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H1N1 is the most common subtype of influenza virus circulating worldwide and can cause
severe disease in some populations. Early prediction and intervention for patients who
develop severe influenza will greatly reduce their mortality. In this study, we conducted a
comprehensive analysis of 180 PBMC samples from three published datasets from the
GEO DataSets. Differentially expressed gene (DEG) analysis and weighted correlation
network analysis (WGCNA) were performed to provide candidate DEGs for model
building. Functional enrichment and CIBERSORT analyses were also performed to
evaluate the differences in composition and function of PBMCs between patients with
severe and mild disease. Finally, a risk score model was built using lasso regression
analysis, with six genes (CX3CR1, KLRD1,MMP8, PRTN3, RETN and SCD) involved. The
model performed moderately in the early identification of patients that develop severe
H1N1 disease.
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INTRODUCTION

H1N1 is one of the most widespread influenza A viruses in humans, which first appeared in Mexico
and the United States in April 2009, and brought extensive influenza outbreaks (Garten et al., 2009).
The 2009 H1N1 pandemic caused an estimated 250,000 – 500,000 deaths during the first 12 months
of global circulation (Dawood et al., 2012). Although patients infected with H1N1 generally show
mild symptoms, some patients are severely affected, with viral pneumonia and sometimes multiple
organ failure. In clinical practice, patients with severe influenza often miss the best intervention time
because physicians cannot tell at an early stage whether the disease will develop in a severe form.

High viral loads and excessive host response are thought to contribute to severe influenza (de
Jong et al., 2006; Peiris et al., 2009). Previous studies have revealed that severe disease is often seen
among persons aged > 65 years, infants, pregnant women, and individuals of any age with
underlying health conditions (Bautista et al., 2010; Hui et al., 2010). In addition, pathways
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related to interferon, ubiquination, and neutrophils were found
to be potential predictors of influenza A disease severity based on
transcriptome analysis (Hoang et al., 2014; Dunning et al., 2018).
Although transcriptional signatures of mild and severe influenza
patients have been clearly analyzed and clarified, there is no
model that can be directly applied to predict the severity of the
disease. To further use the existing transcriptome data to identify
the severity of influenza, we collected two large influenza cohorts
and focused on patients infected with H1N1 to build a risk
score model.
MATERIALS AND METHODS

Data Collection
The RNA sequence datasets (GSE111368, GSE61821, and
GSE101702) were obtained from the GEO DataSets (http://
www.ncbi.nlm.nih.gov/geo/). The GSE111368 dataset included
blood samples of influenza-infected patients at three time points:
at enrolment, approximately 48h after enrolment, and >4 weeks
after enrolment. We chose H1N1-infected patients and selected
their samples at enrolment for further analysis, which were
consisted of 67 patients with severe disease and 27 patients
with mild disease that served as the discovery cohort. The dataset
GSE61821 included samples of 54 mild and 32 severe H1N1-
infected patients at an early stage. Another dataset (GSE101702)
had 107 patients with influenza A virus infection, with 63 mild
cases and 44 severe cases, and the subtype of the virus was
unknown. GSE61821 and GSE101702 were used as the
validation cohort.

Identification of Differentially Expressed
Genes (DEGs) and Functional
Enrichment Analysis
The expression dataset of the discovery cohort was employed to
identify DEGs between severe and mild H1N1 pneumonia
patients via the R software limma package (Ritchie et al.,
2015), with a false discovery rate (FDR) < 0.05 and a log2 |fold
change| > 1 as cutoff values. A total of 172 DEGs was selected as
shown in the volcano plot by ggplot2. Clustering analyses were
performed to show expression patterns of the DEGs, using the
pheatmap R package.

Functional enrichment analysis of Gene Ontology (GO),
Kyoto Encyclopedia of Genes and Genomes (KEGG), and
Gene Set Enrichment Analysis (GSEA) were performed using
the ClusterProfiler package (Yu et al., 2012). GO was used to
describe gene functions through three aspects: biological process
(BP), cellular component (CC), and molecular function (MF).
KEGG and GSEA were applied to further illuminate the
pathways of the DEGs. P < 0.05 was set as the threshold.

Estimation of Immune Cell Type
Abundances
CIBERSORT is a gene expression‐based deconvolution
algorithm (Newman et al., 2015), that uses a leukocyte gene
signature matrix consisting of 547 genes, termed LM22, to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
distinguish immune cell types. Normalized gene expression
data of the primary dataset were used to characterize the
immune cell composition with CIBERSORT (http://cibersort.
stanford.edu/) with the default signature matrix at 1000
permutations. The sum of all estimated immune cell type
fractions was equal to 1 for each sample.

Weighted Correlation Network
Analysis (WGCNA)
The gene co-expression network of the primary cohort was
obtained with the WGCNA package (Langfelder and Horvath,
2008). A total of 79 out of 94 samples were clustered and used to
screen the power function. The power of b = 18 (scale-free R2 =
0.80) was chosen to construct a scale-free network using pairwise
Pearson correlation analysis. Finally, we counted the disparity of
module eigengenes and illustrate the cluster tree of modules,
selected the cutting line of the module tree diagram, and merged
some modules. The correlation between modules and disease
severity was shown by heatmap.

Model Foundation and Validation
DEGs in modules highly correlated to disease severity were
extracted for logistic regression analysis using the lasso
method. In this method, a small group of genes associated with
disease severity was selected by shrinkage of the regression
coefficient via imposition of a penalty proportional to their
size. We used the glmnet R package to perform lasso
regression analysis. First, we randomly selected 70% of the
primary dataset as training data and the rest as testing data.
Then, the training dataset was used to calculate and select the
optimal solution of the parameter l, which gave the minimum
cross-validated error and was then applied to predict the testing
data. Finally, a six-gene model was built utilizing the regression
coefficients derived from the analysis. The model was used to
calculate risk score (risk score = sum of coefficients × normal
expression levels of genes) and predict disease severity.

Receiver operating characteristic (ROC) analysis was
performed to assess the predictive ability of the prediction
model using the pROC R package. First, we used the testing
data to compare the accuracies of the risk score model and the
age model. Then, to test the applicability of our model, we
applied it to the validation cohorts.
RESULTS

Different Gene Expression Between
Patients With Severe and Mild
H1N1 Infection
The workflow is shown in Figure 1. We used the GSE111368
dataset to identify DEGs, perform functional enrichment
analysis, and build the risk score model. Then, the GSE61821
and GSE101702 datasets were used to validate the model. A total
of 172 DEGs were identified from the primary dataset, with 105
genes upregulated and 67 genes downregulated in patients with
January 2022 | Volume 11 | Article 776840
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severe disease compared to patients with mild disease. Heatmap
analysis by hierarchical clustering showed that the DEGs
presented differential expression profiles between patients with
severe and mild disease (Figure 2A). In addition, the detailed
distribution of all the DEGs on the two dimensions of -log10
(FDR) and log2 (FC) were shown through a volcano map
(Figure 2B), with the top ten upregulated and downregulated
genes marked in the figure.

To characterize the biological functions of these DEGs, GO
analysis was performed. Enriched GO terms in BP were
predominately processes related to immune responses, of
which the top four were neutrophil degranulation, neutrophil
activation involved in immune response, neutrophil activation
and neutrophil mediated immunity (Figure 2C). Enriched GO
terms in CC revealed that genes involved in formation of
different cytoplasmic vesicles and granules were differentially
activated in the two groups (Figure 2C). Among these granules,
secretory vesicle, azurophil granules and specific granules are of
great importance in neutrophil function, which contain the
proteins necessary to mediate the recruitment, chemotaxis,
antimicrobial function, and extracellular traps formation of
neutrophils. Only eight GO terms were enriched in MF
pathways, of which the top three were serine-type peptidase
activity, serine hydrolase activity and serine-type endopeptidase
activity (Figure 2C).

Different kinds of pathways were enriched in KEGG analysis
(Figure 2D), of which the immune-related pathways were Th1
and Th2 cell differentiation and Th17 cell differentiation.
Moreover, GSEA analysis of KEGG results demonstrated that
focal adhesion, regulation of actin cytoskeleton, and Rap1
signaling pathway were the top three upregulated, whereas
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Epstein-Barr virus infection, influenza A, and ribosome were
the top three downregulated pathways (Figures 2E, F).

Estimated Proportions of Immune Cells
by CIBERSORT
Using the CIBERSORT algorithm, we first investigated the
difference in immune cell components between severe and
mild H1N1-infected patients. Figure 3A summarizes the
results obtained from 94 H1N1 patients (Figure 3A). The
proportions of immune cells varied within and between
the two groups. In addition, the proportions of different
subpopulations of immune cells were weakly to moderately
correlated (Figure 3B). Patients with severe disease had
significantly higher proportions of regulatory T cells and M0
macrophages, and significantly lower proportions of memory-
activated CD4+ T cells, CD8+ T cells, and M2 macrophages than
patients with mild disease (P < 0.05) (Figure 3C).

Functional enrichment analysis by GO and KEGG showed
that immune pathways associated with neutrophils were
significantly upregulated and activated in patients with severe
disease. However, the neutrophil fractions estimated by
CIBERSORT showed no significant difference between the two
groups. Enrichment of Th1 and Th2 cell differentiation and Th17
cell differentiation pathways by DEGs were associated with
different proportions of macrophage and T cell subpopulations
between patients with mild and severe disease.

Gene Modules Analyzed by WGCNA
To further investigate key genes related to H1N1 disease severity,
we performed WGCNA analysis. We selected the soft threshold
before constructing WGCNA, as shown in Figure 4A. With the
FIGURE 1 | Flow diagram of data collection and analysis.
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A B C

D E F

FIGURE 2 | Differential gene expression and functional enrichment analyses of patients with severe and mild H1N1 at an early stage in GSE111368. (A) Heatmap of
differentially expressed genes (DEGs). (B) Volcano map of DEGs. Red and blue spots represent up-regulated and down-regulated genes, respectively. (C) DEGs
were subjected to GO analysis in BP, CC and MF. (D) DEGs were subjected to KEGG analysis. (E) Upregulated pathways in GO-GSEA. (F) Downregulated pathways
in GO-GSEA.
A B

C

FIGURE 3 | Estimated immune cell fractions using CIBERSORT. (A) Relative proportion of immune infiltration in patients with severe and mild H1N1 disease. (B)
Correlation matrix of all 22 immune cell proportions. (C) Box plots visualizing significantly different immune cells between patients with severe and mild H1N1 disease.
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soft threshold as 18, gene modules were analyzed among all the
genes in the primary dataset. A total of 16 color modules were
identified (Figure 4B). Most genes were distributed in the gray
module, indicating that these genes were not clustered
(Figure 4B). Then, all color modules were used to analyze the
module-trait (disease severity) co-expression similarity and
adjacency. The midnightblue, salmon, pink, and greenyellow
modules were most related to disease severity (Figure 4C). We
extracted genes from the four modules and performed GO and
GSEA analyses to them. The results of GO analysis were nearly
the same as that of all DEGs (Figure 4D). In gene networks of
enriched GO terms, most genes were associated with neutrophil
function and were significantly upregulated (Figures 4E, F).
Enrichment of endomembrane system, transport, vesicle,
extracellular region, and localization shown in the GSEA
analysis suggests an active metabolic activity in patients with
severe disease (Supplementary Figure 1).

Building and Validation of Risk
Score Model
A total of 97 DEGs from the WGCNA modules that were most
related to disease severity were extracted to construct a risk score
model. We chose LASSO regression analysis because it is suitable
for constructing models when there are a large number of
correlated covariates. Six genes were selected based on the
training data: CX3CR1, KLRD1, MMP8, PRTN3, RETN and
SCD. The risk score for disease severity = (-1.209) + (-0.132 ×
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
normal expression value of CX3CR1) + (-0.683 × normal
expression value of KLRD1) + (0.304 × normal expression
value of MMP8) + (0.258 × normal expression value of
PRTN3) + (0.145 × normal expression value of RETN) +
(0.023 × normal expression value of SCD). We calculated the
risk score for each patient in the testing data and compared it to
their real disease severity (Figure 5A). The risk score could
clearly distinguish patients with mild and severe disease
(Figure 5A). Furthermore, we measured the predictive
performance of the model using ROC curves. The area under
the ROC (AUC) value was 88.8% for the risk score model, which
was rather better than age at 53.1% (Figure 5B). To determine
whether the risk score model was robust, we assessed the
performance of the model in the validation cohort GSE61821
(Figure 5C and 5D). The AUC value for the validation cohort
was 78.8% compared to 55.4% for age (Figure 5D).

In order to identify whether the model could be used in other
types of influenza, we calculated the risk scores for H3N2
patients from GSE61821 dataset, and the AUC value was
83.9% for our model (Figure 6A). In addition, we also
performed prediction for patients with influenza A virus
infection from another dataset GSE101702, and the AUC value
was 84.0% for our model (Figure 6B). To determine whether
bacterial coinfection had an impact on the accuracy of the model,
we added the clinical parameter of bacterial coinfection to our
model to reanalyze. As shown in Figure 6C, the AUC values for
our model were not affected by the parameter (95.0% vs. 95.0%).
A B C

D FE

FIGURE 4 | WGCNA is applied to analyze gene modules. (A) Scale-free fit index and mean connectivity described for various soft-thresholding powers (b).
(B) Color-coded co-expression modules constructed in gene dendrogram. (C) Module–trait relationships. The meaning of each row refers to the corresponding
correlation and p-value. (D–F) GO analysis applied in the DEGs extracted from the midnight blue, salmon, pink, and green yellow modules.
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We also compared the predictive effectiveness of the model in
different time points, and we found it had a better performance
in the early stage of disease (Figure 6C).
DISCUSSION

Statistical models like machine learning trained with high-
throughput expression data have long been employed to
identify molecular signatures in cancer. However, not many
studies have used this method in infectious diseases, and we
are the first to employ it on influenza. To find the key genes
related to the severity of H1N1 disease, we did both DEG and
WGCNA analyses. Then, DEGs were extracted from the
WGCNA modules associated with disease severity and were
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
used for lasso regression to obtain a risk score model of six
genes. The proposed model was also validated, and ROC curve
results suggest that the model was accurate in identifying patients
who may develop severe influenza. We also performed functional
enrichment and CIBERSORT analyses to provide functionally
relevant evidence for the selected genes. Functional enrichment
analysis showed that multiple immune-related pathways were
expressed differently in the mild and severe groups, especially
those related to neutrophils. This is also reflected in the selected
genes, of which four are related to immune responses.

Among the six genes, the one with the largest weight for risk
score was KLRD1. KLRD1 encodes NK cell receptor CD94 and
forms a heterodimer with NKG2 on NK cells and a small portion
of CD8+ T cells (Gunturi et al., 2004). The CD94/NKG2 receptor
functions as an inhibitor or an activator depending on which
A B

C D

FIGURE 5 | Predictive performance of the risk score model. (A) Predicted disease severity of the testing data in the primary cohort. (B) ROC curve analyses of the
risk score model in the testing data. (C) Predicted disease severity of patients in the validation cohort. (D) ROC curve analyses of the risk score model in the
validation cohort.
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isoform of NKG2 is expressed (Glienke et al., 1998; Martinet and
Smyth, 2015). The CD94/NKG2 receptor regulates the effector
function and cell survival of NK and CD8+ T cells, thereby
playing a key role in the innate and adaptive immune responses
to pathogens. As shown in previous studies, most CD8+ T cells
and NK cells expressing high levels of CD94 co-express the
inhibitory subtype NKG2A, which plays a role in blocking
cytotoxicity and simultaneously protects the cells from
apoptosis (Gunturi et al., 2004). Daniel R. Ram et al. have
analyzed the baseline immunization spectrum of volunteers
before vaccination against influenza and found that, after
vaccination, the expression levels of KLRD1 in the peripheral
blood of symptomatic volunteers was lower than that of
asymptomatic patients (Bongen et al., 2018). The baseline
expression level of KLRD1 was negatively correlated with the
severity of symptoms. In the results of our analysis, the
expression levels of KLRD1 in patients with mild disease was
significantly higher than that in patients with severe disease,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
which is consistent with Daniel R. Ram’s study. In addition, the
results of CIBERSORT revealed a higher level of CD8+ T cells in
patients with mild disease. The high expression levels of KLRD1
may help effector CD8+ T cells to survive and thus protect
against influenza. However, because our study did not observe
changes in the expression levels of NKG2, we cannot determine
whether the high expression levels of KLRD1 activate or inhibit
the function of NK cells.

The expression of both KLRD1 and CX3CR1 expression was
inversely related to H1N1 disease severity. CX3CR1 is expressed
on the surface of a variety of immune cells, including myeloid
cells such as monocytes, macrophages, and microglia, as well as
terminally differentiated effector CD8+ T cells and NK cells
(Harrison et al., 1998; Nishimura et al., 2002). In the blood,
CX3CR1 expression is restricted to monocytes (Geissmann et al.,
2003) and mediates the migration and adhesion of monocytes
through interaction with its ligand CX3CL1, which is necessary
for the rapid accumulation of monocytes to dangerous sites to
A B

C

FIGURE 6 | Predictive performance of the model in patients with other types of influenza and the effect of bacterial coinfection and time on the model. (A) ROC
curve analyses of the risk score model for patients with H3N2 from GSE61821. (B) ROC curve analyses of the risk score model for patients with influenza A virus
infection from GSE101702. (C) ROC curve analyses of the risk score model with and without the parameter of bacterial coinfection at different time points. IAV,
influenza A virus; T1, at enrolment; T2, approximately 48h after enrolment; T3, and >4 weeks after enrolment.
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trigger early immune responses (Imai et al., 1997; Imai and
Yasuda, 2016; Hamon et al., 2017). In addition, the CX3CL1-
CX3CR1 complex activates the NF-kB or cyclic adenosine
monophosphate response element binding protein signaling
pathways, promoting the secretion of inflammatory cytokines
(Sheridan and Murphy, 2013). Studies have shown that CX3CR1
plays an important role in the function of memory CD8+ T cells
(Böttcher et al., 2015; Gerlach et al., 2016). CX3CR1+CD8+ T
cells co-express cytotoxic effect molecules (granzyme B and
perforin) and show strong cytotoxicity (Böttcher et al., 2015).
Virus-specific memory CX3CR1+CD8+ T cells increases when
infections are controlled spontaneously or through therapeutic
intervention, but are present in small numbers in chronic
infection states (Böttcher et al., 2015; Desai et al., 2018). In our
results, the CX3CR1 expression levels in patients with severe
H1N1 is significantly lower than those in patients with mild
disease. This result suggests that the dysfunction of blood
monocytes and CD8+ T cells at an early stage may be related
to the worsening of the disease after H1N1 infection.

The other four genes are positively correlated with H1N1
disease severity, and the proteins encoded by MMP8 (matrix
metalloproteinase-8) and PRTN3 (proteinase 3) are related to
neutrophil function. MMP8, also called collagenase 2 or
neutrophil collagenase, is stored as an inactive enzyme in
neutrophil granules, which can be quickly released to the site
of inflammation after neutrophil activation. With its unique
characteristics, MMP8 has been shown to play an important
role in the pathogenesis of respiratory diseases such as acute
respiratory distress syndrome or acute lung injury (Fligiel et al.,
2006), COPD (Vernooy et al., 2004), interstitial lung disease
(Choi et al., 2002), and hospital-acquired pneumonia (Schaaf
et al., 2008). First, MMP8 is the most potent collagenase to
degrade collagen type I, a major extracellular matrix component
of the lung (Hasty et al., 1987). Second, MMP8 is highly sensitive
to reactive oxygen species, which are often associated with lung
disorders (Saari et al., 1992). In patients, the upregulation of
MMP8 expression is often related to the progression of
inflammatory diseases. These results are also consistent with
our conclusions that high expression levels of MMP8 increased
the risk of H1N1 patients to develop severe disease. PRTN3 is a
neutrophil serine protease family member, which is produced
during neutrophil development in the bone marrow and stored
in azurophil granules of mature neutrophils. It plays a critical
role in killing bacteria and post-translational modification of
cytokines, thereby mediating damage to tissues (Kalupov et al.,
2009; Almansa et al., 2012). Higher expression levels of MMP8
and PRTN3 in patients with severe disease are consistent with the
activation of neutrophil-related immune pathways in the GO
and GSEA analyses.

Both resistin (RETN) and stearoyl-CoA desaturase (SCD) are
molecules that regulate lipid metabolism, and there are few
studies on them in infectious diseases. Limited studies have
shown that RETN is positively related to disease severity of
sepsis (Sundén-Cullberg et al., 2007; Koch et al., 2009), in which
circulating leukocytes increase the expression levels of resistin,
and the latter could contribute to disease severity by regulating
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
the expression levels of ICAM-1 and VCAM-1 in vascular
endothelial cells (Macdonald et al., 2014; Macdonald et al.,
2017). In addition, Lauren Miller et al. showed that resistin
inhibits the oxidative burst of neutrophils by partially reducing
the polymerization of F-actin to block its bactericidal activity
without affecting macrophages or monocytes (Miller et al., 2019).
Therefore, the role of RETN in H1N1 infections may be the
combination of its regulation on different kinds of immune cells.
SCD is a key rate-limiting enzyme in the synthesis of unsaturated
fatty acids with two isoforms (1 and 5) having been identified
(Kim and Ntambi, 1999; Wang et al., 2005). By regulating the
balance between saturated and unsaturated fatty acids, SCD
plays an essential role in a variety of cellular processes,
including l ipid synthesis , hormonal signal ing, and
inflammation (Strable and Ntambi, 2010; Sampath and
Ntambi, 2014; ALJohani et al., 2017). Recent studies have
demonstrated that unsaturated fatty acids play critical roles in
hepatitis C and dengue virus replication (Nguyen et al., 2014;
Gullberg et al., 2018) and an SCD1 inhibitor strongly suppresses
the replication of these viruses (Nio et al., 2016; Hishiki et al.,
2019). Our analysis shows that the high expression levels of SCD
are related to the aggravation of H1N1 disease, but the
correlation coefficient was not high. Further research is still
needed to determine whether SCD is also involved in the life
cycle of the H1N1 virus.

In summary, our analysis of two influenza datasets
demonstrate that neutrophil-mediated immune response may
play an important role in the progression of severe pneumonia
caused by H1N1 infection. The risk score model based on the
expression levels of CX3CR1, KLRD1, MMP8, PRTN3, RETN,
and SCD is a reliable prediction model for early identification of
patients with severe H1N1 disease. And it has the potential to be
used in patients with H3N2 infection.
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