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Metabolism is central to embryonic stem cell (ESC) pluripotency and differentiation, with distinct profiles apparent under different
nutrient milieu, and conditions that maintain alternate cell states. The significance of altered nutrient availability, particularly
oxygen, and metabolic pathway activity has been highlighted by extensive studies of their impact on preimplantation embryo
development, physiology, and viability. ESC similarly modulate their metabolism in response to altered metabolite levels, with
changes in nutrient availability shown to have a lasting impact on derived cell identity through the regulation of the epigenetic
landscape. Further, the preferential use of glucose and anaplerotic glutamine metabolism serves to not only support cell growth
and proliferation but also minimise reactive oxygen species production. However, the perinuclear localisation of spherical,
electron-poor mitochondria in ESC is proposed to sustain ESC nuclear-mitochondrial crosstalk and a mitochondrial-H2O2
presence, to facilitate signalling to support self-renewal through the stabilisation of HIFα, a process that may be favoured under
physiological oxygen. The environment in which a cell is grown is therefore a critical regulator and determinant of cell fate, with
metabolism, and particularly mitochondria, acting as an interface between the environment and the epigenome.

1. Introduction

Beyond roles in ATP production, metabolism and mitochon-
dria lie at the nexus of cell signalling. A direct link between
metabolic pathway activity and chromatin dynamics has
recently been recognised, primarily because metabolic inter-
mediates of cellular metabolism are required as cofactors
for epigenetic modulators [1]. Changes in nutrient use have
also been shown to modulate lineage specification [2–5],
indicating that metabolism acts as a regulator of cell fate.

As the precursors to all adult cell types, the preimplan-
tation embryo and derived embryonic stem cells (ESC)
represent a nutrient-sensitive paradigm to understand the
interaction between the nutrient environment and the reg-
ulation of development and differentiation. Studies on the
impact of culture on preimplantation embryo development
have highlighted the persistence of physiological perturba-
tions induced by altered metabolism and nutrient avail-
ability during this short window of development [6–9].
ESC are similarly sensitive to nutrient availability in their
environment, responding with significant shifts in primary
metabolic pathways [10, 11].

Consequently, the significance of nutrient availability,
particularly physiological oxygen (1–5%), and the role of
the mitochondria and mitochondrial-derived reactive oxygen
species (ROS), in regulating ESC physiology, cell state, cell
fate, and the epigenome, are considered. Metabolism emerges
as an interface between the environment and genome regula-
tion, such that alterations in metabolic pathway activity dis-
rupt the production and availability of cofactors required
for epigenetic modifier activity, resulting in an altered epige-
netic landscape.

2. Defining Pluripotent StemCell States In Vitro

ESC pluripotency represents a continuum of cell states, char-
acterised by distinct cellular, metabolic, and epigenetic states.
The capacity to maintain pluripotency relies on complex
signalling networks that are regulated by the surrounding
microenvironment; however, differing growth factor require-
ments and signalling in vitro between mouse and human ESC
are presumed to reflect origins from different developmental
stages within the embryo [12]. Mouse ESC derived from the
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inner cell mass (ICM) of the blastocyst into serum/LIF condi-
tions are representative of D4.5 ICM, a transitional stage
within the pluripotency continuum that is functionally
distinct from mouse ESC derived from a medium containing
GSK and MEK inhibitors (2i), representative of day 3.5 ICM
(naïve ESC) [13]. In contrast, human ESC rely on fiborblast
growth factor (FGF) signalling to maintain pluripotency
[14, 15], similar to mouse epiblast stem cells (EpiSC),
representative of the postimplantation epiblast.

Numerous studies have focused on defining the molecu-
lar properties of ESC, particularly the transcription factor
regulatory network, OCT4, NANOG, and SOX2, and the
growth factor requirements of these populations (reviewed
by [16]). Underpinning pluripotency are complex epigenetic
mechanisms required for the progressive transitions during
development which restrict cell potency and maintain cell
fate decisions, silencing pluripotency genes and activating
lineage-specific genes [17]. ESC are characterised by a
euchromatic and highly dynamic chromatin landscape [18]
and elevated global transcriptional activity [19]. Bivalent
methylation, marked by a combination of active H3K4me3
and repressive H3K27me3 at a subset of developmental reg-
ulators, has been proposed to establish a primed epigenetic
state, ready for activation prior to ESC differentiation [20],
and to safeguard differentiation [21]. Progression through
the early events of differentiation is accompanied by global
changes in the epigenetic landscape, characterised by
restricted gene expression and extensive regions of hetero-
chromatin. Lineage-specific DNA methylation patterns are
established, and repressive marks, such as H3K9me3, are
upregulated within differentiated cells [22].

Establishment and maintenance of the epigenetic land-
scape rely on the activity of epigenetic modifiers that regulate
DNA methylation, histone modification, and chromatin
organisation. DNAmethylation is regulated by DNAmethyl-
transferases (DNMTs) that act as methyl donors for cytosine
residues, restricting gene expression. Conversely, active
demethylation is catalysed by ten-eleven translocation
(TET) dioxygenases, responsible for the conversion of 5-
methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC)
[23]. Methylation of arginine and lysine residues on histones
H3 and H4 is catalysed by histone methyltransferases
(HMTs), the modifications of which are associated with both
transcriptional activation and repression. Histone acetyla-
tion, catalysed by histone acetyltransferases (HATs), is gen-
erally associated with a euchromatic state, permissive to
transcription. Conversely, histone deacetylation, via histone
deacetylases (HDACs), is associated with condensed hetero-
chromatin resulting in transcriptional repression. Function-
ality of epigenetic modifiers requires specific metabolites
and cofactors, serving to transduce changes in the micro-
environment to alter chromatin state [24, 25]. Specifically,
S-adenosylmethionine (SAM), generated through one carbon
metabolism, integrating the folate andmethionine cycles, acts
as the primary methyl donor for DNA and histone methyla-
tion. Similarly, TET activity is dynamically regulated by
alpha-ketoglutarate (αKG) and succinate, products of the
tricarboxylic acid (TCA) cycle [26]. Acetylation transfers an
acetyl group from acetyl coenzyme A (acetyl-CoA) to lysine

residues, while HDAC activity is regulated by NAD+-inde-
pendent or NAD+-dependentmechanisms [27]. Cellular fluc-
tuations in metabolism in response to various physiological
cues, including nutrient availability and metabolic pathway
activity, therefore have the capacity to modulate the epige-
nome through the activity of these epigenetic modifiers.

Accompanying the transition from naïve pluripotency to
a primed pluripotent state are changes in metabolism. Naïve
mouse ESC are reliant on oxidativemetabolism [28, 29], while
EpiSC and human ESC metabolism is predominantly glyco-
lytic [28, 30], accompanied by glutaminolysis [10]. Human
naïve ESC have recently been obtained in culture, using a
number of different protocols [31–35], with the transition
accompanied by a similar metabolic remodelling towards a
more oxidative [33] metabolism, although glycolysis remains
important [36]. As metabolic change accompanies the transi-
tions between cell states, including differentiation, recent
studies have begun to elucidate the interplay between metab-
olites and the ESC epigenetic landscape, establishing a link
between ESC metabolic state, epigenetics, and cell fate.

3. Nutrients in the In Vivo Stem Cell Niche

Until recently, little attention has been paid to the nutritional
milieu within the stem cell niche. In vivo, the embryonic stem
cell niche is comprised of a rich and complex mixture of pro-
teins andmetabolites, none of which are likely to be superfluous,
andwhichmaintain the viability of the developing embryo com-
pared to the relatively simple composition of in vitro culture
media. Mammalian reproductive tract fluids contain high levels
of potassium, glucose, lactate, and pyruvate as energy sources,
free amino acids including high levels of glycine, and proteins
including albumin and immunoglobulin G, glycoproteins, pros-
taglandins, steroid hormones, and growth factors [37, 38]. This
complex microenvironment changes composition dynamically
throughout the estrus cycle and within different compartments
of the tract [39, 40], indicating a tight regulatory mechanism to
ensure proper embryo development.

Oxygen is a critical, but often overlooked, component
within the stem cell niche. Vascularisation, and consequently
the supply of oxygen, is tissue specific, ranging from ~9.5% in
the human kidney to ~6.4% in bone marrow and ~4.7% oxy-
gen in the brain [41]. Cellular oxygen ranges from 1.3 to
2.5%, while oxygen within the mitochondria is estimated to
be <1.3% [41]. The mammalian reproductive tract, within
which the preimplantation embryo develops, has been mea-
sured at 2–9% oxygen in the rat, rabbit, hamster, and rhesus
monkey [42, 43]. The uterine environment ranges from 1.5 to
2.0% oxygen in the rhesus monkey and decreases from 5.3%
to 3.5% in the rabbit and hamster, around the time of blasto-
cyst formation and subsequent implantation [42, 44]. The
precise oxygen concentration experienced by the inner cell
mass of the human blastocyst is unknown, but likely approx-
imates less than 5% oxygen [45, 46]. In spite of such physio-
logical data on oxygen levels, atmospheric (20%) oxygen
remains the predominant concentration used for cell culture,
including stem cells and human embryos [47], with limited
adoption of more physiological oxygen concentrations
(1–5%). However, neither of these conditions sufficiently
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capture the dynamic changes in oxygen concentration that
occur during embryo and fetal development in vivo.

The significance of establishing an appropriate niche
environment in vitro is apparent in the loss of embryo viabil-
ity observed in vitro relative to in vivo conditions [48, 49].
The developing embryo is responsive to nutrient changes in
its environment, where perturbations in nutrient availability
alter metabolism through gene expression and altered gene
imprinting status [50, 51]. While embryo metabolism
appears relatively plastic in its response to suboptimal
osmotic, pH, ionic, and nutrient changes in its environment,
there is a significant loss in viability [52, 53]. ESC metabolism
is plausibly similar in its plasticity, able to maintain prolifer-
ation under a range of suboptimal culture conditions.

4. Lessons Learned from the Preimplantation
Embryo

Preimplantation embryo development represents a unique
window of sensitivity during development encompassing
the first lineage decisions and the most significant period of
epigenetic programming that will persist in resultant daugh-
ter cells and their differentiated progeny [54]. Suboptimal
embryo culture conditions, including atmospheric oxygen,
serum supplementation, ammonium buildup, and the
absence of necessary metabolites such as amino acids, have
been shown to alter developmental kinetics, delay blastocyst
development, and lower blastocyst numbers, mirrored by a
loss of viability postimplantation [9, 55–57]. Culture in the
presence of atmospheric oxygen is associated with retarded
embryo development in several species ([58-60], reviewed
by [61, 62]). Atmospheric oxygen delays mouse and human
embryo cleavage prior to the 8-cell stage [63], resulting in a
reduction in subsequent blastocyst quality [9]. Significantly,
exposure to atmospheric oxygen during early cleavage is
irreversible, as subsequent postcompaction culture at phys-
iological oxygen is unable to restore blastocyst viability,
highlighting the susceptibility of the early embryo to environ-
mental stresses. Furthermore, the detrimental effects of
atmospheric oxygen on gametes and embryos also manifest
as changes in blastocyst gene expression [64, 65] and the pro-
teome [66], perturbed metabolic activity, including loss of
metabolic homeostasis and a reduced capacity for the trans-
amination of waste products [7, 8, 48, 67], and a reduction
in birth rates in humans by 10–15% [68, 69]. During this
time, the most substantial epigenetic changes in the life of
the organism occur (reviewed by [70]), thereby representing
a sensitive window of development during which metabolic
perturbations have the potential to alter the epigenetic
landscape, impacting daughter cells. The sensitivity of the
mammalian embryo to metabolite availability, and metabolic
perturbations, infers that ESC, iPSCs, and potentially all
in vitro-derived cell types may be similarly perturbed by non-
physiological culture conditions, with long-lasting/hereditary
effects. Studies examining preimplantation embryo physi-
ology, and the significance of metabolism and metabolic
regulation during development, were instrumental in devel-
oping culture conditions capable of supporting embryo
development [6] and highlight the need to understand ESC

physiology, and how in vitro culture and nutrient availability
impacts their functionality, particularly given the proposed
use of these cells for clinical applications.

5. The Metabolic Framework of Pluripotent
Stem Cells: The Relevance of Glucose and
Glutamine Metabolism

Preimplantation embryo metabolism is characterised by a
dependency on pyruvate, lactate, and aspartate, and a lim-
ited capacity for glucose, prior to compaction [48, 71],
switching to an increasing need for glucose uptake and
conversion to lactate [6], accompanied by an increase in
oxygen consumption [72] postcompaction. This shift is
driven in part by the exponential increase in cell number
from the morula to the blastocyst stage, and by the energy
required to generate and maintain the blastocoel (reviewed
by [53]). While the trophectoderm, which forms the pla-
centa, has the capacity to oxidise around half the glucose con-
sumed, the ICM is predominantly glycolytic [73], converting
approximately 100% of the glucose consumed to lactate, even
in the presence of sufficient oxygen to support its complete
oxidation [74].

Similar to the ICM, mouse and human ESC metabolism
is characterised by a dependency upon glycolysis [11, 36,
75–78] (Figure 1), converting approximately 70–80% of the
glucose consumed to lactate. Unlike oxidative phosphoryla-
tion (OXPHOS), which generates 36 ATP from the oxidation
of glucose, glycolysis generates only 4 molecules of ATP.
However, ATP can be generated quickly through glycolysis
[79], such that equivalent levels of ATP can be generated
provided there is a sufficient flux of glucose. The reliance
of ESC on glycolysis is plausibly necessary to maintain a
high cellular NADPH, allowing for rapid cell expansion
through amino acid and nucleotide synthesis for prolifera-
tion [80]. Lactate generation, via lactate dehydrogenase
(LDH), facilitates the regeneration of cytosolic NAD+

required for the conversion of glyceraldehyde-3-phosphate
to 1,3-biphosphoglycerate in glycolysis, ensuring continued
glucose utilisation. Alternatively, glucose-derived pyruvate
can be oxidised through the TCA cycle to provide lipids
and carbon donors, such as acetyl-CoA necessary for mem-
brane synthesis [81], and synthesis of the amino acids serine,
glycine, cysteine, and alanine necessary for cell division. In
human ESC, glucose-derived carbon metabolised through
the oxidative pentose phosphate pathway (PPP), contributes
between 50 and 70% of cytosolic NADPH [10], which is
required for the constant reduction of antioxidants in order
to keep them functional. Proliferation of both naïve mouse
ESC and serum/LIF ESC is abolished in the absence of
glucose [82, 83], and inhibition of glycolysis with nonmeta-
bolisable 2-deoxyglucose significantly reduces mouse ESC
self-renewal [76], demonstrating an absolute requirement
for glucose in supporting self-renewal. The preferential
metabolism of glucose through glycolysis also provides a
means of generating ATP without the formation of ROS in
pluripotent cells, allowing a level of control over the amount
of ROS generated.
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Pyruvate flux in human ESC is in part regulated by the
mitochondrial inner membrane protein uncoupling protein
2 (UCP2), which acts to shunt glucose-derived carbon away

from mitochondrial oxidation and into the PPP [84]
(Figure 1). Retinoic acid-induced human ESC differentiation
results in reduced UCP2 expression, accompanied by
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Figure 1: Oxygen regulation of ESC metabolism and epigenetic landscape. Relative to atmospheric oxygen (20%), physiological oxygen (1–5%)
reduces the content of mitochondrial DNA (mtDNA) and mitochondrial electron transport chain (ETC) gene expression in pluripotent
stem cells [11]. These mitochondria consume less oxygen and respire less than those at atmospheric oxygen generating less ATP through
glucose-derived oxidative phosphorylation (OXPHOS). Mitochondrial OXPHOS from glutamine- and fatty acid-derived carbon is still an
active pathway in pluripotent stem cells; atmospheric oxygen increases the consumption of glutamine and its oxidation in the mitochondria
[77, 93]. Pluripotent stem cells rely heavily on glycolysis, followed by the conversion of pyruvate to lactate, which recycles the NAD+ required
for the rapid continuation of glycolysis. Per carbon, glycolysis is less efficient than OXPHOS at generating ATP; however, should there be a
sufficient flux of glucose, then enough ATP can readily be formed. At physiological oxygen, glycolytic flux is increased relative to
atmospheric oxygen resulting in significantly more lactate production [11, 77, 128]. Several mechanisms direct glucose-derived carbon
towards either lactate or alanine and away from mitochondrial OXPHOS. Under physiological oxygen conditions, the hypoxic inducible
factors (HIFs) are stabilised; targets of transcription factor HIF2α include glucose transporter 1 (GLUT1) [128] which increases glucose
transport into the cell and pyruvate dehydrogenase kinase (PDK) which inhibits the conversion of pyruvate to acetyl-CoA by pyruvate
dehydrogenase (PDH) in the mitochondrion. Uncoupling protein 2 (UCP2), an inner mitochondrial membrane protein, blocks the import of
pyruvate into the mitochondria in human PSC [84]. Glutamine and fatty acids stimulate UCP2, decreasing pyruvate oxidation, which in turn
facilitates glutamine and fatty acid oxidation and the maintenance of a rapid glycolytic flux [187, 188]. The flux of metabolic reactions in
PSCs is increased at physiological oxygen [93] as is amino acid turnover [11, 189]. Increased serine and glycine consumption at physiological
oxygen may feed into the folate and methionine cycles, collectively known as one carbon metabolism. One carbon metabolism, glycolysis,
and the tricarboxlyic acid (TCA) cycle generate intermediate metabolites that act as cofactors for epigenetic modifying enzymes. Threonine
and methionine metabolism in mouse [5] and human [4] PSCs, respectively, generate S-adenosylmethionine (SAM) which is a methyl donor
for histone methyl transferases (HMT). Glucose-derived acetyl coenzyme A (acetyl-CoA), synthesised in the TCA cycle or from threonine
metabolism [5], acts as a cofactor for histone acetyltransferases (HAT), modulating hESC histone acetylation and plausibly maintains
pluripotency [88]. Glutamine metabolism increases the αKG:succinate ratio, leading to DNA demethylation by ten-eleven translocation
(TET) activity, which then stimulates the mouse naïve pluripotency network [83]. In primed human ESC, an increased αKG:succinate ratio
induces differentiation [100]. In human ESC, physiological oxygen causes a euchromatic state within NANOG, OCT4, and SOX2 hypoxic
response elements (HREs) allowing the binding of HIF2α and the upregulation of the pluripotency network [109]. HIFα is stabilised at
physiological [160, 167] and atmospheric oxygen [170] due to the action of mitochondrial ROS [161, 168, 169]. Stabilised HIFα protein
upregulates glycolytic flux through glycolytic gene expression [147], increases cellular glucose import, and upregulates pluripotency [109].
The proximity of the mitochondria to the nucleus facilitates a ROS-nucleus signalling axis in the form of H2O2, plausibly through the HIF
family of transcription factors. Concurrently, antioxidant production is increased at physiological oxygen [175]. Glutathione (GSH) from
glutaminolysis, and NADPH from either glutaminolysis or the pentose phosphate pathway, protect the cell from increased levels of ROS.
Thick arrows and bold text indicate increased flux/transcription. Metabolic regulators of chromatin-modifying enzymes are highlighted in
red. Circles attached to chromatin in the nucleus represent epigenetic modifications: acetylated (green); 5mC (red); 5hmC (blue).
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decreased glycolysis and increased OXPHOS [84]. Further,
human ESC have a limited capacity to utilise citrate
derived from pyruvate to generate ATP through OXPHOS,
due to low levels of aconitase 2 and isocitrate dehydroge-
nase 2/3, concurrent with high expression of ATP-citrate
lyase [85]. Significantly, inhibition of pyruvate oxidation
stimulates anaplerotic glutamine metabolism in human
ESC [85], and glutamine-derived acetyl-CoA production
in human cancer cells [86, 87], which are similarly
increased in ESC [88]. Plausibly, limited pyruvate oxida-
tion may function to balance ROS production, enhance
glutamine utilisation as an anaplerotic source, and stimu-
late NAD+ recycling to maintain a high flux through gly-
colysis for rapid cellular growth and proliferation to
support pluripotent self-renewal. In support of this, differ-
entiation of mouse naïve ESC and human ESC alters the
glycolytic:oxidative balance within 48 hours [30, 89–91].

Due to the principal requirement for glycolysis in
ESC metabolism, the role of glutaminolysis has been rela-
tively overlooked. However, after glucose, glutamine is the
most highly consumed nutrient in human ESC culture
[11, 77, 78] and is essential for human [10] and mouse
[83] ESC proliferation. Other highly proliferative cell
types, including tumour cells, use glutaminolysis to recycle
NADPH for antioxidant reduction, fatty acid and nucleo-
tide biosynthesis, and anaplerosis (synthesis of TCA cycle
intermediates), while glucose-derived carbon is used for
macromolecule synthesis [92]. Indeed, in mouse ESC cul-
tured in the presence of glucose, virtually all glutamate,
αKG, andmalate in the TCA are derived from glutaminolysis
[83]. In contrast, naïve mouse ESC are able to proliferate
without exogenous glutamine, but only by using glucose
to synthesise glutamate for anaplerosis [83]. Human ESC
also make extensive use of glutaminolysis [10], which met-
abolic modelling suggests is likely used for ATP and syn-
thesis of antioxidants (glutathione and NADPH), and
anaplerotic pathways [93]. Glutamine-derived glutathione
(GSH), a powerful cellular antioxidant, prevents the oxida-
tion OCT4 cysteine residues and subsequent degradation,
allowing OCT4 to bind DNA [94]. Combined, these data
suggest that glucose and glutamine independently regulate
metabolic pathway flux in ESC, and that nutrient availability
can significantly impact metabolic pathway activity and cell
state.

6. Nutrient Availability Modulates Pluripotency
and the Epigenetic Landscape

The culture/nutrient environment in which a cell resides,
in vivo or in vitro, and its resultant impact on the intra-
cellular metabolite pool, plays a defining role in determining
cellular phenotype. Metabolites can have a long-term impact
on a cell through regulation of the epigenome, a relatively
new field known as metaboloepigenetics, and their availabil-
ity has been shown to impact ESC self-renewal and lineage
specification (reviewed by [24, 25]).

ESC cell maintenance, cell fate, and DNA methylation
have been shown to be regulated by the availability and utili-
sation of a number of amino acids. The first amino acid

found to regulate pluripotent cell state was L-proline. Uptake
of proline or ornithine drives mouse ESC differentiation to
early primitive ectoderm [2, 95, 96]. This transition is accom-
panied by alterations in replication timing and H3K9/K36
methylation [97, 98]. Subsequent studies have identified the
requirement for specific amino acids for the maintenance of
pluripotency. Threonine is the only amino acid essential
for the maintenance of pluripotency in mouse ESC and
is responsible for maintaining a high cellular SAM level
[5, 99]. Depletion of threonine leads to slowed mouse
ESC growth, increased differentiation, and a reduction in
SAM levels which leads to reduced H3K4me3 [5]. In a
similar manner, human ESC require high levels of methi-
onine [4]. Methionine deprivation causes a rapid reduction
in SAM levels resulting in a rapid decrease in H3K4me3,
while also decreasing NANOG, priming human ESC for
differentiation [4].

Glutamine utilisation has been shown to contribute to
αKG pools in mouse ESC, with naïve cells prioritising gluta-
mine use to maintain αKG pools for active demethylation
through the regulation of Jumonji and TET demethylases
[83]. Glutamine depletion from 2i conditions leads to
increased tri-methylation of H3K9, H3K27, H3K26, and
H4K20 levels in naïve mouse ESC, which retain their ability
to proliferate at a reduced rate. Naïve cells are capable of
generating glutamine from glucose, while primed mouse
ESC are unable to proliferate in the absence of glutamine
[83]. Recently, supplementation with αKG during human
ESC differentiation has been shown to accelerate the expres-
sion of neuroectoderm and endoderm markers [100]. In the
presence of αKG, H3K4 and H3K27 trimethylation of
differentiating human ESC increased, although an overall
reduction in global methylation levels was observed
[100]. Similarly, glucose-derived acetyl-CoA contributes
to the modulation of the ESC epigenetic landscape, where
differentiation, or the inhibition of glycolysis with 2-deox-
yglucose, leads to a reduction in H3K9/K27 acetylation,
which can be restored by supplementation of the acetyl-
CoA precursor acetate [88]. These data highlight the
changing metabolic requirements of the cell with progres-
sion through pluripotency and with differentiation and
emphasise the need to customise nutrient conditions to
support specific lineages.

Combined, these studies provide links between metabo-
lism and pluripotency through chromatin state. It will be
important to understand how, and if, metabolite presence/
absence and abundance drives differentiation to more mature
lineages through altered cell state, or whether metabolites
select cell populations that are more receptive to differentia-
tion. Indeed, cell type-specific metabolic requirements can
be used to purify derivative populations. Human ESC-
derived cardiomyocytes can be purified using a glucose-
depleted, lactate-rich medium [101], or by sorting for high
mitochondrial membrane potential [102], effectively elimi-
nating undifferentiated ESC. Examination of metabolite
compartmentalisation within cells, particularly the dynamic
requirements that likely occur during cell differentiation, will
also be crucial to understand the functional consequences of
metabolic flux.
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7. Oxygen Regulates ESC Pluripotency

Physiological oxygen conditions (~1–5%) have been reported
to facilitate the maintenance of pluripotency, and reduce
spontaneous differentiation in mouse [103] and human
ESC [104–106]. Further, it has been shown to improve chro-
mosome stability [107], preserve methylation status [108,
109], maintain 2 active X chromosomes [110], and facilitate
the derivation of mouse [111] and human ESC [112]. Physi-
ological oxygen increases pSmad2/3 levels, an indicator of
TGFβ receptor activation, and decreases lineage markers
in human ESC [113, 114], while increasing the efficiency
of embryoid body (EB) formation [113]. In contrast, other
studies have reported no benefits of low-oxygen culture on
the expression of pluripotency markers [115, 116] or sur-
face antigen expression [104] in human ESC. This lack
of consensus has plausibly arisen from the many variations
in culture conditions used, including the presence or
absence of feeders which would respond to altered oxygen
conditions [49], medium composition, type of protein
supplement, osmolality, pH, or the considerable heteroge-
neity that exists between human ESC lines [117, 118].
Despite the significant body of evidence for the detrimen-
tal effect of atmospheric oxygen conditions from preim-
plantation embryo studies [49, 50, 61], and emerging
evidence that oxygen and ROS [119] can impact the epige-
nome, ESC culture is predominantly performed under 20%
oxygen conditions. In contrast, physiological oxygen levels
have become mainstream for naïve cell generation and
maintenance [31–33], primarily due to their stabilising
effects.

Significantly, physiological oxygen has been shown to
accelerate and improve the differentiation of mouse ESC to
EpiSCs. Compared with atmospheric oxygen conditions,
mouse EpiSCs exhibit a gene expression profile, methylation
state, and cadherin profile more similar to in vivo EpiSCs
under 5% oxygen [120]. Multiple stem cell types similarly dis-
play enhanced differentiation at physiological oxygen. Culture
at 2% oxygen is highly beneficial for the derivation and
expansion of human retinal progenitor cells [121], increasing
population doublings by up to 25 times and enhancing their
potential to form photoreceptors [122, 123]. 5% oxygen also
facilitates human endothelial cell differentiation through
increased expression of vascular endothelial cadherin, CD31,
lectin binding, and rapid cord structure formation [124].
Significantly, 5% oxygen culture during the initial 3 days of a
6-day differentiation protocol generates two distinct cell pop-
ulations, VEcad+ colonies surrounded by PDGFRβ+ pericytes,
while 5% oxygen during the second half of differentiation
blocks the emergence of these distinct populations. This
suggests that there are specific windows of differentiation
where oxygen interactions are critical in determining lineage
specification. Targeted oxygenation regimes during differenti-
ation likewise increase the yield and purity of neurons [125],
definitive endoderm [126], and cardiac differentiation from
ESC and iPSCs [127]. This is reminiscent of preimplantation
embryo development, which requires precise control over
the oxygen and metabolite environment [49]. Consequently,
oxygen, and the concentration of other metabolites, will need

to be modelled on in vivo niches to achieve the most efficient
and viable differentiation outcomes.

8. Physiological Oxygen Underlies a More Active
Metabolic State

ESC similarly elicit a conserved physiological response to cul-
ture under physiological oxygen conditions. When cultured
under physiological oxygen conditions, human ESC increase
the flux of glucose through glycolysis (Figure 1) [11, 77, 93,
128], accompanied by increased glycolytic gene expression
[77, 116] and decreased oxidative gene expression [11]. Oxy-
gen has also been shown to regulate human ESC mitochon-
drial activity and biogenesis [11, 128], as occurs in somatic
cells [129]. Physiological oxygen increases the expression of
glycolytic genes, while reducing human ESC mitochondrial
DNA (mtDNA) levels, total cellular ATP, and mitochondrial
mass and the expression of metabolic genes associated with
mitochondrial activity and replication compared to 20%
oxygen culture [11]. Physiological oxygen conditions there-
fore establish a metabolic state characterised by increased
glycolytic flux and suppressed mitochondrial biogenesis
and activity (Figure 1).

This conserved cellular response is mediated through
the stabilisation of hypoxia-inducible factor (HIF) alpha
subunits at physiological oxygen conditions (reviewed by
[130]), with HIF activity increasing exponentially as oxygen
concentrations decrease below 7% [131]. The human ESC
response to physiological oxygen, as for the preimplanta-
tion embryo [64], is mediated primarily through HIF2α sta-
bilisation, the silencing of which is accompanied by a
reduction in OCT4, SOX2, and NANOG protein expression
[105]. HIF2α also binds directly to the GLUT1 promoter
increasing GLUT1 levels in human ESC at physiological
oxygen [128] (Figure 1), associated with increased glucose
consumption. The main HIF alpha subunit, HIF1α, is only
transiently expressed in the nucleus of human ESC upon
culture under 5% oxygen conditions, suppressed by the
expression of the negative regulator HIF3α [105]. Inter-
estingly, overexpression of HIF1α in naïve mouse ESC
is sufficient to drive metabolic change from a bivalent
oxidative and glycolytic metabolism to one primarily reli-
ant on glycolysis, accompanied by a shift towards an
activin/nodal-dependent EpiSC-like state [28], inferring
that metabolic regulation alone is sufficient to drive cell
state transitions.

Mathematical modelling suggests that ESC display a
greater metabolite flux in 70% of modelled metabolic reac-
tions with physiological oxygen culture [93], indicating that
low oxygen conditions actually support a more active human
ESC state. Cancer cell lines also demonstrate an increase in
general metabolic activity under low oxygen, characterised
by elevated intracellular levels of glucose, threonine, proline
and glutamine, and fatty acid and phospholipid catabolic
processes [132]. A higher metabolic turnover emerges as a
shared feature of highly proliferative cell types. However, as
proliferation is not increased at low oxygen in human ESC
studies [11, 77], increased metabolic activity could therefore
be underpinning pluripotency through the provision of
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epigenetic modifiers. Plausibly, altered glycolytic, TCA flux,
and amino acid metabolism will modulate the levels of
αKG, NAD+, and acetyl-coA, thereby regulating the activity
of epigenetic modifiers. Indeed, physiological oxygen culture
results in the methylation of the OCT4 hypoxia-response ele-
ment (HRE) of human ESC, while at 20% oxygen, NANOG
and SOX2 HREs display methylation marks characteristic
of transcriptional silencing [109].

9. ESC Mitochondrial Morphology Is
Reminiscent of the Preimplantation Embryo

Mitochondrial morphology is highly dynamic reflecting the
developmental stage and metabolic requirements of the cell
[133, 134] (Figure 2). In growing and maturing oocytes, mito-
chondria are primarily spherical, with pale matrices and small
vesicular cristae, clustered around the nucleus [135]. By ovula-
tion, mitochondria are the most prominent organelle in the
oocyte cytoplasm [136], and the oocyte contains approximately
an order of magnitude more mtDNA copies thanmost somatic
cells (reviewed by [137]). Following fertilisation, mitochondria
cluster around the 2 pronuclei [136, 138], plausibly, to meet
increased energy demands and ensure an even distribution
between dividing cells. During the 2- to 8-cell cleavage
events of embryonic development, spherical mitochondria
are partially replaced with elongated (height=~3×width)
mitochondria with transverse cristae [136]; this further
changes at the early blastocyst stage during differentiation into
ICM and trophectoderm, expansion, and hatching of the blas-
tocyst, when highly elongated mitochondria appear [135]. In
human apical trophoblast cells, mitochondria are elongated,
with transverse cristae, and are largely peripherally located
[139], plausibly to facilitate the energetically costly process of
blastocoel expansion and zona hatching [140]. Within the
ICM and polar trophoblast cells, there is a mixed population
of round/vacuolated and elongated/cristae-rich mitochondria
that remain perinuclear [135, 139, 141].

In vitro human ESC mitochondria resemble those of
in vivo ICM cells [135, 139] (Figure 2) and primordial germ
cells (PGCs) [136], containing spherical mitochondria with
clear matrices and few peripheral arched cristae (Lees
et al. unpublished data; [30, 142, 143]), coincident with
lower levels of mitochondrial DNA [11], oxygen consump-
tion, and OXPHOS [84, 144, 145]. Comparatively, somatic
cells typically contain filamentous, networked mitochondria
with well-defined transverse cristae supporting a higher level
of mitochondrial oxygen consumption and oxidative metab-
olism [30, 142]. The mitochondrial morphology of naïve
human ESC is also suggestive of an earlier developmental
time point as they display round, vacuolated mitochondria
with few cristae compared to primed human ESC [31]. Sig-
nificantly, naïve human ESC do not attain a mitochondrial
morphology equivalent to that of in vivo human or mouse
ICM cells, typified by a mixed mitochondrial complement
[135]. This suggests that the conditions used to acquire or
maintain pluripotency are insufficient for establishing an
in vivo-like mitochondrial structure. This is not surprising
given its considerable complexity; however, it suggests that
only through a close physiological examination of in vivo

cells can we hope to achieve in vitro counterparts with the
same functionality. However, it is currently unclear at which
precise developmental stage in vivo or in vitro all mitochon-
dria take on a dispersed, reticulated, cristae-rich morphology,
although it appears coincident with terminal differentiation,
accompanied by an increased requirement for oxidative
metabolism and a decreased requirement for self-renewal.
This reticulated morphology has been observed after ~35
days of terminal neural differentiation to oligodendrocytes
[89, 146] and upon terminal differentiation to
cardiomyocytes [143]. Conversely, inhibition of mitochon-
drial fusion during reprogramming, forcibly fragmenting
the mitochondrial network, facilitates the acquisition of
pluripotency through a ROS-HIF-dependent mechanism
[147], highlighting the requirement for dynamic modulation
of mitochondrial structure across cell states.

10. Mitochondrial ROS and Perinuclear
Localisation: A Requirement for ESC
Proliferation?

In spite of the utilisation of aerobic glycolysis, ESC mito-
chondria, and mitochondrial function, are critical to main-
taining pluripotency, self-renewal, and survival [148].
While inhibitors of mitochondrial metabolism increase
glycolytic flux and the expression of pluripotent markers
in ESC [148, 149], loss of mitochondrial function, following
the knockdown of growth factor erv1-like (Gfer) [150], or
mitochondrial polymerase PolG [145], or following mtDNA
mutagenesis [151], result in mitochondrial fragmentation,
reduced pluripotency, decreased cell survival and embry-
oid body forming potential, and the loss of pluripotency
in mouse and human ESC. These data therefore high-
light an absolute requirement for mitochondria, despite
pluripotency being enhanced when OXPHOS is inhibited.
Mitochondrial signalling (reviewed by [152]), indepen-
dent of metabolic activity, may therefore have a role in
regulating self-renewal.

In vivo, the location of mitochondria and their interac-
tion with other organelles mark distinct developmental and
cellular events. Mitochondria form complexes and localise
strongly with other organelles, including the smooth endo-
plasmic reticulum and vesicles in the post-ovulation oocyte,
plausibly generating cellular components in anticipation of
fertilisation, as post-fertilisation; these complexes gradually
recede [136] (Figure 2). Both in the embryo [136], mouse
ESC [145] and human ESC [75, 143, 148], a perinuclear loca-
lisation of mitochondria is evident, and is typical of highly
proliferative cell types [153], including cancers [154–157].
Expansion of mitochondria from the perinuclear space to a
dispersed distribution occurs within 3–7 days of the initia-
tion of ESC differentiation [143, 145, 148]. Significantly, dis-
persed mitochondria in somatic cells revert to a perinuclear
localisation once reprogrammed to a stem-cell like state
[75, 148], indicating that close contact with the nucleus is
required for either pluripotency and/or self-renewal.

Several hypotheses have been proposed to explain peri-
nuclear mitochondria including a requirement for crosstalk
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Figure 2: The dynamic localisation and morphology of mitochondria through human development and in culture. Mitochondrial
morphology and localisation is determined by the developmental stage and metabolic requirements of the cell [133, 134]. Morphologies in
the developing embryo range from spherical organelles with dense matrices and few peripheral arched cristae to long filamentous
organelles with sparse matrices and many transverse cristae that maximise the surface area for OXPHOS. The mitochondria also localise
strongly with the nucleus and other organelles throughout embryo development to provide ATP for growth and likely to maintain a
signalling axis with the nucleus. In primordial germ cells (PGCs), both before and during migration to the gonadal ridge, the
mitochondria localise strongly with the nucleus (perinuclear), maintaining a large, vacuous morphology, containing only small vesicular
cristae and no transverse cristae [136]. The PGC mitochondrial matrix is clear, suggesting a low level of oxidative activity. During
migration, mitochondria increase in number and overall mass. Nine weeks postfertilisation, the PGCs begin to differentiate into the
oogonia; by 12 weeks, they begin expansion through mitotic divisions; and by 16 weeks, meiosis commences [190]. During the second
stage of prophase in meiosis, zygotene (where the chromosomes closely associate), the mitochondria tightly envelop the nucleus. During
the diplotene stage of prophase, when the chromosomes separate, the mitochondria and most other organelles localise to one side of the
nucleus forming Balbiani’s vitelline body [191, 192]. It is at this point that the human oocyte arrests until hormonal stimulation up to 50
years later [193]. Upon hormonal activation, the oocyte progresses through folliculogenesis. The primary oocyte contains many spherical
mitochondria with very dense matrices and few peripheral arched cristae [135]. Notably, these mitochondria are dispersed throughout the
cytoplasm and form complexes with the smooth endoplasmic reticulum (SER) and vesicles [136]. These complexes gradually dissipate
throughout ovulation and fertilisation. At the 2 pronuclei (2PN) stage, the mitochondria cluster around the 2PN and the initial fission/
fusion events take place giving rise to “dumbbell”-shaped mitochondria although the prevailing morphology is still spherical. During the
initial cleavage events, elongated mitochondria begin to emerge approximately 2-3 times the length of the spherical mitochondria with
well-developed transverse cristae. During the morula and early blastocyst stages, the ratio of elongated to spherical mitochondria
increases, such that by the late blastocyst stage in vivo, there is an approximately even mix in both the inner cell mass (ICM) and
trophectoderm cells [135, 136, 139]. This mix of mitochondrial morphologies is also observed in the mouse ICM and trophectoderm cells
[141]. Notably, in the blastocyst, the mitochondrial matrix becomes clear while the perinuclear localisation and arching cristae phenotype
is retained [135, 139]. In vitro hESC mitochondria are similarly perinuclear with few arching cristae and have clear matrices, although
their morphology is almost exclusively spherical with a notable absence of the in vivo elongated mitochondria [30, 142]. After seven days
of spontaneous differentiation, hESC take on the mixed mitochondrial population [142]. Somatic cell mitochondria are dispersed
throughout the cytoplasm and are often highly elongated, reticulated, and bulbous. Their matrices are dense and their cristae are
developed and transverse [30], likely a reflection of the more oxidative nature of somatic cell metabolism. N, nucleus (purple); cytoplasm
(blue); electron dense mitochondrial matrix (red); electron sparse mitochondrial matrix (pink).
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between the nuclear and mitochondrial genomes (reviewed
by [137, 158]), buffering the nucleus from calcium fluctua-
tions in the cytoplasm, and efficient energy transfer for trans-
port of macromolecules across the nuclear membrane
(reviewed by [159]). Indeed, in human ESC, mitochondria
localise perinuclearly throughout mitosis, only moving to
congregate around the cleavage furrow [148], likely pro-
viding energy to the contractile rings that cleave the cell
in two. This is despite the fact that human ESC mitochon-
dria maintain a relatively small inner mitochondrial mem-
brane surface area for the assembly of respiratory chain
complexes, accompanied by low levels of oxygen consump-
tion even when working at maximal respiratory capacity
[84, 144, 145].

Beyond the production of ATP via OXPHOS, mitochon-
drial respiration also generates ROS, in the form of hydrogen
peroxide (H2O2) primarily generated from complex III of the
ETC [160, 161]. ROS serve as signalling molecules within a
physiological range, compared with their better known role
in DNA damage when in excess [162]. ROS directly modu-
late numerous processes through the modification of kinases,
transcription factor activity, and metabolic enzymes and pro-
teins involved in nutrient-sensing pathways, and are capable
of stimulating proliferation in a number of cell types [163].
Indeed, self-renewal in human and mouse ESC-derived neu-
ral stem cells relies upon high endogenous levels of ROS from
cytoplasmic NOX activity [164, 165], supporting a role for
endogenous ROS in regulating stemness. The acute proxim-
ity of the mitochondria to the nucleus in pluripotent stem
cells is suggestive of a signalling axis whereby ROS, in the
form of H2O2, may provide mitogenic signals [166], plausibly
through regulation of the HIF family of transcription factors
(Figure 1). This hypothesis is supported by evidence of a
prolonged mitochondrial H2O2 presence stabilising HIFα
proteins at both physiological [160, 161, 167–169] and atmo-
spheric oxygen conditions [170]. As HIFs modulate OCT4
activity [171], and HIF2α both promotes and is necessary
for self-renewal and the pluripotent transcription network
in mouse and human ESC [105, 172], mitochondrial
ROS signalling may underlie the acquisition and mainte-
nance of pluripotency (Figure 1). Indeed, addition of N-
acetylcysteine during reprogramming of somatic cells to a
pluripotent-like state has been shown to decrease ROS-
mediated stabilisation of HIFs [147], necessary for restructur-
ing metabolism towards glycolysis to support pluripotency.
Consequently, physiological oxygen would establish an
ongoing H2O2 presence within a physiological range,
capable of sustaining HIF2α activity with prolonged culture.
In contrast, the increase in mitochondrial activity associated
with culture under atmospheric oxygen likely generates
supraphysiological levels of H2O2 and more damaging
species. As such, increased mitochondrial activity under
atmospheric oxygen, accompanied by increased glutathione
recycling, may be required to generate sufficient H202 to
maintain HIF regulation under atmospheric conditions.
Signalling by ROS may explain the maintenance of HIF2α
under atmospheric conditions in ESC, albeit at lower levels
compared with physiological oxygen [105]. Therefore, a
precise balance between ROS production and neutralisation

is likely necessary, dependent upon the prevailing oxygen
conditions.

Superoxide (O2
−) can rapidly be reduced to H2O2 in

either the cytosol, the mitochondrial matrix, or the extracel-
lular environment by superoxide dismutases (SODs) 1, 2,
and 3, respectively. While SODs are highly expressed in
human ESC [142], mitochondrial ROS generated from
complex III cannot be reduced by SODs; instead, reduc-
tion to H2O is carried out by the glutathione/glutathione
peroxidase (GSH/GPX) system using the oxidation of
NADPH to NADP+ [168], which is also highly active in
human iPSCs [173]. In addition to providing the cell with
biosynthetic precursors, glutaminolysis also supports the
de novo synthesis of glutathione and NADPH, which pro-
tect cells from potential damage by the buildup of excess
ROS. Therefore, ESC maintain high levels of cytosolic
and mitochondrial antioxidants and reducing agents in
the forms of GSH, NADPH, and SOD2, to cope with
damaging levels of ROS [142, 144, 173, 174]; and yet,
ROS generated from the oxidative metabolism of glucose
and glutamine are plausibly vital signalling molecules that
play a pivotal role in human ESC metabolism and self-
renewal.

Thus, an unconventional theory of ESC mitochondria
and ROS emerges. The morphology and location of ESC
mitochondria, strategically located around the nucleus in
great numbers yet with limited OXPHOS capacity, suggest
a metabolic strategy that may involve prioritising ATP sup-
ply for proliferation via glycolysis, coincident with regulated
ROS levels adjacent to the nucleus to stimulate HIF-
mediated proliferation (Figure 1). Substantial antioxidant
production limits the damaging effects of the H2O2 while still
enabling signalling. Interestingly, this metabolic strategy
benefits from physiological oxygen, as reduced oxygen stim-
ulates GSH production in human ESC [175] and has been
shown to increase H2O2 production from complex III in
human cancer cells [176, 177]. Mitochondrial H2O2 gener-
ated from physiological oxygen does not induce DNA
damage, acting primarily as a signalling molecule [160].
Hence, a delicate ROS/antioxidant balance is struck, coor-
dinated by metabolic pathway activity. Plausibly, persistent
atmospheric oxygen used in culture will affect this balance,
resulting in either suboptimal signalling levels or patholog-
ical levels of ROS and perturbed gene regulation.

11. The Emerging Complexity of Mitochondrial
Epigenetic Regulation

In addition to their role in signalling, ROS have been shown
to directly alter the epigenetic landscape (reviewed by [178]).
Direct oxidative modification of the methyl group of 5-
methylcytosine prevents DNMT1 methylation of the target
cytosine [179]. Conversely, ROS have been shown to induce
DNA methylation of the E-cadherin promoter in hepatocar-
cinoma cells, accompanied by HDAC1, DNMT1, and
methyl-CpG-binding protein 2 (MeCP2) [180]. These data
further support the need to modulate ROS within a tight
physiological range. As mitochondrial metabolism also con-
trols the levels of the key cofactors acetyl-CoA, αKG, and
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NADH/NAD+ and TCA intermediates including citrate and
succinate, which, as discussed, act as substrates for epigenetic
modifiers [181]. Metabolism, and particularly mitochondria,
therefore acts as an interface between the environment and
the nuclear epigenome. However, nuclear-mitochondrial
cross-talk goes beyond the unidirectional regulation of cellu-
lar homeostasis, nuclear gene expression, and the nuclear
epigenetic landscape. Mitochondrial DNA encodes 2 rRNAs,
22 tRNAs, and 13 subunits of the electron transport chain
(reviewed by [137]) and was proposed to lack histones
[182]. In 2011, Shock et al. identified translocation of nuclear
DNMT1 to the mitochondrial matrix, regulated by a mito-
chondria targeting sequence [183], with translocation sensi-
tive to overexpression of activators that respond to
oxidative stress. Alterations in mtDNMT1 directly affected
transcription from the light and heavy strands of mtDNA,
suggesting epigenetic regulation of the mitochondrial
genome [183]. Further studies have identified methylated
cytosines within the control region of mtDNA [184], along
with the existence of histones within the mitochondrial
membrane [185].

Nuclear encoded genes contribute the majority of pro-
teins required for mitochondrial regulation, and it is likely
that others will be identified with roles in regulating mito-
chondrial epigenetics. The reciprocal relationship between
the nucleus and mitochondria, both of which are responsive
to changes in mitochondrial activity, and therefore nutrient
availability, has implications for development, aging, and
disease (reviewed by [186]). To this end, the sensitivity of
the mitochondrial epigenome to changes in pluripotent, or
differentiating, cell metabolism has not been studied. How-
ever, the significance of the dynamic nature, and apparent
plasticity, of cellular metabolism is that a suboptimal nutrient
environment is compensated metabolically, and a changed
metabolism will result in a misregulated nuclear, and mito-
chondrial, epigenome. The impact of this may not be appar-
ent in the pluripotent cell but is plausibly manifested in
differentiated progeny through inheritance of aberrant epige-
netic marks, modifying the expression of genes involved in
signalling, growth and differentiation, and metabolism.
While sufficient perturbation may be lethal, studies on the
impact of embryo culture imply that cell plasticity enables
ongoing development and differentiation. However, these
compensatory changes likely establish lower cellular stress/
environmental tolerance, manifest as susceptibility to disease.
Hence, the environment in which a cell is grown becomes a
critical regulator and determinant of cell fate.

12. Conclusions

The convention that metabolites are simply required for
energy production is placed into a new context, in which
metabolites are central to modifications of the epigenetic
landscape, and a novel model explaining the previously unex-
plored phenomenon of human ESC mitochondrial morphol-
ogy and localisation is presented. The mitochondrial
signalling axis, possibly unique to highly proliferative cell
types such as stem cells and the embryo, attempts to explain
a hitherto undescribed facet of ESC metabolism in which

numerous, vacuolated, perinuclear mitochondria may induce
a H2O2-rich nuclear environment stimulating proliferation
through HIF activity, a process that is plausibly facilitated
by physiological oxygen. As metabolism and epigenetics
intersect, metabolite and cofactor availability is hypothesised
to have a significant impact on the chromatin landscape
leading to persistent changes carried through lineage com-
mitment. Pivotal studies in embryonic stem cells have
established that oxygen, through its impact on metabolism
and key transcription factors, modulates stem cell pluripo-
tency and differentiation. Oxygen, as a nutrient in culture,
is a signalling molecule capable of directing lineage deci-
sions and remodelling metabolism. When used at the cor-
rect stage during in vitro development, and at the correct
concentration, mimicking in vivo physiology, oxygen can
exert significant selective pressures, generating larger num-
bers of more homogeneous populations. Metabolic path-
way flux, encompassing fundamental metabolic pathway
activity and network interaction, metabolic intermediate
production, and ROS generation, therefore integrates
nutrient availability with cell signalling and the epigenome.
Consequently, the formulation of culture media has signif-
icant implications for stem cell maintenance, cell fate, and
plausibly subsequent cell health and function.
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