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ABSTRACT The brush border, isolated from chicken intestine epithelial cells, contains the
95,000 relative molecular mass NO polypeptide, villin . This report describes the purification
and characterization of villin as a Ca"-dependent, actin bundling/depolymerizing protein .
The 100,000 g supernatant from a Ca" extract of isolated brush borders is composed of three
polypeptides of 95,000 (villin), 68,000 (fimbrin), and 42,000 Mr (actin) . Villin, following purifi-
cation from this extract by differential ammonium sulfate precipitation and ion-exchange
chromatography, was mixed with skeletal muscle F-actin . Electron microscopy of negatively
stained preparations of these villin-actin mixtures showed that filament bundles were present .
The viscosity, sedimentability, and ultrastructural morphology of filament bundles are depend-
ent on the villin :actin molar ratio, the pH, and the free Ca" concentration in solution . At low
free Ca" (<10-6 M), the amount of protein in bundles, when measured by sedimentation,
increased as the villin : actin molar ratio increased and reached a plateau at approximately a
4:10 ratio . This behavior correlates with the conversion of single actin filaments into filament
bundles as detected in the electron microscope . At high free Ca" (>10-6 M), there was a
decrease in the apparent viscosity in the villin-actin mixtures to a level measured for the buffer.
Furthermore, these Ca" effects were correlated with the loss of protein sedimented, the
disappearance of filament bundles, and the appearance of short fragments of filaments . Bundle
formation is also pH-sensitive, being favored at mildly acidic pH . A decrease in the pH from 7.6
to 6.6 results in an increase in sedimentable protein and also a transformation of loosely
associated actin filaments into compact actin bundles . These results are consistent with the
suggestions that villin is a bundling protein in the microvillus and is responsible for the Ca"-
sensitive disassembly of the microvillar cytoskeleton . Thus villin may function in the cytoplasm
as a major cytoskeletal element regulating microvillar shape .

The brush border microvillus is a model biological system for
investigations aimed at understanding how a cell maintains its
shape . Ultrastructural studies have shown that the microvillus
contains a core of bundled microfilaments which extend into
the underlying terminal web (44, 45) . This core bundle is
associated with the overlying plasma membrane by two types
of attachments. The first type laterally connects the membrane
along the length of the bundle by means ofcross filaments (35,
39, 44, 45). In the second type of membrane attachment, the
microfilaments insert end-on into the electron-dense cap at the
tips of the microvilli. Earlier studies had suggested that both

types of attachments as well as the bundling protein in the
microvillus core were composed of alpha-actinin (3, 44, 48) .
However, recent studies have shown instead that alpha-actinin
is not a structural component of the microvillus but rather is a
component of the terminal web (7, 16, 21, 43) .

Biochemical studies have shown that demembranated mi-
crovillar cytoskeletons contain polypeptides with relative mo-
lecular masses, Mr , of 110,000, 95,000 (villin), 68,000 (fimbrin),
42,000 (actin), and 17,000 (calmodulin) (9, 15, 36, 44) . The
proposed structural roles of these proteins in the cytoskeleton
were determined by experiments which selectively released
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different cytoskeletal components from the microvillus .
Changes in the ultrastructure of the microvillar cytoskeleton
were correlated with changes in the polypeptide composition
and led to the suggestion that the 110,000-Mr polypeptide is a
component of the cross filaments, while villin and/or funbrin
were bundling components in the core bundle (35) . This was
in contrast to the evidence reported by Bretscher and Weber
(8) that the cross-filaments were composed of villin . Recently,
the demembranated cytoskeleton was shown to be extremely
sensitive to Ca" . Greater than micromolar levels of free Ca"
in solution caused disassembly ofthe bundle filaments (22, 28) .
However, the Ca"-sensitive agent in microvilli was not iden-
tified.
To identify both the actin bundling protein and the Ca"-

sensitive factor in the microvillus, villin was isolated from
preparations of chicken intestine brush borders and examined
for its actin binding properties in the presence and absence of
Ca" . During the course of these studies, several labs inde-
pendently reported the isolation and characterization of villin
as a Ca"-dependent, actin binding protein (10, 17, 22, 42) .
While the present results are in general agreement with their
findings, we describe here the characteristics of this Ca"-
dependent, actin-bundling/depolymerizing phenomenon and
identify several of the important factors which affect it. A
preliminary report of this work has been published previously
(37) .

MATERIALS AND METHODS

Isolation of Brush Borders
Epithelial cells were collected from chicken intestines as described earlier (35) .

Brush borders were isolated from these cells using the protocol outlined by
Mooseker et al . (41), with the modification that the pH of the solutions was
adjusted to 6.9. The proteolytic inhibitor phenylmethylsulfonyl fluoride (PMSF)
was added to all preparations at a final concentration of 0.1 mM .

Isolation of Villin
The brush borders from three hens were resuspended in 20 ml of a solution

containing 75 mM KCI, 1 mM Ca(OH)2 , and 10 mM TrisHCl, pH 7.5, at room
temperature for 30 min. The Ca"-extracted brush borders were sedimented at
100,000 g for 15 min in a type 65 rotor (Beckman Instruments, Inc., Spinco Div.,
Palo Alto, CA) at 4°C. The supernatant of this extract was sequentially fraction-
ated by 0/20%, 20%/50%, and 50%/70% ammonium sulfate cuts with a saturated
solution of ammonium sulfate (Schwarz-Mann, Orangeburg, NY). After 30 min
on ice, each fraction was collected by centrifugation at 10,000 g for 10 min. The
20%/50% fraction was resuspended in Ca" buffer (0.1 mM Ca(OH)z and 10
mM TrisHCl pH 7.5) and desalted through Sephadex G-25 (Pharmacia Fine
Chemicals, Piscataway, NJ). The void volume was collected and located on a
DEAE-Sephacel (Pharmacia Fine Chemicals) column (0 .9 cm x 5 cm) which
was previously equilibrated with the Ca" buffer . After the A. of the column
buffer returned to baseline, the column was eluted with 200 ml ofa 0.0-0.3 M
NaCl Linear gradient containing 0.1 mM EGTA and 10 mM TrisHCl, pH 7.5 .
The salt concentration was monitored by measuring the conductivity of the
fractions . The fractions containing villin were detected by SDS gel electrophoresis
on a microslab gel apparatus (34) . The fractions comprising the villin peak were
simultaneously dialyzed and concentrated to -0.3 nil against appropriate solu-
tions by vacuum dialysis (Micro-Pro Di Con model 315; Bio-MolecularDynam-
ics, Beaverton, OR). Villin was used without further purification and stored at
4°C for as long as l wk without loss of bundling activity . Brush borders from
three chickens yield -1 .5 mg of villin in this 2-d procedure .

Isolation of Actin
Actin was isolated from an acetone powder of chicken breast muscle by the

method ofSpudich and Watt (51) and stored at -70°C as G-actin .

Characterization of Bundling
All experiments were carried out at 2°C in l .5-ml microfuge tubes. The

bundling solution consisted of75 mM KCI, 5 mM MgCl2 , 0.1 mM ATP, and 10
mM imidazole, at pH 6.9. Actin and villin (expressed in this report as their actual
molar ratios in micromoles of actin to micromoles of villin) were incubated at
28°C for at least 12 h, after which 150-1d samples were withdrawn for various
analyses. The apparent viscosity of 0.6-ml samples was measured in Cannon-
Manning semi-micro viscometers (100) (Cannon Instrument Co ., State College,
PA) which were calibrated previously with sucrose solutions of known viscosities
(ISCOTables; Instrument Specialties Co ., Lincoln, NE). Forelectron microscopy,
5-pl samples were placed on 300-mesh copper grids covered with thin carbon
films and negatively stained with 0.5% uranyl acetate (pH 4.1) . For the sedimen-
tation assays, sampleswere either centrifuged for 5 min at 10,000 g in a Beckman
microfuge (Beckman Instruments, Inc., Spinco Div., Palo Alto, CA) at 8°C or
centrifuged for 20min at 30 psi (- 180,000g) in an airfuge (Beckman Instruments,
Inc.) at 2°C. The supernatants were carefully withdrawn and the pellets resus-
pended to 1501x1 . The amount of protein in both the supernatants and the pellets
was assayed by the Schacterle andPollack (46) modification of the Lowrymethod
(33) .

pH Dependence
To minimize the pH contribution of the dialysis buffer in the following

experiments, villin and actin were dialyzed againstthe bundling solution contain-
ing 1 mM of Imidazole at pH 7.0 and then reconstituted at a 1 :2 molarratio . The
mixture was then diluted with the standard bundling solution whose pH was
adjusted with concentrated HCl to 6.6, 6.8, 7.0, 7.2, 7.4, or 7.6. The final pH of
the dilution solutions did not deviate from its preadjusted levels. In different
experiments, the final concentration of actin was varied from 2.5 pct to 10 yM .

Ca + + Dependence
Villin and actin, previously dialyzed against bundling buffer, were mixed in

a 5:10 molar ratio. The Ca:EGTA ratio was varied by addition ofCa(OH)2 from
a 8.713-mM stock solution, pH 7.0, whose Ca" concentration was measured by
atomic absorption. Ca" was added to 0.2, 0.15, 0.1, 0.08, 0.05, 0.04, 0.02, and
0.003 mM to bundling buffer with 0.1 mM EGTA to yield the pCa" shown in
Fig. 11 . The free Ca" in solution was calculated using a program written by Dr .
Peter Chantler (Brandeis University) and expressed as pCa. This program takes
into consideration the temperature, pH, Mg", EGTA, and ATP which all affect
the level of free Ca" in solution.

Villin:Actin Molar Dependence
Villin and actin were dialyzed against bundling buffer and mixed to give a

final molar ratio ranging from 0:10-10 :10 pct villin:ILM actin .

SDS Gel Electrophoresis
Samples were analyzed on microslab gels poured with a 5-20% gradient of

acrylamide and a 3-6Mgradient of urea (13) following the method described by
Matsudaira and Burgess (34) .

Electron Microscopy
Samples were processed for thin sectioning as described earlier (35) . Silver

sections were cut with a diamond knife on a Sorvall MT-5000 ultramicrotome
(DuPont Instruments-Sorvall Biomedical Div., DuPont Co ., Newtown, CT) and
examined on a JEOL 1000X operated at 80 kV .

RESULTS

Purification of Villin
Extraction ofisolated brush borders (Fig . 1 a) with solutions

containing 1 mM Ca(OH)2 results in an apparent loss in the
organization of the cytoskeleton and a uniform shortening of
the microvilli (Fig . 1 b and c). In the distal portions of the
microvilli where underlying filaments are absent, the mem-
brane appears vesiculated while in the basal portion of the
same microvilli the core bundles remain relatively intact . In
the terminal web the rootlets ofthe microvilli appear disrupted.
After these extracts of brush borders are sedimented, three
polypeptides remain in the supernatant : villin, funbrin, and
actin (Fig. 2, slot 2) . The villin and actin coprecipitate in the
20%/50°ío ammonium sulfate fraction (Fig . 2, slot 3) and are
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FIGURE 1

	

The effect of Ca++ on the integrity of the isolated brush border cytoskeleton . (a) The microfilaments remain bundled
within the long microvilli (the tips are not shown) and extend into the underlying terminal web. (b and c) . When incubated in 1

mM Ca" for Ye h at room temperature, there are drastic alterations in the morphology of the brush borders . The microvilli are
shorter, with vesiclelike membrane blebs at the distal tips (arrows) . The cytoskeleton within these blebs is disordered when
compared to the more basal portions of the same microvilli (arrowheads) . Bar, 100 nm . (a) X 90,000 . (b) X 84,000. (c) x 84,000 .

free from contamination by funbrin which is collected in the
50%/70% fraction (Fig. 2, slot 4) . When the resulting villin-
actin mixture is chromatographed as DEAE-Sephacel in the
presence of 0.1 mM EGTA, villin elutes as a sharp peak at 75
mM NaCl while the actin elutes at 150 mM NaCl (Fig. 3). Gel
electrophoresis of these fractions shows that the villin and the
actin are separated without any detectable cross-contamination
(Fig. 2, slots S and 6) . No cross-contamination is evident even
on overloaded gels. Approximately 0.5 mg of villin is isolated
from the small intestine ofeach chicken. The villin isolated by
this 2-d procedure was >95% pure as estimated from SDS gels .
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Dependence of Bundle Formation on the Villin :
Actin Ratio

Previous studies of fascin, the bundling protein isolated from
extracts of sea urchin eggs, had demonstrated that bundle
formation was complete at a fascin:actin molar ratio of 1 :4 and
at this ratio the actin binding sites for fascin were saturated
(11). With this in mind, villin was tested for its ability to bundle
actin by varying the villin :actin molar ratio. When the Ca"
concentration in solution is <10' M the extent of bundle
formation is strictly dependent on the villin :actin molar ratio.



FIGURE 2 The polypeptide composition of the different extracts
during villin purification analyzed on SIDS microslab gels (5-20%
gradient of polyacrylamide and a 3-6 M gradient of urea) . (Lane 1) .
Triton X-100-demembranated brush borders with the Mr of myosin
(200,000), villin (95,000), fimbrin (68,000), actin (42,000), and cal-
modulin (17,000) indicated for reference . The numbers on the figure
are x 103 . Supernates from the extracts of Ca"-treated brush
borders (lane 2) are composed of villin, fimbrin, and actin . Villin
and actin coprecipitate in the 20%/50% ammonium sulfate fraction
(lane 3) while fimbrin is highly enriched in the 50%/70% ammonium
sulfate fraction (lane 4) . Villin elutes in the 75 mM salt peak (lane
5) from DEAE-Sephacel while actin elutes in the 150-mM salt peak
(lane 6) from the same column .
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FIGURE 3 The elution profile (solid line) of the 20%/50% ammo-
nium sulfate fraction from a DEAE-Sephacel column when devel-
oped with a 0-0.3 M NaCl salt gradient (dotted line) . Two peaks
appear at 75 mM NaCl and are composed of villin (Fig . 2, lane 5)
and actin (Fig . 2, lane 6), respectively . The elution buffers contain
10 mM Imidazole, pH 7 .0, and 0.1 mM EGTA .

In the absence of villin, actin filaments do not form bundles
under the conditions tested (Fig . 4a), although there is some
unexplained aggregation or lateral association . However, when
purified villin is mixed with F-actin in the presence of0.1 mM
EGTA, large bundles of filaments are formed (Fig. 4) . As the
amount of villin added to 10 uM F-actin increases to a 2:10
ratio, large arrays of filaments become aligned laterally with
one another (Fig . 4b) . Incubation of villin with F-actin at
ratios of 5:10 (Fig. 4c) and 10:10 (Fig . 4d) results in most of
the filaments becoming closely aligned into bundles . Correlated
with bundle formation is a decrease in the number of free
filaments seen in negative stain (Fig . 4) .

Attempts were made to establish the arrangement of villin
with respect to actin in the bundles . In previous studies with
fascin a distinct 11-nm periodic striation was seen in the fascin-
actin bundles (11). In negatively stained samples of villin-actin
preparations, distinct cross-links are occasionally seen spanning
the distance between adjacent filaments (arrows, Fig. 5a and
b) . The distance between cross-links varies between 6 and 45
nm, with the majority measuring between 16 and 24 nm.
However, a clear periodicity or a paracrystalline striation in

the bundles was not obvious.
Sedimentation was used as a quantitative measure for bundle

formation . Sedimentation in a microfuge can be used as a
measure of bundle formation because the microfuge produces
a force sufficient to sediment actin bundles but not single actin
filaments (J . Bryan, personal communication) . This assay de-
tected very little protein sedimented at low villin:actin ratios
(<2:10) . An increase in the villin :actin ratio to 4:10 results in
an increase in sedimentable protein. At ratios >4:10 the amount
of protein sedimented remained relatively constant (Fig . 6) .
When assayed by sedimentation in an airfuge, bundle forma-
tion displays very different results (Fig. 7). Addition of villin
to 101AM F-actin resulted in an initial increase and a leveling
off in the amount ofprotein sedimented . The villimactin ratio
at which the protein in the pellet reached this plateau varies in
different experiments from 3:10 to 5:10 in both the microfuge
and airfuge assays . Beyond a 5:10 ratio, addition of villin to
actin results in a proportional increase in the amount ofprotein
found in the supernatant for both assays. The plateau repre-
sents a quantitative measure of the extent of bundle formation
and is in agreement with the electron microscopy evidence that
bundle formation is maximal at approximately a 4:10 villin :
actin role.

The viscosity ofthe villin,.actin mixtures was used to monitor
bundle formation . The viscosity of the villin-actin mixtures
exhibited a very complex dependence on the villin :actin ratio
(Fig . 8) . Increasing the villin:actin ratio to 2:10 results in a 50%
decrease in the apparent viscosity of the bundles when com-
pared to the value measured for F-actin (Fig . 8) . This decrease
in apparent viscosity was not due to F-actin depolymerization
since both electron microscopy and sedimentation studies
showed the presence of filaments and sedimentable protein .
Instead, the decrease in viscosity can be explained by polymer
theory (53) as a result of cross-linking single actin filaments
into actin filament bundles . Further increases in the ratio result
in an increase in the apparent viscosity of the mixtures. At
ratios >5:10 (Fig . 8) the viscosity remains constant . A possible
explanation for this subsequent increase in viscosity could be
explained by postulating that the bundles become rigid at
villinactin ratios >2:10 and therefore impede the flow of the
mixture through the capillary portion of the viscometer . Elec-
tron microscopy ofthe bundles suggests that this situation may
occur since samples after measurement in the viscometer are
sheared to shorter lengths as monitored by negatively stained
samples.

Ca ++ Dependence of Bundling
Raising the calcium level in the solution to >I0-s M causes

depolymerization of actin filaments and disassembly of actin
bundles within 2 min after addition of Ca" . In the electron
microscope, short fragments of filaments were observed at
villin :actin ratios of 2:10 (Fig . 9 a) and 0.5:10 (Fig . 9 b) instead
of actin filaments or filament bundles . The fragments formed
from a 2:10 ratio appeared shorter than those formed from a
0.5 :10 ratio . These observations were correlated with visco-
metric studies which measured a decrease in the apparent
viscosities of the villin-actin mixtures to a level measured for
the buffer alone (Fig . 8) . Others (9, 42) have reported that this
disassembly of the bundles is reversed by removal of Ca" and
their results suggested that the Ca"-induced disassembly of
the bundles is not caused by Ca"-activated proteases .
The Ca" sensitivity of the villin-actin bundles was com-

pared to the reported values for the Ca"-induced disassembly
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FIGURE 4

	

The dependence of bundle formation on the villin :actin ratio. At a 0:10 ratio, F-actin alone (Fig . 4 a) is loosely arranged
on the grid without formation of distinct bundles. As the villin:actin ratio increases to 2:10 (Fig. 4 b), a few bundles of filaments
appear . These bundles appear composed of loosely associated filaments. At saturating conditions, villin :actin = 5:10 (c), 10 :10 (d),

the lack of any single actin filaments suggests that most of the filaments are recruited into bundles. The bundles are very straight
and ordered in appearance . Actin was present at 10 /AM in all these preparations . Bar, 100 nm, (a) x97,500. (b, c, and d) x 51,000 .

of the microvillar cytoskeleton (22, 28). Bundle formation by

	

bundles. The max,/2 for this Ca"' effect was 1.12 x 10 -s at pH
villin-actin mixtures exhibits a sigmoidal dependence on the

	

6.9 (Fig . 10).
free Ca" concentration in solution when measured by viscom-
etry or sedimentation. Bundles disassembled and filaments

	

pH Dependence of Bundling
depolymerized at Ca" concentrations >10-' M. At free Ca"
concentrations <10-6 M, actin filaments were organized as

	

The ultrastructural morphology of the bundles appears de-
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FIGURE 5 At higher magnifications, distinct cross-links are seen
between adjacent filaments within a bundle . The bundles were
reconstituted from a 2 .5 :5 mixture of villin and actin . Bar, 100 nm .
X 135,300.

É FIGURE 6 The dependence of
protein sedimented in the micro-
fuge on the villin :actin ratio . The
amount of protein found in the
pellet (circles) follows a sigmoidal
curve and reaches a plateau at
approximately a 4:10 ratio . The ex-
cess protein in the supernatants

z

0.0 0	5

	

I0
(dots) increases linearly from a

W
U
óU

fLM VILLIN/IOfLMACTIN

	

3:10 ratio after an initial decrease .

pendent on the pH of the solution . Bundles assembled at pH
6.6 (Fig. I 1 a) or 6.9 (Figs. 4 and 5) appear composed of many
tightly packed filaments . There are few free filaments, indicat-
ing that most of the filaments are recruited into bundles. In
comparison, the bundles assembled at pH 7.6 (Fig . 11 b) gen-
erally have fewer filaments parallel with one another, and
filaments are not so closely spaced within a bundle as those
formed at the acidic pHs. Correlated with the ultrastructural
observations is a dependence of the amount of protein sedi-
mented on the pH at which the bundles are formed . When
assayed with the microfuge or the airfuge, the amount of
sedùnentable protein characteristically decreases as the pH
increases (Fig . 12) and approaches the quantity sedimented in
actin controls (dashed line) . In the control experiments, there

FIGURE 7 The dependence of
protein sedimented in the airfuge
on the villin :actin ratio . Under
these conditions, F-actin fila-
ments are pelleted and, as the vil

o

	

lin:actin ratio increases, there is a
linear increase in the protein in
the pellet (circles) which reaches
a plateau at a 3 :10 ratio . The
amount of protein in the super-
natant (dots) remains initially
constant, then increases linearly
at ratios >2:10 .

FIGURE 8 The influence of both
the villin :actin ratio and the free
Ca" in on the apparent viscosity .
At free Ca" (<10-e M) (dots),
there is a reproducible drop in the
apparent viscosity of the mixtures
to a level midway between the5

M VILLIN/IOPM ACTIN

	

viscosity of the F actin (2 .0 centi-
poise [Cp]) and the buffer (1 .65 Cp) as the villin :actin ratio increases
from 0:10 to 2 :10 . With a subsequent increase in the villin :actin
ratio, the apparent viscosity increases to a value slightly higher than
for F-actin and then remains constant . When the free Ca" in
solution is >10-e M (circles), there is a sharp and dramatic decrease
in the apparent viscosity as the ratio increases to 0 .5 :10 . The max,/z
of this drop is approximately at 0.25 :10. At ratios >03:10, the
viscosity remains constant at levels measured for the buffer alone .

DISCUSSION

FIGURE 9

	

If the villin-actin mixtures are incubated in the presence
of Ca" >10- s M, only fragments of filaments are now detected .
Compare to Figs . 4 and 5 . The length of the fragments appears
qualitatively to be affected by the villin :actin ratio (Fig . 10 a = 2 :10,
Fig . 10 b = 0 .5 :10) as seen in negative stain . Bar, 100 nm . x 73,100 .

is a slight decrease in F-actin sedimented in the airfuge (dashed
line, Fig . 12), indicating that F-actin polymerization is not
affected greatly over the same pH range.

Our results complement and extend the recently reported ob-
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FIGURE 10

	

Bundling as measured by
sedimentation in the microfuge (x)
or the apparent viscosity (O--O)
shows a sigmoidal dependence on
the free Ca" in solution . At pH 6.9,
the maxi /2 is at pCa 5.96 or 1 .12 WM .j-

5

	

6 pca 7

	

6

	

9

	

At Ca" <10-e M, the apparent vis-
cosity is slightly greater than that measured for F-actin (dotted line) .
At Ca" >10-s M, the viscosity drops to approximately buffer levels
and very little protein is pelleted . The villin :actin ratio was held at
5:10.

fIGURE 11 The morphology of the bundles is dependent on the
pH at which they are assembled. At pH 6.6 (a), most of the filaments
are organized into bundles. In comparison, at pH 7.6 (b), the
filaments are loosely associated as bundles with many free filaments
visible . The villin :actin ratio is 5:10. Bar, 200 nm . x 56,000.

servations of other labs on villin-actin interactions (10, 17, 22,
42). Here we identified the factors which affect villin-actin
interactions in order to establish the optimal conditions for
studying the formation of villin-actin bundles. This report, as
well as others (10, 22, 42), demonstrates that the level of Ca"
in solution must be carefully controlled. If the free Ca" in
solution is >10-6 M, then villin acts as an actin depolymerizing
protein rather than an actin filament bundling protein. This
Ca" effect is possibly a reason why Craig and Powell (17)
were unable to detect bundles offilaments in their preparations
since their solutions were not buffered for Ca". The pH also
affects bundle formation. If the pH is <7.0, then the villin-
actin preparations form well ordered bundles compared to the
bundles formed at the higher pHs. In other studies (9, 42)
bundle formation was studied at pHs ranging from 7.3 to 7.8.
Whether this pH difference with respect to the more optimal
low pH conditions (6.8-7 .0) would alter the results of kinetic
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FIGURE 12 The amount of protein
found in the pellet is dependent on
the pH of the solution . As the pH
increases from 6.6 to 7.6 the amount
of protein sedimented in the micro-
fuge (dots) or the airfuge (circles)
decreases. At pH 7.6, the amount of
sedimented protein approaches the
level measured for F-actin alone

6.6 69 7.0 7.2 7.4 7.6

	

(dashed line) . The villin :actin ratio is
pH

	

5:10.

-------------------

studies (42) should be reinvestigated. We also demonstrate here
that the amount of villin in relation to actin also influences the
formation of bundles. Although other labs have studied villin-
actin interactions at villin:actin ratios <1 :30 (17, 42), bundle
formation should be studied under saturating conditions (villin:
actin = 5:10), otherwise subtle variation in the villin:actin ratio
could have a profound effect on the rate or extent of bundle
formation. Finally, we point out here the problems associated
with the use of viscometry to measure bundle formation. As
pointed out by the results, the viscosity of villin-actin mixtures
formed in the absence of Ca" behaves anomalously at villin:
actin ratios >2:10 . This variation in viscosity places doubt on
the usefulness ofviscometry to quantify bundle formation with
at least an Ostwald-type viscometer .
These results demonstrate that the level of free Ca" in

solution modulates the integrity of an actin bundle formed
with villin. Raising the free Ca" to >I0-s M induces actin to
depolymerize into short fragments (Figs . 8 and 9; see also
references 17, 42). The size of the filaments seems to be
dependent on the villin :actin ratio (Fig. 9; see also references
17, 42). The DNase I studies ofCraig and Powell (17) and the
gel filtration studies of Mooseker and colleagues (42) suggest
that the Ca"-induced shortening of filaments may involve
breakage of the filaments into short pieces rather than depo-
lymerization by loss of subunits from the ends of filaments.
These results are sufficient to explain the Ca"-sensitive disas-
sembly of the isolated microvillus cytoskeleton first demon-
strated by Howe et al . (28) and clearly suggests that villin may
play a major role in regulating the integrity of the actin core
structure in intact microvilli . While calmodulin is the other
Ca"-binding protein in the microvillus (23, 28), its in vivo or
in vitro function is unknown since both Howe et al . (28) and
Glenny et al. (22) have demonstrated clearly that calmodulin's
presence is not required for the Ca"-induced disassembly of
the microvillar cytoskeleton . Glenny and Weber (23) have
proposed that calmodulin may serve as a Ca" buffer during
Ca" transport across the brush border . Their suggestion is
based on the large amount of calmodulin in the microvillus (1
mol calmodulin/2 mol of actin) discovered by Howe et al . (28) .
However, in the microvillus, a more suitable calcium buffer
may be the 21,500 M, water-soluble calcium binding protein
(5) . One clue to calmodulin's function may come from the
recent studies of Glenny and Weber (23) who demonstrated
that calmodulin is associated with the 110,000-Mr polypeptide
and possibly may function in regulating membrane-microfila-
ment connections or membrane-associated activity .

Villin's Role in the Microvillus

Villin not only depolymerizes actin filament proteins but
also gathers actin filaments into bundles. This demonstration
of villin's bundling properties (10, 37, 42) is consistent with the
suggested bundling role of villin in the microvillar cytoskeleton



(35) . Bundled actin filaments are readily detected by negative
staining at the lowest villin :actin ratios (Fig. 6b) . The actin
bundles formed are morphologically similar but not identical
to the core bundle or microfilaments from the brush-border
microvillus (35, Fig. 1 d) which contain villin at an approximate
ratio with actin of 1:10 (6, 35). The main difference between
the in vivo and in vitro bundles is that the microvillar bundles
appear more rigid, i.e ., straighter than the bundles reconstituted
with a 1:10-2:10 villin :actin ratio. This suggests that another
protein, probably fimbrin, is also a bundling protein and is
consistent with earlier studies (35) and with the immunological
localization of fimbrin antibodies to microvilli of tissue culture
cells (9) .
The Ca"-dependent depolymerizing properties ofvillin lead

to the question of its role in the microvillus . While others have
proposed that villin regulates the length ofthe microvillus (17)
or facilitates microvillar movement (42), villin's function may
be suggested from reports documenting the vesiculation of the
microvillus membrane . The intact epithelial cell can be induced
to shed its microvilli in a variety of ways . Nutritional stress
(38, 39), anoxia (4), metabolic inhibitors (4), hydrostatic pres-
sure (56), hormones (2), antibodies (31), and glutens (32) all
have been reported to effect a disassembly of the microvillar
core bundle, vesiculation of the membrane, and shortening of
the microvillus . These same effects can be mimicked in vitro
by incubating the isolated brush border in solutions containing
Ca" (Fig . 1 b and c) or other reagants (4) . Phallodin, which
stabilizes actin filaments, inhibits vesiculation (4), presumably
by stabilizing the cytoskeleton (4, 28). These observations, then,
suggest a simple mechanism for vesiculation . Binding of a
membrane active agent or unfavorable energetic conditions
could uncouple normal calcium transport and cause an increase
in the cytoplasmic free Ca". This Ca" flux would activate
villin to depolymerize the actin core in the microvillus. The
disassembly of the cytoskeleton would leave a finger of mem-
brane which, due to thermodynamic considerations (54), would
fragment into vesicles . This would rid the cell of pathological
agents, reduce metabolic demands on the cell, and account for
high membrane protein turnover rate in normal cells .
The characteristic of villin as a Ca"-dependent actin depo-

lymerizing protein also raises a paradox concerning the re-
ported Ca" ATP-dependent retraction of the microvillar cores
into the terminal web (40) . Since Ca" alone causes total
disassembly of the microvillar cytoskeletons (28) and a result-
ing shortening of the microvillus (Fig . 16 and c), then the time-
lapse cinematographic and electron microscopy documentation
of Ca"-activated motility, i.e., retraction of the microvilli into
the terminal web (40), can be alternatively reinterpreted as
microvillar dissolution. This latter interpretation is consistent
not only with the biochemical properties of villin but also with
the observation that demembranated brush borders not previ-
ously incubated with glucose-hexokinase are sensitive to Ca"
alone (40). Resolution of this apparent inconsistency is impor-
tant in determining the role and organization ofthe cytoskeletal
components in the terminal web.

Villinlike Proteins in Nonmuscle Cells

Some of the actin depolymerizing proteins from other sys-
tems share some characteristics with villin. Proteins of the same
general size, such as gelsolin (59-61) or actin depolymerizing
factor, ADF, from pig serum (25) or a platelet polypeptide (58)
have been reported to be Ca'-sensitive depolymerizing pro-

teins but as yet have not shown an actin bundling activity . The
Ca"-sensitive properties ofvillin in the cytoplasm predict that,
under normal situations (low free Ca"), villin would act as an
actin-bundling protein. However, when the intracellular Ca"
increases to >10-6 M, villin would act as an actin-depolymer-
izing protein. Under these same conditions, Ca" would affect
also the activity of other proteins such as myosin which would
form filaments as a result of Ca"-dependent phosphorylation
of the light chains (47, 52). Thus, actin filaments would depo-
lymerize under the same conditions in which myosin filaments
would be formed. It is not clear howan effective actomyosinlike
interaction could occur in this situation unless there were
microdomains of local Ca" fluctuations .

Although villin is an actin bundling protein located in
intestinal microvilli, villin may not be a bundling protein in
the cytoplasm of other cells . Efforts to demonstrate villin's
presence in other cells have proved unsuccessful (7) . It may be
that the microvillus cytoskeleton represents a unique organi-
zation of actin bundles. Studies on reconstituted actin bundles
and other actin bundles such as those found in the actin
paracrystal (24), stereocilia (18, 55), acrosome process (57), sea
urchin filopodia (19, 30), or sea urchin microvilli (12, 50) have
shown the presence oftransverse striping patterns indicative of
the organization of the helical cross-over points within the
bundle. The lack of such a striping pattern in the microvilli
(35) or in the reconstituted bundle (this report) suggests that
the cross-links within the villin-actin bundles might be ar-
ranged in a different manner than found for the other actin
bundles. Villin's ability to bundle actin is significantly influ-
enced by the pH of the solution . Ultrastructural and sedimen-
tation measurements suggest that bundle formation is favored
at a pH slightly below 7.0, which agrees with the studies of
others who have demonstrated a pH-dependence of gelation
by the Dictyostelium 95,000-Mr polypeptide (14, 27). Measure-
ments of the pH in amoeba show that the cytoplasm is also
slightly acidic (26) and justifies conducting these experiments
at pH 6.9 .
Changes in pH maypossibly regulate the organization of the

microvillar cytoskeleton by affecting villin's ability to bind
actin . In cells, apH change has been demonstrated to accom-
pany changes in the organization of the cytoskeleton. For
example, pH changes occur during sea urchin egg fertilization
(the pH increases from 6.8 to 7.2) (29, 49) where there occurs,
both in vivo and in vitro, a rapid assembly of actin filaments
into the core bundles of the fertilized egg microvilli (1, 20). The
studies on fertilization together with studies on amoeboid
movement (26) and the acrosome reaction (57) should provide
an understanding of how pH affects cytoskeletal organization.

The authors would like to thank Drs. Robert Allen, Roger Sloboda,
and Keigi Fujiwara for helpful suggestions and for critical reading of
the manuscript . We also thank Ms. Karen Cronan and Mr. Bruce
Prum for excellent technical assistance and Dr. Christopher Cronan
for determining Ca" concentrations.

Supported by National Institutes of Health grant AM 20021 to D.
R. Burgess.

This work was submitted in partial fulfillment ofthe Ph.D . degree
for P. T. Matsudaira.

Send requests for reprints to Dr. Burgess, whose present address is
the Department ofAnatomy, University ofMiami School ofMedicine,
Miami, FL 33101 .

Receivedfor publication 1 June 1981, and in revisedform 21 September
1981 .

MATSUDAIRA AND BURGESS

	

Partial Reconstruction ofthe Microvillus Core Bundle

	

655



REFERENCES

I . Begg, D. A., and L . I . Rebhun. 1979. pH regulates the polymerization of actin in the sea
urchin egg cortex. J. Cell Biol. 83:241-248.

2. Black, B . L ., Y . Yoneyatna, and F . Moog. 1980 . Microvillus membrane vesicle accumu-
lation in media during culture of intestine of chick embryo. Biochem . Biophys. Acta 601 :
343-348 .

3 . Booth, A ., and A . Kenny . 1976a. Proteins of the kidney microvillus membrane . Identifi-
cation of subunits after sodium dodecyl sulfate/polyacrylamide gel electrophoresis . Bio-
chem . J. 159:295-307 .

4. Booth, A. G ., and A. J . Kenny . 1976b . Morphometric and biochemical investigation of
vesiculation of kidney microvilli. J. Cell Sci. 21 :449-463 .

5 . Bredderman, P. J ., and R . H. Wasserman . 1974, Chemical composition, affinity for
calcium, and some related properties of the vitamin Ddependent calcium-binding protein.
Biochemistry 13:1687-1694.

6 . Bretscher, A ., and K . Weber . 1978 . Purification of microvilli and an analysis of the protein
components of the microfilament core bundle. Exp. Cell Res. 116:397-407 .

7 . Bretscher, A., and K. Weber . 1978 . Localization of actin and microfilaments-associated
protein in the microvilli and terminal web of intestinal brush border by immunofluores-
cence microscopy. J. Cell Biol. 79:839-845.

8 . Bretscher, A ., and K. Weber . 1979 . Villin : the major microfilament-associated protein in
the intestinal microvillus . Proc. Nall. Acad. Sci. U. S. A . 76 :2321-2325 .

9 . Bretscher, A., andK. Weber. 1980. Villin is a major protein of the microvillus cytoskeleton
which binds both G- and F-actin in a calcium dependent manner . Cell 20 :839-847.

10 . Bretscher, A., and K. Weber. 1980 . Fimbrin, a new microfilament-associated protein
present in microvilli and other cell surface structures . J. Cell Blot. 86 :335-340 .

11 . Bryan, J., and R . E. Kane. 1978. Separation and interaction of the major components of
sea urchin actin gel . J. Mot.. Blot.. 125(2):207-224.

12 . Burgess, D. R ., and T . E . Schroeder. 1977 . Polarized bundles of actin filaments within
microvilli of fertilized sea urchin eggs. J. Cell Biol. 74:1032-1037,

13. Castillo, C . J ., C .L. Hsiao, P. Coon, and L. W . Black. 1977. Identification and properties
of bacteriophage T4 capsid formation gene products . J. Mot.. Biol. 110:585-601 .

14. Condeelis, J . S., and D . L. Taylor. 1977. The contractile basis of amoeboid movement. V .
The control of gelation, solution, and contraction in extracts from Dictyostelium discoidium.
J. Cell Blot.. 74 :901-927 .

15 . Craig, S ., and C . Lancashire . 1980 . Comparison of intestinal brush border 95-Kdalton
polypeptide and alpha-actinins. J. Cell Biol. 84:655-667 .

16 . Craig, S ., and J . Pardo. 1979. Alpha-actinin localization in the junctional complex of
intestinal epithelial cells. J. Cell Biol. 80: 203-210.

17 . Craig, S ., and L. Powell. 1980. Regulation of actin polymerization by villin, a 95,000
cytoskeletal component of intestinal brush borders . Cell. 22:739-746 .

18 . DeRosier, D., E . Mandelkow, A. Silliman, L. Tilney, and R. Kane. 1977 . Structure of
actin containing filaments from two types of nonmuscle cells . J. Mot.. Biol. 113:679-695 .

19 . DeRosier, D ., and K. Edds . 1980. Evidence for fascia cross-links between the actin
filaments in coelomocyte filopodia. Exp. Cell. Res. 126 :490-494 .

20 . Eddy, E. M ., and B . M . Shapiro . 1976 . Change s in the topography of sea urchin egg after
fertilization. J. Cell Blot. 71 :35148.

21 . Geiger, B ., K . T. Tokuyasu, and S. 1. Singer. 1979 . Immunocytochemica l localization of
alpha-actinin in intestinal epithelial cells. Proc. Nail. Acad. Sci. U. S. A . 76:2833-2837 .

22 . Glenny, J . R ., A. Bretscher, and K. Weber. 1980. Calcium control of the intestinal
microvillus cytoskeleton : its implication for the regulation of microfilament organizations.
Proc. Nail. Acad. Sci. U. S. A . 77 :6458-6462 .

23 . Glenny, J. R., and K. Weber . 1980. Cahnodulin-binding proteins of the microfilaments
present in isolated brush borders and microvilli of intestinal epithelial cells. J. Biol. Chem.
255:10551-10554 .

24. Hanson, J . 1972. Evidence from electron microscope studies on actin crystals concerning
the origin of cross-striation in the thin filaments of vertebrate skeletal muscle . Proc. R .
Soc. Lond. B. Biol. Sci. 183 :39-58 .

25 . Harris, H . E., J. R . Barburg, and A . G . Weeds . 1980. Acti n filament disassembly in blood
plasma . FEBS (Fed. Ear. Biochem . Soc.) Len . 121 :175-177.

26 . Heiple, J . M ., and D . L. Taylor . 1980 . Intracellular pH in single motile cells. J. Cell Biol.
86:885-980 .

27. Hellwell, S . B ., and D . L . Taylor. 1979. The contractile basis of amoeboid movement. VI .
The solation-contraction coupling hypothesis. J. Cell Blot. 83:633-648.

28 . Howe, C. L., M. S . Mooseker, and T. A . Graves. 1980. Brush-border catmodulin. A major
component of the isolated microvillus core. J. Cell Biol. 85 :916-923 .

29. Johnson, J . D ., D . Epel, and M . Paul. 1976 . Intracellular pH and activation of sea-urchin
eggs after fertilization . Nature (Load.). 262 :661-664.

30. Kane, R . E. 1976. Actin polymerization and interaction with other proteins in temperature-
induced gelation of sea urchin egg extracts. J. Cell Biol. 71 :704-714.

31 . Lorenzsonn, V., H. Korsmo, B . Pero, andW . A. Olsen. 1979 . Morphologica l studies of the
intestinal brush border membrane after in vivo treatment with sucrase antiserum-a

656

	

THE JOURNAL OF CELL BIOLOGY - VOLUME 92, 1982

possible model of disaccharidase deficiency . J. Cell Blot 83(2, Pt. 2) :71a(Abstr.) .
32 . Lorenzsonn, V., and W . A . Olsen . 1980. Intestina l brush border membrane degradation:

comparison of in vivo responses to antibody and lectins. J. Cell Biol. 87(2, Pt . 2):95a(Abstr.) .
33 . Lowry, D . H., N . A. Rosebrough, A. L . Farr, andR. J . Randall .1955. Protein measurement

with the Folin-phenol reagent. J. Biol. Chem 193 :265-275 .
34. Matsudaira, P. T ., andD. R. Burgess. 1978 . SDS microslab linear gradient polyacrylamide

gel electrophoresis . Anal. Biochem. 87 :386-396.
35 . Matsudaira, P . T., and D . R. Burgess. 1979 . Identificatio n and organization of the

components in the isolated microvillus cytoskeleton. J. Cell Biol. 83 :667-673.
36 . Matsudaira, P . T ., and D. R. Burgess. 1980a . Microfilament-membrane attachments in the

organization of the "skeletal components of brush border microviui . Eur. J. Cell Biol.
22 :343a(Abstr.).

37 . Matsudaira, P. T ., and D. R. Burgess. 19ß0b . Reconstitution of the microvillus core
microfilament bundle : identification of the 95,000-dalton polypeptide as a Ca"-sensitive
actin bundling/depolymerizing protein . J. Cell Blot. 87(2, Pt . 2):22la(Abstr.).

38 . Millington, P. F ., and J. B . Finean. 1962. Elector microscope studies of the structure of
the microvilli on principal epithelial cells of rat jejunum after treatment with hypo- and
hypertonic saline. J. Cell Biol. 14 :125-139 .

39 . Misch, S. W., P . E, Giebel, and R. G. Faust . 1980 . Intestinal microvilli : responses to
feeding and fasting. Eur. J. Cell Biol. 21 :269-279 .

40 . Mooseker, M . S. 1976 . Brush-border motility : microvillur contraction in Triton-treated
brush borders isolated from intestinal epithelium. J. Cell Biol. 71 :417-433.

4t. . Mooseker, M . S., T. D. Pollard, and K. Fujiwara . 1978, Characterization and localization
of myosin in the brush border of intestinal epithelial cells. J. Cell Biol. 79 :444-453 .

42. Mooseker, M. S., T. A . Graves, K . A. Wharton, N . Falco, and C. L . Howe. 1980 .
Regulation of microvillus structure : calcium-dependent solation and cross-linking of actin
filaments in the microvilli of intestinal epithelial cells. J. Cell Biol. 87:809-822 .

43. Mooseker, M . S ., and R. E. Stephens. 1980. Brush-borde r alpha-actinin? Comparison of
two proteins of the microvillus core with alpha-actinin by two-dimensional peptide
mapping. J. Cell Biol. 86:466-474 .

44. Mooseker,M. S ., and L . G . Tilney. 1975 . The organization of an actin filament-membrane
complex : filament polarity and membrane attachment in the microvilli of intestinal
epithelial cells. J. Cell Biol. 67 :725-743.

45 . Mukerjhee, T. M ., and L . A. Staehelin . 1971 . The fine structural organization of the brush
border of intestinal epithelial cells. J. Cell Sci. 8 :573-599 .

46. Schacterle, G., and R. Pollack . 1973 . A simplified method for the quantitative assay of
small amounts of protein in biological material. Anal. Biochem . 51 :654-655.

47 . Scholey, J. M ., K. A. Taylor, and J. Kendrick-Jones. 1980. Regulation of non-muscle
myosin assembly by calmodulin-dependent light chain kinase. Nature (Land.). 287 :283-
285.

48 . Schollmayer, J . V., D. E. Gall, L . G . Tilney, M . S. Mooseker, R . Robson, andM . Stromer .
1974. Localization of alpha-actinin in non-muscle material . J. Cell Biol. 63(2, Pt.2) :
304a(Abstr.) .

49 . Shell S. S., and R . A . Steinhardt. 1978 . Direct measurement of intracellular pH during
metabolic derepression of sea urchin egg . Nature (Land.) . 272 :253-254.

50. Spudich, 1. A ., and L . A . Amos . 1979 . Structure of actin filament bundles from microvilli
of sea urchin eggs . J. Mot.. Blot. 129:319-331 .

51 . Spudich, J. A., and S. Watt. 1971 . The regulation of rabbit skeletal muscle contraction . I.
Biochemical studies of the interaction of the tropomyosin-troponin complex with actin
and the proteolytic fragment of myosin. J. Biol. Chem . 246 :4866-4871 .

52 . Suzuki, H., H . Onishi, K . Takahashi, and S . Watanabe. 1978 . Structure and function of
chicken gizzard myosin . J. Biochem. (Tokyo) . 84:1529-1542.

53 . Tanford, C . 1961 . Physical Chemistry of Macromolecules . John Wiley & Sons, Inc., New
York .

54 . Tanford, C . 1973 . The hydrophobic effect: formation of micelles and biological mem-
branes. John Wiley & Sons, Inc., New York.

55 . Tilney, L . G., D . DeRosier, and M . J. Mulroy . 1980. The organization of actin filaments
in the stereocilia of cochlea hair cells . J. Cell Biol. 86 :244-259 .

56 . Tilney, L. G., and R. R. Cardell. 1970 . Factors controlling the reassembly of the
microvillous border of the small intestine of the salamander . J. Cell Biol. 47:408-422 .

57 . Tilney, L. G., D . P. KiehaM C . Sardet, and M . Tilney . 1978 . The assembly and
polymerization of actin . IV . Role of Ca" and H* in the assembly of actin and in
membrane fusion in the acrosome reaction of echinoderm sperm .

58 . Wang, L., and J . Bryan . 1980. Calcium mediated regulation of actin assembly in human
platelet extracts . J. Cell Biol. 87(2, Pt . 2):224a(Abstr.).

59 . Yin, H ., and T . Stossel. 1979 . Control of cytoplasmic actin gel-sot transformation by
gelsonin, a calcium dependent regulatory protein. Nature (Land.) . 281 :585-586 .

60 . Yin, H ., and T. Stossel . 1980 . Purification and structural properties of gelsolin, a Ca"-
activated regulatory protein of macrophages. J. Biol. Chem . 255 :9490-9493 .

61 . Yin, H ., K . Zaner, and T. Stossel. 1980 . Ca" control of actin gelation. Interaction of
gelsolin with actin filaments and regulation of actin gelation. J. Biol. Chem. 255:9494-
9500 .


