorylation sites, independently from the used thresh-
old and statistical validation. Although the illustrated results
with and without statistical validation appear to be similar, as
already observed above, the number of false positives is sig-
nificantly reduced after the statistical check and the rankedhit
list is significantly shortened also for the true positive spectra,
with evident benefits for the analyst (results not shown).
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Table 4: Performance of PhosphoHunter in terms of sequence
detection and phosphorylation sites localization.

Intensity
threshold

Sequences identified Sequences identified
(all the hits) (hits with 𝑝-value ≤ 𝛼)

Correct
sequences

Correct
sites

Correct
sequences

Correct
sites

0 750 678 743 671

10 727 658 721 652

20 703 636 697 630

30 664 598 659 593

40 634 572 630 568

50 603 544 599 540

60 579 523 575 519

70 548 499 544 495

80 520 477 516 473

90 493 452 489 448

100 464 425 460 421

The 750MS/MS spectra of phosphorylated peptides were considered and the
intensity threshold was tuned from 0 to 100.

3.3.1. Comparison with Mascot. The comparison between
PhosphoHunter and Mascot was performed on the same
test dataset using Mascot Daemon release 1.2. The same
searching parameters of PhosphoHunter were set in Mascot.
It is important to remark that the comparison is not trivial
because the performance of PhosphoHunter depends on
the intensity threshold used to filter the MS/MS spectra
before the identification, whereas Mascot does not include a
routine for nonphosphorylated peptides filtering, and then it
tries to identify all the submitted MS/MS spectra. However,
it includes a method to test the statistical significance of
the hit scores [22, 23]. Therefore, in the following analyses
only statistically significant scores were considered. Both
the ability of recognizing phosphorylated peptides and true
peptide sequences were assessed on the spectra of the test
dataset. Results are summarized in Tables 5 and 6, respec-
tively. From Table 5, it is possible to see that Mascot correctly
recognized all the nonphosphorylated spectra but wrongly
classified more than 25% of the phosphorylated spectra.
This can constitute an important weak point if the analysis
is focused on the discovery of phosphorylated peptides. It
is not trivial to increase sensitivity (decreasing specificity),
due to the lack of a tunable parameter, which is present in
the PhosphoHunter tool. In addition, global performance
indexes such as accuracy and 𝐹-measure are worse than the
ones obtained with PhosphoHunter (compare Table 3 with
Table 5), using a reasonable threshold of 10–30 as a term
of comparison. Results were not compared with the ones
corresponding to the optimal neutral loss threshold of Table 1
to avoid overfitting problems and, consequently, optimistic
polarized conclusions.

The performance on the identification of correct phos-
phorylated sites gave similar results to PhosphoHunter (see
Table 6): Mascot identified all the correct sequences and
correctly recognized 93% of the sites. In conclusion, the

comparison with Mascot highlighted the very good perfor-
mance and the flexibility of the ad hoc developed procedure
implemented in PhosphoHunter to identify phosphorylated
peptides fromMS/MS spectra.

3.3.2. Comparison with Inspect. The comparison between
PhosphoHunter and Inspect was performed using the stand-
alone version of the 2009 release and its enclosed Python
scripts, downloaded from the http://peptide.ucsd.edu/ web-
site, using the same searching parameters as above. Similarly
to PhosphoHunter, Inspect implements a full analysis work-
flow, carried out via a different procedure. As recommended
in the Inspect tutorial (Sam Payne, winter 2007), the decoy
databasewas created via the ShuffleDB.py routinewith default
parameters, it was appended to the target database, and the
resulting composite database was converted into the trie
format. After the Inspect run, the PValue.py routine was used
with the empirical method, as recommended, to select only
the statistically significant scores. As in the case of Mascot,
the comparison with PhosphoHunter is not trivial, since it
depends on the neutral loss intensity threshold. Results are
summarized in Tables 5 and 6, respectively. Table 5 shows
that Inspect correctly recognized the majority of nonphos-
phorylated spectra, thus resulting in a higher specificity,
precision, and lower FDR value than PhosphoHunter. This
result is similar to the one obtained with Mascot. However,
by making a comparison with PhosphoHunter at the same
threshold as above (10–30), Inspect had a lower sensitivity
(87%), although it is higher than the one of Mascot tested
on this dataset. For this reason, in the illustrated conditions
PhosphoHunter is expected to find more phosphorylated
spectra than the other two tools and it also includes a
parameter (intensity threshold) to intuitively tune sensitivity
and specificity according to user needs. On the other hand,
in these conditions, Inspect has slightly better values than
PhosphoHunter in terms of FDR, precision, 𝐹-measure, and
overall accuracy. These indexes can change according to
the PhosphoHunter intensity threshold, as described above
(see Table 3 for a threshold-dependent performance index
list). For example, if specificity has to be maximized, the
threshold can be increased to reach a value comparable to
the one of Inspect. For each index, PhosphoHunter can reach
(and possibly outperform) Inspect performances. Finally,
as reported in Table 6, Inspect correctly identified 99% of
the true positive sequences and, among them, it correctly
localized 95% of the phosphosites.

Examples of experimental spectra where PhosphoHunter
was successful and Inspect and/or Mascot were not are
herein provided, considering, for instance, a threshold of 30
and statistical validation for PhosphoHunter. The TPVsPVK
phosphopeptide (spectrum with the 1054 1054 code in the
available dataset) was successfully identified by Phospho-
Hunter, even by increasing the neutral loss threshold to
100, but it was not correctly classified by either Inspect or
Mascot, where no significant entries were present in the hit
list. The LLPSAPQTLPDGPLAsPAR phosphopeptide (code
1343 1343) was correctly identified by PhosphoHunter and
Mascot, but Inspect classified it as a nonphosphorylated
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Table 5: Performance ofMascot and Inspect in terms of phosphorylated spectra detection (1500MS/MS spectra analyzed, 750 phosphorylated
peptides + 750 nonphosphorylated peptides).

Tool TP FP FN TN Sens Spec Acc FDR Prec 𝐹

Mascot 552 0 198 750 0.736 1 0.868 0 1 0.848

Inspect 650 15 100 735 0.867 0.98 0.923 0.023 0.977 0.919

TP: true positive, spectra of phosphorylated peptides in which the first hit (or the majority) of the hit list is phosphorylated; FP: false positive, spectra of
nonphosphorylated peptides in which the first hit (or the majority) of the hit list is phosphorylated; FN: false negative; TN: true negative; Sens: sensitivity or
recall, TP/(TP + FN); Spec: specificity, TN/(TN + FP); Acc: accuracy, (TP + TN)/all spectra; FDR: false discovery rate, FP/(TP + FP); Prec: precision, TP/(TP
+ FP); 𝐹 : 𝐹-measure, 2 ∗ precision ∗ recall/(precision + recall).

Table 6: Performance of Mascot and Inspect in terms of sequence
detection and phosphorylation sites localization.

Tool Correct sequence Correct sites
Mascot 552 513

Inspect 646 615

The 750MS/MS spectra of phosphorylated peptides are considered.

peptide with wrong sequence. On the other hand, the
ANtPELK phosphopeptide (code 1058 1058) was correctly
classified by PhosphoHunter and Inspect, but not by Mascot,
where no significant entries were present in the hit list. Con-
sidering phosphosite localization, the TAsGSSVTSLDGTR
phosphopeptide (code 1459 1459) was correctly classified by
PhosphoHunter, while both Inspect and Mascot failed in
the phosphosite identification and provided the same wrong
sequence (tASGSSVTSLDGTR) as significant entry in their
hit list, although they successfully classified the spectrum as
a phosphopeptide and correctly identified the amino acid
sequence.

4. Conclusions

In this paper, a new Perl software tool, called PhosphoHunter,
is proposed for the analysis of phosphopeptide MS/MS spec-
tra and it was tested on a dataset of 1500 MS/MS consensus
spectra. While many available software tools implement
phosphopeptide-specific postprocessing algorithms, down-
stream of consolidated peptide search tools, PhosphoHunter
provides a full and automated analysis pipeline, starting
from dta files (and a FASTA format database) and returning
phosphopeptide identification and phosphosite localization.
Importantly, if the analysis is focused on a specific subset of
a proteome (e.g., the human amniotic fluid or the plasma
proteome), PhosphoHunter allows us to create a database
from a pool of selected proteins, reducing the number of
false positive identifications and speeding up the analysis.
Moreover, it includes a preliminary step to filter the MS/MS
spectra that do not have the typical signals indicating the
presence of some phosphorylated amino acids. Another
advantage of PhosphoHunter is that it is implemented in
Perl/C and the user can easily extend and customize its
features. Many parameters can be set directly in the input file,
as indicated above, while others (e.g., the peptide cleavage
rules) can be easily changed via Perl script modifications.
On the other hand, as it was anticipated in the Background

section, the purpose of the proposed procedure is not only
the identification of phosphorylated peptides, but also the
increase of analysis efficiency and reproducibility. In fact,
the inspection of MS/MS spectra by expert users is time
consuming, because of the large amount of data generated by
the mass spectrometer and of the complexity of the signals
acquired.The filtering step (step #2) allows us to decrease the
number of MS/MS spectra that the procedure has to identify,
by the detection of particular phosphorylation signals in
the MS/MS spectrum. The detection of the phosphorylation
peaks in the MS/MS spectrum is performed by analyzing
the most intense peaks. These signals are selected using
an intensity threshold defined by the analyst. The results
shown in this paper highlight that the performance of
PhosphoHunter (Tables 2, 3, and 4) depends on this threshold
because it determines the number of phosphopeptides that
the procedure analyzes and identifies. The threshold is a
parameter of the software tool and it has to be chosen by the
user in accordance with the specific investigation to perform
(e.g., to increase accuracy or to reduce FDR). Another feature
that makes the procedure robust is the statistical validation
of the results. When a phosphopeptide is identified, a ranked
list of all the possible candidate peptides is produced by
PhosphoHunter.This list contains true and random peptides.
For each hit in that list, a 𝑝-value, indicating the probability
of the candidate of being identified by chance, is computed
through multiple hypothesis tests. As multiple tests are
performed, the critical value, 𝛼, needs to be lowered to
account for the number of comparisons being performed.
The number of comparisons is equal to the number of target
peptides in the composite database. The statistical validation
allows the reduction of the number of candidate hits for
each phosphopeptide, because the candidates achieving a 𝑝-
value greater than the threshold 𝛼 chosen by the user (usually
𝛼 = 0.05/𝐾, where 𝐾 is the number of target peptides in
the composite database) are random hits by definition. It
is also important to highlight that the implemented tool is
affected by two specific limitations. Since its filtering step is
based on neutral loss peak recognition, only CID data can
be analyzed, while other fragmentation methods, such as the
electron transfer dissociation (ETD) method, do not cause
neutral losses.Moreover, since phosphotyrosine hardly shows
neutral loss under CID conditions [45], peptides containing
one ormore phosphotyrosine residues and no phosphoserine
or phosphothreonine (which give neutral loss signals) are
not selected and the phosphorylation of tyrosine is not taken
into account as a variable modification in the following
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steps of the algorithm. Concerning these limitations, it is
important to highlight that CID is still commonly used as
peptide fragmentation method, while tyrosine phosphory-
lation occurs in low percentage compared to serine and
threonine [31, 45–48]. Other software tools and studies also
neglect phosphotyrosine in their analyses [30, 45]. For these
reasons, the application field of PhosphoHunter is very wide.
PhosphoHunter (with statistical significance, at a threshold of
10–30) was compared with Mascot, a very popular software
tool. Results showed that the overall performance of Phos-
phoHunter was better than Mascot in terms of sensitivity,
accuracy, and 𝐹-measure. Mascot gave no false positives,
inherently resulting in better specificity and FDR and pre-
cision values than PhosphoHunter. However, it is important
that if the study aims at identifying phosphopeptides, Mascot
wrongly classifiesmore than 25%of the spectra, as opposed to
PhosphoHunter, which is characterized by amuch higher and
tunable sensitivity. PhosphoHunter was also compared with
the Inspect tool to provide a comparison with a full phos-
phopeptide identification workflow.The overall performance
of Inspect was comparable with PhosphoHunter, considering
a threshold of 10–30: whereas Inspect performed slightly
better in terms of accuracy, FDR, 𝐹-measure, precision, and
specificity, PhosphoHunter had a higher sensitivity, which
reflects a high capability of discovering phosphorylated spec-
tra. As already anticipated in Section 3,manyPhosphoHunter
results are threshold-dependent. For this reason, although an
intensity threshold of 10–30 was considered as an example in
the discussion of performance results, the final user should
consider the full list of performance index values, reported
in Tables 1, 2, and 3. This can guide the tuning of the
threshold value to maximize sensitivity, specificity, or other
indexes, according to user needs. It is worth noting that the
development of PhosphoHunter did not require the tuning of
several parameters by evaluating the algorithm on a training
and a test set, but the tool was expressly designed including
a single, intuitive, performance-related parameter (i.e., the
intensity threshold of neutral loss) that users can freely fix
and tune according to the aim of their analysis. In other
words, we did not search for an optimal threshold parameter,
since our aim is to provide a flexible procedure allowing
sensitivity and specificity to be tuned according to the user’s
preference. For the reasons above, the analysis of the dataset
considered in this studywas not finalized to the learning of an
optimal threshold value for future use and the value showing
the highest accuracy and 𝐹-measure on this dataset (20–30)
should not be considered as a recommended threshold, since
it may change according to the analyzed dataset. The above
threshold values were only used in this study to compare
the performances that PhosphoHunter can reach with the
ones of two other tools. Apart from the neutral loss intensity
threshold, the other parameters of the proposed procedure,
such as the number of allowed consecutive missing cleavages
during in silico digestion and 𝑝-value threshold, are the same
usually required by other software tools. Commonly adopted
values, also suggested by these tools, are reported in the
default input file of PhosphoHunter distribution. On the
other hand, some parameters depend on experimental data,
such as mass and fragment tolerance, and then they should

be set according to the specific MS/MS equipment used in
the analysis.

PhosphoHunter, Mascot, and Inspect were all character-
ized by a high recognition capability of peptide sequences
and phosphosites, with 100%, 100%, and 99% of correctly
identified sequences (present in the hit list) among the
true positive spectra and 91%, 93%, and 95% of correct
phosphosite localization in these sequences, respectively.

In summary, this study and the two performed com-
parisons with other tools highlighted that PhosphoHunter
performances are comparable to Inspect, another phos-
phorylation-specific tool, while both of them were found to
be superior to Mascot, a widely used but phosphorylation-
unspecific tool. The procedure implemented in Phospho-
Hunter is highly flexible according to user needs and it can
be easily customized by tuning a single performance-related
parameter. The procedure is also relatively simple and intu-
itive and it formalizes the manual interpretation process of
MS analysis experts. PhosphoHunter has been used for phos-
phopeptide identification in a recent publication [49] and
is currently in use at theDipartimento di Scienze del Farmaco
(Università degli Studi di Pavia).
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dell’Informazione, Università degli Studi di Padova) who
performed all the Mascot MS/MS identification.

References

[1] J. D. Hoffert and M. A. Knepper, “Taking aim at shotgun
phosphoproteomics,”Analytical Biochemistry, vol. 375, no. 1, pp.
1–10, 2008.

[2] Z. Wang, G. Dong, S. Singh, H. Steen, and J. Li, “A simple and
effective method for detecting phosphopeptides for phospho-
proteomic analysis,” Journal of Proteomics, vol. 72, no. 5, pp. 831–
835, 2009.

[3] H. Dinkel, C. Chica, A. Via et al., “Phospho.ELM: a database of
phosphorylation sites-update 2011,” Nucleic Acids Research, vol.
39, no. 1, pp. D261–D267, 2011.

[4] C. Temporini, E. Calleri, G. Massolini, and G. Caccialanza,
“Integrated analytical strategies for the study of phosphoryla-
tion and glycosylation in proteins,”Mass Spectrometry Reviews,
vol. 27, no. 3, pp. 207–236, 2008.

[5] C. Temporini, L. Dolcini, A. Abee et al., “Development of an
integrated chromatographic system for on-line digestion and
characterization of phosphorylated proteins,” Journal of Chro-
matography A, vol. 1183, no. 1-2, pp. 65–75, 2008.



Advances in Bioinformatics 11

[6] X. Zhang, “Proteome bioinformatics. Edited by Simon J. Hub-
bard and Andrew R. Jones,” Briefings in Bioinformatics, vol. 12,
no. 1, pp. 80–81, 2011.

[7] B. Macek, M. Mann, and J. V. Olsen, “Global and site-specific
quantitative phosphoproteomics: principles and applications,”
Annual Review of Pharmacology andToxicology, vol. 49, pp. 199–
221, 2009.

[8] N. Barbarini, P. Magni, and R. Bellazzi, “A procedure to
decompose high resolution mass spectra,” BMC Bioinformatics,
vol. 8, article P6, 2007.

[9] N. Barbarini and P. Magni, “Accurate peak list extraction from
proteomic mass spectra for identification and profiling studies,”
BMC Bioinformatics, vol. 11, article 518, 2010.

[10] The SwissProt database, http://www.ebi.ac.uk/uniprot/database/
download.html.
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