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Abstract

Detecting early morphological changes in the brain and making early diagnosis are impor-

tant for Alzheimer’s disease (AD). High resolution magnetic resonance imaging can be used

to help diagnosis and prediction of the disease. In this paper, we proposed a machine learn-

ing method to discriminate patients with AD or mild cognitive impairment (MCI) from healthy

elderly and to predict the AD conversion in MCI patients by computing and analyzing the

regional morphological differences of brain between groups. Distance between each pair of

subjects was quantified from a symmetric diffeomorphic registration, followed by an embed-

ding algorithm and a learning approach for classification. The proposed method obtained

accuracy of 96.5% in differentiating mild AD from healthy elderly with the whole-brain gray

matter or temporal lobe as region of interest (ROI), 91.74% in differentiating progressive

MCI from healthy elderly and 88.99% in classifying progressive MCI versus stable MCI with

amygdala or hippocampus as ROI. This deformation-based method has made full use of the

pair-wise macroscopic shape difference between groups and consequently increased the

power for discrimination.

Introduction

Alzheimer disease (AD), the most common form of dementia, is known for the unresolved eti-

ology and pathophysiology. Neurofibrillary tangle, plaque buildup and tissue loss in the brain

parenchyma [1, 2] suggest the progressive degenerative nature of the disease. Early detection

of AD at the preclinical stage is of great importance in terms of patient management. Since the

earliest symptoms of AD, such as short-term memory loss and paranoid suspicion, are often

mistaken as related to aging and stress, or are confused with symptoms resulted from other

brain disorders, it remains challenging to predict the disease onset and the dynamic of AD in
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the scenario of dementia till it manifests severe cognitive impairment with typical neuroimag-

ing signs.

AD is usually diagnosed clinically from the patient history and cognitive impairment testing

[3]. Interviews with family members and caregivers are also utilized in the assessment of the

disease [4]. The diagnosis based on neuropsychological scale requires rich clinical experience

of physicians, and as a result it is subjective and less repeatable. Moreover, it is more challeng-

ing to identify patients suffering from AD at a prodromal stage, named mild cognitive

impairment (MCI), as these subjects have cognitive impairments beyond that expected for

their age and education but do not meet neuropathological criteria for AD. Neuroimaging,

especially the high resolution magnetic resonance imaging (MRI), was recommended in more

precise research criteria for prediction or early diagnosis of AD [5]. The structural MR images

provide additional information about abnormal tissue atrophy or other abnormal biomarkers

that can be sensitively detected at the early stage of the disease, and therefore automatic image-

analysis methods are desired to help diagnose the illness before irreversible neuronal loss has

set in, or to help detect brain changes between patients who may convert and may not convert

to AD [6].

To this end, many algorithms on distinguishing AD or MCI have been proposed, varying

from conceptually simple measurement of volumes or mathematically complex description of

shape difference in a priori regions of interest (ROI) [7–13], to voxel-wise modeling of tissue

density changes on the whole brain region, e.g. voxel-wise morphometry [11, 14–18]. There

has been interest in machine learning and computer-aided diagnostics in the field of medical

imaging, where a machine learning algorithm is trained to produce a desired output from a set

of input training data such as features obtained from voxel intensity, tissue density or shape

descriptor. Machine learning diagnostics can be also divided into ROI based and whole-brain

based methods. ROI based algorithms always focus on the medial temporal structures of the

brain, including the hippocampus and entorhinal cortex. In the work of Chupin et al. [19],

Gutman et al. [20] and Gerardin et al. [21], support vector machine (SVM) were used for clas-

sification of AD or MCI subjects with hippocampal volume or shape as features. Another

study has compared the linear discriminant analysis (LDA) and SVM for MCI classification

and prediction based on hippocampal volume [22]. The entorhinal cortical thickness and

modified tissue density in amygdala, parahippocampal gyrus have also been used as features in

AD and MCI discrimination [23, 24]. ROI based analyses typically do not make use of all the

available information contained in the whole brain, and require a priori decisions concerning

which structures to assess. Atrophy in the inferior-lateral temporal lobes, cingulate gyrus, and

in the parietal and frontal lobes has also been reported [25, 26]. Whether hippocampus, medial

temporal lobe, or other ROIs would be a better choice for discrimination or prediction of AD

is still controversial. Algorithms that extracted features from wider or cohort-adaptive brain

regions have been proposed [27–32]. Kloppel et al. [33] developed a supervised method using

linear SVM to group the gray matter segment of T1-weighted MR images on a high dimen-

sional space, treating voxels as coordinates and intensity value at each voxel as their location.

Aguilar et al. [34] explored the classification performance of orthogonal projections to latent

structures (OPLS), decision trees, artificial neural networks (ANN), and SVM based on 10 fea-

tures selected from 23 volumetric and 34 cortical thickness variables. Beheshti et al. [35] com-

bined voxel-based morphometry and Fisher Criterion for feature selection and reduction over

the entire brain, followed by SVM for classification. The whole-brain techniques have shown

high discriminative power for individual diagnoses.

In this paper, we proposed a deformation-based machine learning method that quantified

deformation field between subjects as distance and projected each subject onto a low dimen-

sional Euclidean space in which a machine learning algorithm was applied to classify groups of
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mild AD versus normal elderly subjects, progressive MCI versus normal elderly, and stable

MCI versus progressive MCI, aiming for individual patient diagnosis and predicting the con-

version to AD in MCI patients.

Materials and methods

Data and subjects

Data used in the study were obtained from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (http://adni.loni.usc.edu/). The ADNI was launched in 2003 by the National

Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering

(NIBIB), the Food and Drug Administration (FDA), private pharmaceutical companies and

non-profit organizations, as a $60 million, 5-year public-private partnership. The primary goal

of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission

tomography (PET), other biological markers, and clinical and neuropsychological assessment

can be combined to measure the progression of mild cognitive impairment (MCI) and early

Alzheimer’s disease (AD). ADNI is the result of efforts of many investigators from a broad

range of academic institutions and private corporations, and subjects have been recruited

from over 50 sites across the U.S. and Canada. The ADNI study was approved by IRB of all

participating sites. Written informed consent was provided by all subjects and if applicable,

their legal representatives. For up-to-date information, see www.adni-info.org.

Data from a total of 427 subjects was retrieved from the ADNI database for whom prepro-

cessed images and FreeSurfer post-processed images were available. The subjects were catego-

rized into groups of normal elderly controls (NC) (n = 135, aged 76.19±5.48), stable MCI

subjects (sMCI) (n = 132, aged 75.25±7.27) who had not converted to AD within 36 months,

progressive MCI subjects (pMCI) (n = 95, aged 75.1±7.05) who had converted to AD 36

months after their baseline visit, and mild AD patients (n = 65, aged 75.58±8.39). The criteria

used to characterize and to track a patient’s level of impairment were as follows: normal con-

trols had a CDR (Clinical Dementia Rating) of 0 and MMSE (Mini-Mental State Examination)

score between 24 and 30, MCI subjects had a CDR of 0.5 and MMSE score between 22 and 30,

and mild AD patients had a CDR of 1 and MMSE score between 20 and 26 at the baseline test.

Detailed demographic information of the studied population was listed in Table 1.

The baseline 3D T1-weighted image of each subject was used for segmentation and classifi-

cation using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/). In this study, we have only

chosen the subjects with provided FreeSurfer processing in the database to exclude segmenta-

tion variance due to different software-related settings and standard of quality control. The

FreeSurfer processing in ADNI was performed by the team from Center for Imaging of Neuro-

degenerative Diseases, UCSF. The analysis was completed using Version 4.3 and quality

control was conducted with both global and regional assessment, including the checking of

Table 1. Demographic information of the studied population.

Groups Number Gender (M/F) Age (mean±std) Baseline CDR Baseline MMSE (mean±std)

NC 135 64/71 76.19±5.48 0 29.15±1.05

sMCI 132 90/42 75.25±7.27 0.5 27.03±1.89

pMCI 95 59/36 75.1±7.05 0.5 26.81±1.96*

AD 65 33/32 75.58±8.39 1 22.71±2.06

NC: Normal Controls; sMCI: stable Mild Cognitive Impairment; pMCI: progressive Mild Cognitive Impairment; AD: Alzheimer disease.

*An outlier with MMSE of 21 was excluded in calculation.

doi:10.1371/journal.pone.0173372.t001
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skullstripped brainmask, surface segmentation and generation. The classical pipeline (recon-
all) was conducted to each image, including intensity normalization, skull stripping, alignment

to a standard space, tissue partition, surface reconstruction and inflation, spherical mapping to

standard coordinate system, as well as parcellation of cerebral cortex [36–40]. The whole-brain

gray matter (GM), whole-brain white matter (WM), frontal lobe, parietal lobe, occipital lobe,

temporal lobe, cingulate cortex, as well as amygdala, hippocampus, caudate, putamen, globus

pallidus, and thalamus were selected as regions of interest (ROI) (Fig 1).

Registration and distance metric

Images of each subject were affinely aligned to the MNI space using FSL flirt (https://fsl.fmrib.

ox.ac.uk/fsl/fslwiki/FLIRT) prior to deformable registration, to remove differences in subject

positioning to detect true differences in shape. The symmetric log-domain diffeomorphic

demons algorithm was used for the deformable registration, whose output deformation field is

invertible and symmetric with respect to the order of the inputs [41]. The algorithm defines a

smooth and continuous mapping ϕ(.) that best aligns two images I0(.) and I1(.). The global

energy function of diffeomorphic demons is

EdiffeoðI0; I1; �; uÞ ¼ I0 � I1 � ð� � expðuÞÞk k þ kuk2
; ð1Þ

where u is the smooth update field, ϕ denotes a warping operation. The optimization is per-

formed within the space of diffeomorphisms using updates of the form ϕ � exp(u). If ϕ is also

represented as an exponential of a smooth velocity field v, i.e. ϕ = exp(v), then the diffeo-

morphic demons is extended to represent the complete spatial transformation in the log

domain. Thus the algorithm is called the log-domain diffeomorphic demons. The algorithm

Fig 1. (a) Six subcortical structures including caudate, putamen, globus pallidus, hippocampus, amygdala,

and thalamus were selected as ROIs. (b) Five cerebral cortical regions including frontal, parietal, occipital,

temporal, and cingulate were also selected as ROIs.

doi:10.1371/journal.pone.0173372.g001
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defines the updating rule to be

� ¼ expðvÞ  expðZðv; uÞÞ � expðvÞ � expðuÞ ¼ � � expðuÞ: ð2Þ

where Z(v, u) is a velocity field.

The log-domain diffeomorphic demons registration has a symmetric (or inverse-consis-

tent) extension by symmetrizing the energy function

�opt ¼ arg min
�

ðEðI0; I1; �Þ þ EðI1; I0; �
� 1
ÞÞ: ð3Þ

After registration, the algorithm provides not only the deformation field ϕ, but also the log-

arithm of the diffeomorphism, v = log(ϕ), which can be directly used in computational ana-

tomical analysis. More details about the symmetric log-domain diffeomorphic demons

registration were introduced in the paper of Vercauteren et al. [41].

To compute the distance between images, the Riemannian distance was defined [42]. For

each pair of images {Ij, Ik}, the symmetric log-domain diffeomorphic demons algorithm calcu-

lated a mapping ϕ from Ik to Ij, a velocity field v = log(ϕ) (that is, ϕ = exp(v)), and an inverse

mapping ϕ−1 = exp(−v) from Ij back to Ik. The following equation was used to compute the

Riemannian distance between Ij and Ik:

distðIj; IkÞ ¼ distðId; �ROIÞ ¼ distð�ROI
� 1; IdÞ

¼ klogðId� 1�ROIÞk ¼ klog½ð�ROI
� 1Þ
� 1Id�k

¼ klogð�ROIÞk ¼ klog½ð�ROI
� 1Þ
� 1
�k

¼ kvROIk ¼
kvROIjk þ kð� vÞROIkk

2

: ð4Þ

where Id denotes an identity transformation. In the above equation, ϕROI can be either a diffeo-

morphism of the whole brain or a sub-field of any segmented region of the brain. vROIj and

vROIk represent the log-domain diffeomorphism of the specific ROI in Ij and Ik, respectively.

For example, the specific ROI can be the whole-brain gray matter (GM) or white matter

(WM), cortical lobes, hippocampus or other subcortical structures.

Embedding algorithm

A distance matrix was constructed after the distance between each pair of subjects was calcu-

lated. The embedding algorithm projected all the labeled images onto a low-dimensional space

with this distance matrix and a discrimination hyperplane will be obtained by training the

labeled subjects on the embedded space. To classify a new unlabeled image, an out-of-sample

extension of embedding algorithms was used to project the new subject onto the constructed

embedded space.

The metric multi-dimensional scaling (MDS) algorithm was applied for embedding. The

idea of metric MDS is to transform the distance matrix into a cross-product matrix and then

to find its eigen-decomposition which gives a principal component analysis (PCA). Let Si be

the i-th row sum of the distance matrix D, Si = SjDij. The cross-product matrix is obtained by

using the “double-centering” formula:

~Dij ¼ �
1

2
ðDij �

1

n
Si �

1

n
Sj þ

1

n2

X

m

SmÞ: ð5Þ
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The embedding eim of subject xi is
ffiffiffiffiffi
lm

p
vim, m = {1,. . .,M}, where λm denotes the m-th prin-

cipal eigenvalue and vim denotes the i-th element of the m-th principal eigenvector.

To calculate the embedding coordinate of a new point, define the kernel function ~K yield-

ing the symmetric matrix ~M on the dataset I ¼ fx1; . . . ; xng, with xi sampled from an

unknown distribution with density p:

~Kða; bÞ ¼ �
1

2
ðd2ða; bÞ � Ex½d

2ðx; bÞ� � Ex½d
2ða; x0Þ� þ Ex;x0½d

2ðx; x0Þ�Þ; ð6Þ

where d(a, b) is the original distance and the expectations E are taken over the training data I .

Let (vl, λl) be an (eigenvector, eigenvalue) pair that solves ~Mvl ¼ llvl and el denotes the embed-

ding associated with the new point x. Then

elðxÞ ¼
1
ffiffiffiffi
ll

p
Xn

i¼1

vli ~K ðx; xiÞ: ð7Þ

Readers can refer to the work of Bengio et al. for algorithm details and proof [43]. In this

study, subjects were all projected onto an R3 space for classification.

Classification

SVM with a linear kernel which was implemented using matlab ‘libsvm’ toolbox (http://www.

csie.ntu.edu.tw/~cjlin/libsvm/), was applied on the embedded space to classify subjects. The

C-SVM model was chosen, and the cost parameter C was fixed as 1 in all experiments. The k-

fold cross validation was adopted to estimate the classification performance. The subjects were

randomly partitioned into k “equal” sized subgroups. In this study, as the number of subjects

in each group was unequal and may not be evenly divided by k, some subgroups may have

one or two more subjects in practice. Of the k subgroups, a single subgroup was used as the

validation data and the remaining k-1 subgroups were used as training data. The process was

repeated for k times and k was set as 10 in this study. Classification sensitivity, specificity, and

accuracy were then calculated. The receiver operating characteristics (ROC) curve was plotted

and areas under ROC curve (AUC) was measured.

Results

No significant differences on age were found between each pair of groups using the Student’s t
test. For the baseline MMSE score, no significant difference was found only between sMCI

and pMCI subjects.

The deformable registration and distance quantification results of two pairs of subjects

were shown in Fig 2, where the same reference was used. Images before and after registration,

deformation fields, and quantified ROI-specific Riemannian distances for the two source sub-

jects were shown. It was observed that the reference and source images were considerably well

aligned using the symmetric log-domain diffeomorphic demons registration. The deformation

from the subject who is more morphologically different from the reference was notably larger

than that from the other subject. Consequently, the difference was manifest in the quantified

distances.

Classification results for differentiating normal elderly controls and AD patients were sum-

marized in Table 2 and Fig 3. Using the whole-brain gray matter as ROI, the highest classifica-

tion accuracy was 96.5% with a sensitivity of 93.85%, specificity of 97.78% and AUC of 0.995.

In addition, using the other six ROIs including temporal lobe, whole-brain white matter, hip-

pocampus, parietal lobe, amygdala, and frontal lobe, the algorithm achieved high sensitivity

Classification of Alzheimer disease based on MRI deformation
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and specificity above 90% (AUCs>0.96). The worst performance resulted from caudate, where

the sensitivity was substantially lower in discrimination.

Classification results for normal elderly controls versus progressive MCI subjects were

summarized in Table 3 and Fig 4. Our method obtained accuracy of 91.74% with amygdala

(87.37% sensitivity, 94.82% specificity, 0.971 AUC) and hippocampus (88.42% sensitivity,

94.07% specificity, 0.963 AUC) as ROI respectively. The sensitivity and specificity were higher

than 80% for the other four ROIs including temporal lobe (84.21% and 93.33%), whole-brain

gray matter (83.16% and 92.59%), frontal lobe (83.16% and 90.37%), and parietal lobe (81.05%

and 91.85%). The sensitivity values were low for the occipital lobe, putamen, thalamus, and

globus pallidus, which resulted in lower classification accuracy from 71.74% to 73.91% for

these ROIs.

Classification results for stable MCI versus progressive MCI subjects were summarized in

Table 4 and Fig 5. As in differentiating normal controls and pMCI subjects, amygdala and

hippocampus remained the top two ROIs with which the method obtained the highest

Fig 2. Comparison between different subjects in their deformable registration, deformation fields,

and quantified distances. The symmetric log-domain diffeomorphic demons registration well aligned the

reference and source images, providing informative deformation fields that accurately reflect morphological

difference between subjects.

doi:10.1371/journal.pone.0173372.g002
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Table 2. Classification results of normal elderly controls vs AD.

ROIs SEN SPE PPV NPV ACCU AUC Ranking

Whole brain GM 93.85% 97.78% 95.31% 97.06% 96.50% 0.995 1

WM 92.31% 97.78% 95.24% 96.35% 96.00% 0.993 3

Subcortical structures AMYG 90.77% 94.82% 89.39% 95.52% 93.50% 0.983 6

HIPPO 93.85% 96.30% 92.42% 97.02% 95.50% 0.989 4

CAUD 47.69% 92.59% 75.61% 78.62% 78.00% 0.815 13

PUTA 66.15% 91.11% 78.18% 84.83% 83.00% 0.896 12

PALLI 72.31% 91.11% 79.66% 87.23% 85.00% 0.920 10

THALA 75.39% 91.85% 81.67% 88.57% 86.50% 0.937 8

Cortical lobes Frontal 90.77% 94.07% 88.06% 95.49% 93.00% 0.966 7

Parietal 93.85% 95.56% 91.05% 96.99% 95.00% 0.987 5

Occipital 69.23% 90.37% 77.59% 85.92% 83.50% 0.914 11

Temporal 95.39% 97.04% 93.94% 97.76% 96.50% 0.984 2

Cingulate 76.92% 90.37% 79.37% 89.05% 86.00% 0.936 9

SEN: sensitivity; SPE: specificity; PPV: positive predictive value; NPV: negative predictive value; ACCU: accuracy; AUC: area under ROC curve. GM:

whole-brain gray matter; WM: whole-brain white matter; AMYG: amygdala; HIPPO: hippocampus; CAUD: caudate; PUTA: putamen; PALLI: globus

pallidus; THALA: thalamus.

doi:10.1371/journal.pone.0173372.t002

Fig 3. (a) Classification sensitivity (green), specificity (blue), and accuracy (red) of normal elderly controls

versus AD patients with different ROIs. The highest accuracy (96.5%) was achieved using the whole-brain

gray matter as ROI with 93.85% sensitivity and 97.78% specificity. The algorithm obtained high sensitivity and

specificity (>90%) with half of the ROIs. (b) The ROC curve of the prediction accuracy between normal

controls versus AD. The AUCs were larger than 0.98 for the whole-brain gray matter and white matter (left),

amygdala and hippocampus (middle), parietal and temporal lobes (right).

doi:10.1371/journal.pone.0173372.g003
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Table 3. Classification results of normal elderly controls vs pMCI.

ROIs SEN SPE PPV NPV ACCU AUC Ranking

Whole brain GM 83.16% 92.59% 88.76% 88.65% 88.70% 0.928 4

WM 69.47% 85.19% 76.74% 79.86% 78.70% 0.851 9

Subcortical structures AMYG 87.37% 94.82% 92.22% 91.43% 91.74% 0.971 1

HIPPO 88.42% 94.07% 91.30% 92.03% 91.74% 0.963 2

CAUD 74.74% 89.63% 83.53% 83.45% 83.48% 0.894 7

PUTA 57.90% 82.96% 70.51% 73.68% 72.61% 0.777 11

PALLI 56.84% 82.22% 69.23% 73.03% 71.74% 0.793 13

THALA 52.63% 85.93% 72.46% 72.05% 72.17% 0.778 12

Cortical lobes Frontal 83.16% 90.37% 85.87% 88.41% 87.39% 0.912 5

Parietal 81.05% 91.85% 87.50% 87.32% 87.39% 0.928 6

Occipital 62.11% 82.22% 71.08% 75.51% 73.91% 0.787 10

Temporal 84.21% 93.33% 89.89% 89.36% 89.57% 0.947 3

Cingulate 76.84% 83.70% 76.84% 83.70% 80.87% 0.873 8

SEN: sensitivity; SPE: specificity; PPV: positive predictive value; NPV: negative predictive value; ACCU: accuracy; AUC: area under ROC curve. GM:

whole-brain gray matter; WM: whole-brain white matter; AMYG: amygdala; HIPPO: hippocampus; CAUD: caudate; PUTA: putamen; PALLI: globus

pallidus; THALA: thalamus.

doi:10.1371/journal.pone.0173372.t003

Fig 4. (a) Classification sensitivity (green), specificity (blue), and accuracy (red) of normal elderly controls

versus progressive MCI subjects with different ROIs. Using the amygdala, and hippocampus as ROI, the

algorithm obtained classification accuracy of 91.74%. With the other six ROIs (temporal, GM, frontal, parietal,

caudate, and cingulate), the accuracy exceeded 80%. (b) The ROC curve of the prediction accuracy between

normal controls versus progressive MCI. The AUC reached up to 0.971 for amygdala (middle-blue curve), and

was larger than 0.91 for hippocampus (0.963), temporal lobe (0.947), the whole-brain gray matter (0.928),

parietal lobe (0.928), and frontal lobe (0.912).

doi:10.1371/journal.pone.0173372.g004
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Table 4. Classification results of sMCI vs pMCI.

ROIs SEN SPE PPV NPV ACCU AUC Ranking

Whole brain GM 78.95% 90.91% 86.21% 85.71% 85.90% 0.892 3

WM 58.95% 75.76% 63.64% 71.94% 68.72% 0.679 10

Subcortical structures AMYG 86.32% 90.91% 87.23% 90.23% 88.99% 0.932 1

HIPPO 84.21% 91.67% 87.91% 88.97% 88.55% 0.918 2

CAUD 67.37% 90.15% 83.12% 79.33% 80.62% 0.864 8

PUTA 8.42% 95.46% 57.14% 59.16% 59.03% 0.571 13

PALLI 31.58% 90.91% 71.43% 64.87% 66.08% 0.643 11

THALA 35.79% 86.36% 65.39% 65.14% 65.20% 0.642 12

Cortical lobes Frontal 80.00% 89.39% 84.44% 86.13% 85.46% 0.886 4

Parietal 73.68% 87.12% 80.46% 82.14% 81.50% 0.88 7

Occipital 61.05% 83.33% 72.50% 74.83% 74.01% 0.798 9

Temporal 76.84% 86.36% 80.22% 83.82% 82.38% 0.889 6

Cingulate 83.16% 86.36% 81.44% 87.69% 85.02% 0.876 5

SEN: sensitivity; SPE: specificity; PPV: positive predictive value; NPV: negative predictive value; ACCU: accuracy; AUC: area under ROC curve. GM:

whole-brain gray matter; WM: whole-brain white matter; AMYG: amygdala; HIPPO: hippocampus; CAUD: caudate; PUTA: putamen; PALLI: globus

pallidus; THALA: thalamus.

doi:10.1371/journal.pone.0173372.t004

Fig 5. (a) Classification sensitivity (green), specificity (blue), and accuracy (red) of stable MCI versus

progressive MCI subjects with different ROIs. High ranked ROIs included amygdala, hippocampus, the

whole-brain gray matter, frontal lobe, and cingulate cortex, with which classification accuracy exceeded 85%.

Sensitivity for globus pallidus, thalamus, and putamen was substantially low which resulted in bad

performance in discrimination. (b) The ROC curve of the prediction accuracy between stable MCI versus

progressive MCI. The AUC reached up to 0.932 for amygdala (middle-blue curve), and 0.918 for

hippocampus (middle-maroon curve).

doi:10.1371/journal.pone.0173372.g005
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classification accuracy of 89% (86.32% sensitivity, 90.91% specificity, 0.932 AUC) and 88.5%

(84.21% sensitivity, 91.67% specificity, 0.918 AUC) respectively. The algorithm also performed

well when using the whole-brain gray matter, frontal lobe, and cingulate cortex as ROI, achiev-

ing accuracy over 85% (AUCs>0.875). For the globus pallidus, thalamus, and putamen, we

obtained high specificity but significantly lower sensitivity, resulting in classification accuracy

lower than 67%.

To summarize and compare the classification performance of each ROI, we calculated the

mean accuracy for each ROI over the three experiments (Table 5). Hippocampus and amyg-

dala were ranked the top two ROIs with excellent performance for all testing. Gray matter and

its subdivisions also got high rankings except for the occipital lobe, followed by the white mat-

ter and other subcortical structures.

Discussion

Classification performance compared with existing algorithms

A lot of algorithms have been proposed for early diagnosis of AD with accuracy ranging from

75% to 96% [44–48]. Kloppel et al. considered the voxels of tissue probability maps of the

whole brain or volumes of interest (VOI) as features in the classification, obtaining accuracy of

95.6% to discriminate normal controls and AD [33]. In recent work, Beheshti et al. selected the

regions with significant difference between groups as VOIs and considered each voxel in the

VOIs as a feature, followed by a feature selection step [35]. They obtained 96.32% accuracy

between controls and AD. In this work, we observed a classification rate of 96.5% using the

whole-brain gray matter as ROI with an AUC of 0.995. For five ROIs, the classification accu-

racy exceeded 95% indicating that global morphological changes have occurred in mild AD

patients and that mild AD is much distinguishable from healthy controls.

By contrast, the brain shape difference between healthy elderly and MCI subjects is smaller,

which therefore increases difficulty for discrimination. Fan et al. proposed a method that con-

sidered the tissue density from pathology-adaptive anatomical parcellation as features and

obtained classification accuracy of 81.8% [48]. Chupin et al. used hippocampal volume to

Table 5. Classification performance comparison for different ROIs.

Ranking ROIs Accuracy Mean Accuracy

NC vs AD NC vs pMCI sMCI vs pMCI

1 HIPPO 95.50% 91.74% 88.55% 91.93%

2 AMYG 93.50% 91.74% 88.99% 91.41%

3 GM 96.50% 88.70% 85.90% 90.37%

4 temporal 96.50% 89.57% 82.38% 89.48%

5 frontal 93.00% 87.39% 85.46% 88.62%

6 parietal 95.00% 87.39% 81.50% 87.96%

7 cingulate 86.00% 80.87% 85.02% 83.96%

8 WM 96.00% 78.70% 68.72% 81.14%

9 CAUD 78.00% 83.48% 80.62% 80.70%

10 occipital 83.50% 73.91% 74.01% 77.14%

11 THALA 86.50% 72.17% 65.20% 74.62%

12 PALLI 85.00% 71.74% 66.08% 74.27%

13 PUTA 83.00% 72.61% 59.03% 71.55%

GM: whole-brain gray matter; WM: whole-brain white matter; AMYG: amygdala; HIPPO: hippocampus; CAUD: caudate; PUTA: putamen; PALLI: globus

pallidus; THALA: thalamus.

doi:10.1371/journal.pone.0173372.t005
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discriminate between elderly controls and progressive MCI who had developed AD in 18

months and obtained 71% accuracy [19]. Our proposed algorithm manifested outstanding

performance in the testing, where 91.74% accuracy (0.971 AUC) was obtained to classify MCI

who had developed AD at 36 months follow-up. For the ROIs of amygdala, hippocampus, tem-

poral lobe, the whole-brain gray matter, frontal lobe, and parietal lobe, the algorithm obtained

AUC values all higher than 0.9.

To distinguish progressive MCI from stable MCI, which is important for prediction of con-

version in MCI subjects, is challenging in the MRI-based classification. An algorithm based on

hippocampal volume measurement obtained accuracy of 67% [19]. Normalized thickness

index in specific cortical regions was considered as features in another algorithm proposed

by Querbes et al. [49], where 76% accuracy was obtained to classify MCI converters for the

24-month period. Lillemark et al. reported an classification accuracy of 76.6% using the

region-based surface connectivity as features for grouping MCI subjects who had developed

AD at 12-month follow-up [50]. Westman et al. [45] and Aguilar et al. [34] collected multiple

surface and volumetric indices via FreeSurfer processing and applied multivariate models for

discrimination respectively. Westman et al. obtained 75.9% accuracy for MCIs with conver-

sion at 18 months follow-up while Aguilar et al. obtained 86% accuracy for MCIs with conver-

sion at 12 months follow-up. Using the proposed method, we obtained an overall accuracy of

88.99% (0.932 AUC) to classify MCI patients who had progressed to AD after 36 months of

baseline visit. Algorithm comparison was summarized in Table 6.

The proposed algorithm developed a new strategy that quantified the deformation field to

represent shape difference between subjects rather than comparing the tissue density or sur-

face/volumetric indices. This deformation-based method characterized the macroscopic differ-

ences in brain anatomy which were discarded in most of the existing approaches at the spatial

normalization step. The quantified deformation was then used to denote dissimilarity between

subjects and a distance matrix was constructed. The MDS algorithm used in the study was

guaranteed to recover the true dimensionality and geometric structure of manifolds in which

each subject represented as an element [52]. Finally MDS constructed an embedding of the

data in a low-dimensional Euclidean space that best preserved the manifold’s estimated intrin-

sic geometry. The advantage of this algorithm may due to the as much information it used in

dimensional reduction for spatially representing the similarity relationships between subjects,

by computing the pair-wise registration instead of aligning subjects to an atlas or a constructed

template, resulting in more informative embedding and consequently an enhanced power to

discriminate between different populations.

Prediction of AD conversion in MCI patients

Identifying MCI patients at high risk for conversion to AD is crucial for the effective treatment

of the disease. Over the past decade, numerous biomarkers have been proposed for prediction

of AD-conversion in MCI patients [19, 34, 45, 49, 50, 53–58]. Cognitive performance data

including the Spatial Pattern of Abnormalities for Recognition of Early AD (SPARE-AD)

index, AD Assessment Scale-Cognitive (ADAS-Cog) subscale, or composite cognitive scores

were introduced to assess AD conversion. However, the accuracy is not satisfactory with a clas-

sification rate around 65% [44]. Combining cognitive measures with MRI and age informa-

tion, the discrimination rate has risen to 82% [57]. Cerebrospinal fluid (CSF) tau and Aβ42

measures have been also proposed as potential predictors of risk for developing AD [59]. Inte-

grating CSF biomarkers together with MRI patterns resulted in accuracy of 62% [53]. When

further including positron emission tomography (PET) data and routine clinical tests, the pre-

dicting accuracy has increased to 72% [55].
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Compared to previous studies using ADNI database, the proposed algorithm based on

quantification of MRI deformation demonstrated a promising strategy for predicting MCI-to-

AD conversion 3 years in advance with accuracy of 88.99% and AUC of 0.932, which are the

highest rates ever reported to the best of our knowledge. If MRI can provide sufficient infor-

mation for good prediction using a robust algorithm, the use of CSF and PET biomarkers can

be avoided as the former requires lumbar puncture which is invasive and painful for patients

and the latter suffers its high cost and radiation exposure [60].

Selection of regions of interest for classification

Global and regional cerebral atrophy has been reported in previous studies. Annual rates of

global brain atrophy in AD are about 2–3%, compared with 0.2–0.5% in healthy controls [6,

61]. At early stage of AD progression, prominent atrophy has emerged in the medial temporal

regions and the posterior cortical regions including posterior cingulate, retrosplenial, and lat-

eral parietal cortex [62]. Medial temporal lobe atrophy, particularly of the amygdala, hippo-

campus, entorhinal cortex, and parahippocampal gyrus, can be observed with higher

Table 6. Comparison between the proposed method and existing methods.

Methods Sample

size

Type of

validation

NC vs AD NC vs MCI sMCI vs pMCI Conversion

time after

baseline
ACCU ROI ACCU ROI ACCU ROI

Kloppel

[33]

67 AD, 91

HC

Leave one out

and random

subsampling

95.6% Whole brain – – – – –

Magnin [51] 16 AD,

22HC

Bootstrap

subsampling

94.5% Whole brain – – – – –

Beheshti

[35]

68 AD, 68

HC

10-fold 96.32% GM – – – – –

Fan [48] 56 AD, 88

MCI, 66

HC

Leave one out 94.3% Pathology-

adaptive

parcellation

81.8% Pathology-adaptive

parcellation

– – –

Chupin [19] 122 AD,

65 pMCI,

121 sMCI,

128HC

Bootstrap

subsampling

80% Hippocampus 74% Hippocampus 67% Hippocampus �18 months

Lillemark

[50]

114 AD,

240 MCI,

170 HC

Leave one out 0.877

(AUC)

Cerebral cortex,

WM; cerebellum

cortex, WM; inf

lateral ventricle;

thala., etc.

0.785

(AUC)

Cerebral cortex,

WM; cerebellum

cortex, WM; inf

lateral ventricle;

thala., etc.

0.599

(AUC)

Cerebral cortex,

WM; cerebellum

cortex, WM; inf

lateral ventricle;

thala., etc.

12 months

Westman

[45]

187 AD,

87 pMCI,

200 sMCI,

225 HC

7-fold 91.8% 34 cortical

parcellation and 21

subcortical regions

by FreeSurfer

– – 75.9% 34 cortical

parcellation and 21

subcortical regions

by FreeSurfer

18 months

Aguilar [34] 116 AD,

21 pMCI,

98 sMCI,

110 HC

10-fold 85% 34 cortical

parcellation and 50

subcortical regions

by FreeSurfer

– – 86% 34 cortical

parcellation and 50

subcortical regions

by FreeSurfer

12 months

Querbes

[49]

72 pMCI,

50 sMCI

10-fold – – – – 76% Right medial

temporal, left lateral

temporal, right

posterior cingulate

24 months

Proposed

method

65 AD, 95

pMCI, 132

sMCI, 135

HC

10-fold 96.5% Whole brain GM 91.73% Amygdala or

hippocampus

88.99% Amygdala or

hippocampus

36 months

doi:10.1371/journal.pone.0173372.t006
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frequency in patients with AD or probable AD [63, 64]. Shape changes have also been demon-

strated in the caudate, putamen, globus pallidus, and thalamus in AD [65].

Although remarkable morphological alterations were found in a certain regions in AD or

prodromal AD at the group level, individual classification based on different regions in this

study yielded substantially distinct results. The whole-brain gray matter and temporal lobe

performed the best in distinguishing AD from normal elderly controls, while amygdala and

hippocampus worked better in classifying progressive MCI versus either healthy elderly or

stable MCI. This result was mostly consistent with the previous finding that significantly

increased rates of hippocampal atrophy were observed in presymptomatic and mild AD, while

more widespread tissue shrinkage has been shown in mild to moderate AD patients [6, 66].

Evidence have also been documented that increased oxygen extraction capacity and tissue

atrophy were observed in basal ganglia and thalamus in patient with AD [65, 67]. These ROIs

indeed resulted in a classification accuracy higher than 80% in discriminating AD, nevertheless

much lower in classifying progressive MCI, indicating that shape changes of basal ganglia and

thalamus were prominent features in AD but not yet in the prodromal stage. By an integrative

comparison, we proposed that hippocampus, amygdala, the whole-brain gray matter, temporal

lobe, and parietal lobe should be of higher preference for AD or MCI classification, where

amygdala and hippocampus could be the leading candidate for predicting AD conversion in

MCI, while occipital lobe, thalamus, globus pallidus, and putamen should be non-priority

selections for early diagnosis.

Conclusion

In this study, we proposed a deformation-based machine learning method for discrimination

of AD and prediction of MCI-to-AD conversion with high resolution MRI. The proposed

algorithm showed great performance on both classification and prediction of AD, with 96.5%

accuracy discriminating AD from healthy elderly, 91.74% accuracy for progressive MCI versus

healthy elderly, and 88.99% accuracy for progressive MCI versus stable MCI. Large deforma-

tion in hippocampus and amygdala was advantageous to differentiate progressive MCI

patients, while diffusive morphological changes in the whole-brain gray matter were promi-

nent to identify mild or moderate AD patients.

The limitation of the algorithm is that it was computational expensive. A balance between

classification accuracy and computational time should be achieved in our future research. In

general, MRI-based analysis can be a beneficial supplement to clinical diagnosis and prediction

of AD.
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