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Abstract

Although it is well established that the neural code representing the world changes at each stage of a sensory pathway, the
transformations that mediate these changes are not well understood. Here we show that self-motion (i.e. vestibular) sensory
information encoded by VIIIth nerve afferents is integrated nonlinearly by post-synaptic central vestibular neurons. This
response nonlinearity was characterized by a strong (,50%) attenuation in neuronal sensitivity to low frequency stimuli
when presented concurrently with high frequency stimuli. Using computational methods, we further demonstrate that a
static boosting nonlinearity in the input-output relationship of central vestibular neurons accounts for this unexpected
result. Specifically, when low and high frequency stimuli are presented concurrently, this boosting nonlinearity causes an
intensity-dependent bias in the output firing rate, thereby attenuating neuronal sensitivities. We suggest that nonlinear
integration of afferent input extends the coding range of central vestibular neurons and enables them to better extract the
high frequency features of self-motion when embedded with low frequency motion during natural movements. These
findings challenge the traditional notion that the vestibular system uses a linear rate code to transmit information and have
important consequences for understanding how the representation of sensory information changes across sensory
pathways.
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Introduction

Multiple representations of the sensory environment are found

across the hierarchical stages of sensory systems [1]. Each of these

representations is defined by the activities of a population of

neurons in response to their afferent inputs. How neurons decode

and then encode sensory information, and the ways in which

neural strategies for coding change across successive brain areas,

remains a central problem in neuroscience. Studies across sensory

systems have shown that representations in higher order brain

areas are more efficient because individual neurons detect specific

features of sensory input [2–5]. Although theoretical studies

predict that more efficient representations are achieved by

nonlinear transformations of afferent input [3,6,7], to date the

nature of these transformations is largely unknown.

If nonlinear transformations mediate a more efficient represen-

tation of the sensory environment across hierarchical stages of

processing, then they should be revealed by experimental

approaches specifically designed to probe nonlinear processing.

Here, we used the vestibular system as a model to address whether

central neurons nonlinearly integrate their afferent inputs in order

to give rise to enhanced feature detection. An advantage of the

vestibular system, which is essential for providing information

about our self-motion and spatial orientation relative to the world,

is that the sensory stimulus is relatively easy to describe.

Conventional wisdom is that early vestibular processing is

inherently linear. This is supported by numerous studies showing

that both afferents and central neurons accurately encode the

detailed time course of horizontal rotational head motion through

linear changes in firing rate over a wide range of frequencies

(reviewed in [8,9]; [10]). Further support for this proposal has

come from the fact that central vestibular neurons linearly

transduce synaptic inputs into changes in firing rate output [11].

Indeed, to date, prior studies have demonstrated remarkable

linearity of vestibular behaviours such as the vestibulo-ocular

reflex [12–15]. However, all these results are at odds with the

expectation that central vestibular neurons achieve more efficient

representations of sensory space through nonlinear transforma-

tions of their afferent input. Such nonlinear transformations could

be advantageous as they would enable vestibular neurons to detect

specific features of natural vestibular stimuli. For instance, it would

be theoretically beneficial that the central vestibular neurons

which mediate vestibulo-spinal reflexes preferentially respond to

unexpected transient stimuli, such as those experienced when

slipping on ice, in order to optimize compensatory postural

responses.

A comprehensive rethinking of the neural code used by the

vestibular system is thus necessary to reveal whether more efficient

representations of the sensory environment emerge in central

vestibular pathways through nonlinear transformations of their
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afferent input. Notably, prior experiments have characterized

early vestibular processing mostly using stimuli that were not

designed to systematically probe nonlinear behaviour (e.g., single

sinewaves and trapezoids) [8–10]. In order to test for the existence

of such nonlinear transformations, it is necessary to compare

neural response to a given stimulus ‘‘A’’ when presented in

isolation to that obtained when the same stimulus was presented

concurrently with another stimulus ‘‘B.’’ If, as suggested by

previous studies, central vestibular neurons respond linearly, then

we would expect that the response to stimulus ‘‘A’’ should not

depend on whether stimulus ‘‘B’’ is present or not (i.e., the

principle of superposition is valid because, by definition, a linear

system must be additive). If, instead, central vestibular neurons

nonlinearly integrate afferent input, we might expect that the

response to stimulus ‘‘A’’ would be altered contingent on the

presence of stimulus ‘‘B.’’

We explicitly investigated how the neural strategy for coding

self-motion changes across the afferent-central neuron synapses by

testing whether central vestibular neurons nonlinearly integrate

their afferent inputs. We found that, unlike afferents, central

vestibular neurons do not obey the principle of superposition

because they displayed strong nonlinear responses when sums of

low and high frequency stimuli were used. Indeed, the response to

low frequency stimuli was strongly attenuated when these were

presented concurrently with high frequency stimuli. Through a

combination of mathematical modeling and analysis, we show how

a static boosting nonlinearity in the input-output relationship can

lead to this effect. Our results force a rethinking of the processing

of self-motion stimuli in early vestibular pathways. We suggest that

nonlinear processing by central vestibular neurons could serve to

enhance their coding range and selectivity to high frequency

transient self-motion.

Results

Central Vestibular Neurons Respond Nonlinearly to Self-
Motion

We tested response nonlinearity in both central vestibular

neurons and afferents by recording their activities in response to a

stimulus when presented in isolation and when presented

concurrently with another stimulus (Figure 1A). During experi-

ments, the animal was comfortably seated on a motion platform

(Figure 1B). We first recorded central vestibular neuron responses

to random noise stimuli with frequency content spanning the

range of natural head rotations (0–20 Hz) [14]. Specifically, we

applied stimuli that spanned two different frequency ranges: low

(0–5 Hz) (Figure 1C, black traces) and high (15–20 Hz) (Figure 1D,

black traces). Both noise stimuli were applied either individually

(Figure 1C,D) or simultaneously (Figure 1E). The neuronal

responses from an example cell to each of these three stimuli are

shown by the red traces in Figure 1C,D,E. We found that, when

both stimuli were applied simultaneously, the response was not

equal to the sum of the responses to each individual stimulus as

would be expected for a linear system. This is because the firing

rate modulation in response to the low frequency stimulus when

presented alone was much larger than that observed when the

high frequency stimulus was presented simultaneously (compare

red traces in Figure 1C,E). In contrast, the firing rate modulation

in response to the high frequency stimulus was comparable

regardless of whether the stimulus was presented alone or in

combination with the low frequency input (compare red traces in

Figure 1D,E). This was reflected in the response power spectrum

(compare red traces in the insets of Figure 1C,E and Figure 1D,E).

To quantify this effect, we computed the response gain in each

condition for our population of central vestibular neurons (see

Materials and Methods). Consistent with previous results [10], the

neuronal gains of central vestibular neurons were higher for high

frequency stimuli (Figure 1F, compare blue and red traces).

However, we found that the population-averaged response gains at

low frequencies were significantly attenuated (,50%) (p,1026,

paired t test, n = 15) when both stimuli are applied simultaneously

(Figure 1F,G). The population-averaged response gains at high

frequencies were, however, unaffected (p = 0.4, paired t test, n = 15)

(Figure 1F,G).

Thus, contrary to the common assumption that early vestibular

processing is essentially linear, the results above establish that

central vestibular neurons respond nonlinearly to sums of low and

high frequency head rotations since the principle of superposition

is violated. Notably, responses to low frequency self-motion are

suppressed in the presence of high frequency self-motion. In

contrast, responses to high frequency self-motion are relatively

unaffected by the presence of low frequency self-motion.

We next asked whether the response nonlinearity that we

observed using gain measures would also be evident when using

information theoretic measures such as the coherence. Unlike gain

measures, coherence measures are computed using the signal-to-

noise ratio and thus take variability into account. This is important

because previous studies have shown that a given neuron can

display qualitatively different frequency tuning depending on

whether gain or coherence measures are used [16–18]. Again, we

found that the principle of superposition was violated. Indeed,

population-averaged coherence values at low frequencies were

significantly lower (,50%) (p,0.001, paired t test, n = 20) when

both noise stimuli were presented simultaneously. In contrast,

population-averaged coherence values at high (15–20 Hz) fre-

quencies were not significantly different (p = 0.87, paired t test,

n = 15) (Figure S1A, S1B, S1C). As expected given that there is a

one-to-one relationship between coherence and mutual informa-

tion measures, comparable results were obtained when computing

the latter (unpublished data). Thus, taken together, our results

using both gain and coherence measures confirm our hypothesis

that central vestibular neurons respond nonlinearly to sums of low

and high frequency stimuli.

Author Summary

Understanding how the coding of sensory information
changes at different stages of sensory processing remains
a fundamental challenge in systems neuroscience. Here we
address this question by studying early sensory processing
in vestibular pathways of monkeys, a system for which
sensory stimuli are relatively easy to describe. Peripheral
vestibular afferents detect and encode head motion in
space to ensure posture and gaze is accurate and stable
during everyday life. In this study, we show that central
vestibular neurons nonlinearly integrate their afferent
inputs, which helps explain the mechanisms that generate
enhanced feature detection in sensory pathways. In
addition, our results overturn conventional wisdom that
early vestibular processing is linear, revealing a striking
boosting nonlinearity that is a hallmark of the first central
stage of vestibular processing. Studies from other sensory
systems have shown that higher-order neurons can more
efficiently detect specific features of sensory input, and
that nonlinear transformations can increase this efficiency.
We suggest that nonlinear integration of afferent input by
central vestibular neurons extends their coding range and
facilitates the detection of natural vestibular stimuli.

Nonlinear Coding in Early Vestibular Processing
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We also tested that these nonlinear responses were not specific

to the noise stimuli used. Indeed, we found that central vestibular

neurons also responded nonlinearly to sums of low and high

frequency sinusoidal stimuli. Indeed, when 3 and 17 Hz sinusoidal

stimuli were applied simultaneously, the response was not equal to

the linear sum of the responses to each individual stimulus (Figure

S2). We note that this is not due to our filtering the spike trains to

obtain the time-dependent firing rate since this effect was also

evident in the power spectra from the unfiltered spike trains

(Figure S3).

Further, the observed nonlinear responses of central vestibular

neurons were not due to trivial nonlinearities such as rectification

(i.e., cessation of firing) or saturation (i.e., the firing rate reaching a

plateau at a finite value) since these were not elicited by the stimuli

used in this study (Figure S4A).

Peripheral Vestibular Afferents Respond Linearly to Sums
of Low and High Frequency Motion

Perhaps the simplest explanation for the nonlinear responses of

central vestibular neurons shown in Figure 1 is that they are

inherited from their afferent input. Peripheral vestibular afferents

display marked heterogeneities in their baseline activity and

response to stimulation. Most notably, regularly discharging

afferents are characterized by low coefficients of variation (CV)

and encode the detailed time course of self-motion as they are

broadly tuned to the behaviourally relevant frequency range (0–

20 Hz). In contrast, irregularly discharging afferents are charac-

terized by higher CVs and detect fast transient changes in self-

motion as they respond preferentially to high frequencies [8,18–

20].

To address whether the nonlinear responses of central vestibular

neurons are inherited from their afferent inputs, we recorded from

single regular and irregular afferents using the same random noise

stimuli. In contrast to their target central vestibular neurons,

neither regular (Figure 2A) nor irregular afferents (Figure 2A)

displayed significant nonlinearities. Indeed, the population-aver-

aged gain values at low frequencies were not significantly altered

by the presence of the high frequency stimulus (regular: p = 0.9,

paired t test, n = 5; Figure 2C; irregular: p = 0.23, paired t test,

n = 10; Figure 2D). Similarly, the population-averaged gain values

at high frequencies were not significantly altered by the presence

of the low frequency stimulus (regular: p = 0.84, paired t test, n = 5;

irregular: p = 0.19, paired t test, n = 10). We note that the applied

stimuli also did not elicit ‘‘trivial’’ nonlinearities in afferents such as

rectification or saturation (Figure S4B,C) and that similar results

were obtained when we instead used the coherence measure

(regular: Figure S1D,E,F; irregular: Figure S1G,H,I). We note that

similar results were observed when using sums of low and high

frequency sinusoidal stimuli (unpublished data). Accordingly,

unlike central neurons, individual afferents do not respond

nonlinearly to sums of low and high frequency stimuli.

We quantified the gain attenuation at low frequencies in the

presence of the high frequency stimulus for both central vestibular

neurons and afferents. While central vestibular neurons displayed

strong and significant attenuation (,50%, p,0.001, signrank test,

n = 15), both regular and irregular afferents instead displayed weak

attenuation (,10%) that was not significantly different from zero

(regular: p = 0.25, signrank test, n = 5; irregular: p = 0.13, signrank

test, n = 10) (Figure 2E). These findings imply that the origin of the

response nonlinearity seen in central neurons is due to nonlinear

integration of afferent synaptic input.

Central Vestibular Neurons Display Nonlinear Responses
to High Frequency But Not Low Frequency Head
Rotations When These Are Applied in Isolation

In order to understand how central vestibular neurons

nonlinearly integrate their afferent input, we next characterized

the relationship between head velocity input and output firing rate

for both afferents and central neurons by plotting one as a function

of the other. The schematic of the approach used is illustrated in

Figure 3A. If the relationship between input head velocity and

output firing rate is linear, then the curve relating the two should

be well fit by a straight line.

We found that the relationships between head velocity stimuli

and peripheral afferent responses were well fit by straight lines.

The population-averaged relationships for low and high frequency

self-motion obtained for afferents are shown in Figure 3B and 3C,

respectively. It can further be seen that these relationships are

comparable when a given stimulus is applied alone and when it is

applied concurrently with the other stimulus (Figure 3B, 3C) (low

frequency: p = 0.93, pairwise t test, n = 15; high-frequency:

p = 0.89, pairwise t test, n = 15), demonstrating that the principle

of superposition applies. This was also seen for single neurons

(insets of Figure S5). Further, these results were observed for both

regular (low frequency: p = 0.59; high frequency: p = 0.58, pairwise

t tests, n = 5) and irregular (low frequency: p = 0.77; high

frequency: p = 0.35, pairwise t tests, n = 10) afferents when

considered separately (Figure S5). Notably, comparison of

Figure 3B and 3C further revealed that the afferent gain (i.e.,

the slope of the input-output relationship) was higher in response

to the high as compared to the low frequency stimulus. This

observation is consistent with previous studies showing that high

frequency head rotations give rise to greater afferent firing rate

modulations (reviewed in [8]).

We next computed the population-averaged relationships for

central vestibular neurons and found that they were well fit by

straight lines when the low frequency stimulus was presented alone

(Figure 3D, solid blue curves). We note that this was also true for

single neurons (Figure S6A, solid blue curve). The head velocity-

neuronal response relationship (solid black curve) was also linear

when low frequency stimulation was applied concurrently with

high frequency stimulation (population average: Figure 3D; single

neuron: Figure S6A, solid black curves). However, in the

combined condition, the slope of the curve (i.e., the gain) was

lower (compare solid black and blue traces in Figures 3D and

S6A). These results are consistent with our previous analysis of

response gain (Figure 1G), thus confirming our earlier findings.

Figure 1. Central vestibular neurons respond nonlinearly to sums of noise stimuli. (A) Vestibular information is transmitted from the
sensory end organs through two types of afferents (regular and irregular) that converge on first order central neurons within the vestibular nuclei. (B)
During the experiment the monkey was comfortably seated in a chair placed on a motion platform. (C–E) The firing rate (red traces) of an example
central vestibular neuron in response to noise stimuli (black traces) whose frequency content spanned 0–5 Hz (C), 15–20 Hz (D), and 0–5 Hz+15–
20 Hz (E). The upper insets show the power spectrum of each stimulus, while the lower insets show the power spectrum of the firing rates (red). (F)
Population-averaged normalized gains curves for central neurons. Note the attenuated response at low frequency (0–5 Hz, arrow). (G) Population-
averaged normalized gains for central neurons. Here and in all subsequent figures, the bands (F) and error bars (G) show 1 SEM. The firing rate
estimates were obtained by convolving the spike trains with a Kaiser filter (see Materials and Methods).
doi:10.1371/journal.pbio.1001365.g001
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In contrast, qualitatively different results were observed for high

frequency head rotations. Notably, we found that the relationships

between head velocity stimuli and central neuron responses were

nonlinear as they were characterized by significantly lower gains

(i.e., the slope of the curve) for head velocities less than 210 deg/s

as compared to those for head velocities greater than 210 deg/s

(p = 0.01, pairwise t test, n = 20). This was seen for both the

population averages (Figure 3E) and single neurons (Figure S6B).

We will henceforth refer to the shape of these curves as a boosting

nonlinearity [21]. Moreover, the relationships obtained for high

frequency head rotations were comparable when the stimulus was

presented alone or concurrently with low frequency head rotations

(p = 0.43, pairwise t test, n = 20) (Figures 3E and S6B, compare red

and black-dashed traces).

Thus, again consistent with our results using gain measures,

central vestibular neuron responses were comparable when high

frequency stimuli were applied alone or concurrently with low

frequency stimuli. Notably, unlike afferents, central vestibular

neurons respond nonlinearly to sums of low and high frequency

stimuli. Moreover, our analysis of their stimulus input–firing rate

output relationships further revealed a boosting nonlinearity

characterized by lower slopes for head velocities less than 210

Figure 2. Afferents respond linearly to sums of noise stimuli. (A, B) Population-averaged normalized gain curves as a function of frequency
for regular (A) and irregular (B) afferents. (C, D) Population-averaged normalized gains for regular (C) and irregular (D) afferents. (E) Population-
averaged attenuation indices for central neurons, regular afferents, and irregular afferents.
doi:10.1371/journal.pbio.1001365.g002
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deg/s as compared to those obtained for head velocities greater

than 210 deg/s. This nonlinearity was only seen when high

frequency stimuli were applied (Figures 3E and S6B).

The Greater Afferent Firing Rate Modulations Elicited by
High Frequency Stimuli Elicit Nonlinear Responses in
Central Vestibular Neurons

Thus far, we have looked at the relationship between head

velocity stimuli and output firing rates for both central neurons

and afferents. We found that afferents responded linearly to both

low and high frequency stimuli. In contrast, central neurons

responded linearly to low frequency stimuli but nonlinearly to high

frequency stimuli. A priori, this effect could be mediated by a

dynamic non-linearity that would be activated exclusively under

high frequency stimulation (e.g., a network-based mechanism such

as feedback input from higher centers). Alternatively, the

nonlinearity might be static in nature (e.g., due to intrinsic

mechanisms such as voltage-gated conductances) and be prefer-

entially elicited by the afferent input due to high frequency

stimulation. Figure 4A illustrates the sequential processing of low

(top) and high (bottom) frequency stimuli when applied in

isolation. It is important to note that, for high frequency

stimulation, the afferent input to central vestibular neurons will

span a greater range (Figure 4A, compare green traces) because

afferents display greater sensitivities (compare Figure 3B,C). As a

result, at the next stage of processing, these larger afferent firing

rate modulations should evoke greater central neuron firing rate

modulations as compared to those evoked by low frequency head

rotations (Figure 4A, compare purple traces). Thus, if the

nonlinearity is static, we predict that (1) the smaller range of

afferent firing rates evoked by low frequency stimulation are

contained in a region for which the central vestibular neuron

input-output relationship is approximately linear, (2) the greater

range of afferent firing rates evoked by high frequency stimulation

extend into a region of the input-output relationship that elicits the

boosting nonlinearity (Figure 4A, VO neuron box), and as a result,

(3) central vestibular neuron output firing rate is then a fixed

function of the afferent input firing rate, regardless of whether low

or high frequency head rotations are applied in isolation.

To test whether the nonlinearity is static or dynamic, we next

experimentally characterized the input-output relationship of

central neurons by plotting their output firing rates as a function

of their afferent input rather than head velocity. Given that central

neurons receive input from many afferents that display significant

heterogeneities (see [8] for review), we obtained an estimate of this

activity by fitting a linear model to previous data (see Materials

and Methods). The input-output relationship obtained for low

frequency stimuli was approximately linear (Figure 4B, blue

curve), confirming our first prediction. In addition, the input-

output relationship obtained for high frequency stimuli displayed a

boosting nonlinearity (Figure 4B, red curve), such that the slope for

afferent inputs less than 90 spk/s was much lower than that for

afferent inputs greater than 90 spk/s (Figure 4B, compare solid

and dashed red curves). Thus, the afferent input–central neuron

output relationship can be approximated by the piecewise linear

function illustrated in Figure 4A, confirming our second predic-

tion. Moreover, we found that both curves overlapped when only

the smaller range of afferent firing rates evoked by low frequency

stimuli was considered (Figure 4B, compare red and blue curves).

Accordingly, this finding confirmed our third prediction that

central vestibular neuron firing rate is a fixed function of the

afferent input firing rate when either low or high frequency head

rotations are applied in isolation. Accordingly, there is a striking

contrast between the results of this analysis and that of our

previous analysis of the relationship between head velocity input

and afferent output. Notably, the head velocity input–afferent

output relationships obtained for low and high frequency

stimulation did not overlap consistently with the known frequen-

cy-dependent sensitivities of afferents (Figure 4B, inset). Thus,

taken together, our results show that central vestibular neuron

responses are characterized by a static nonlinearity that is

primarily elicited by the greater afferent firing rate modulations

caused by high frequency stimuli. We suggest that the intrinsic

properties of central vestibular neurons and/or network interac-

tions within this vestibular pathway underlie this boosting

nonlinearity (see Discussion).

We next plotted the afferent input–firing rate output relation-

ships obtained when low frequency stimulation was applied alone

or concurrently with high frequency stimulation for central

vestibular neurons. We found significantly different slopes in both

conditions (Figure 4C, compare black and blue curves and inset).

Specifically, central vestibular neuron firing rates in response to

afferent firing rates below 110 spk/s were higher when the low

frequency stimulus was applied concurrently with the high

frequency stimulus than when it was applied alone (Figure 4C,

arrow). We also note that, as can be expected from Figure 3E, the

central vestibular neuron input-output relationships obtained

when high frequency stimulation was applied alone or concur-

rently with low frequency stimulation overlapped (Figure 4C, red

and dashed black curves) and did not differ significantly in their

Figure 3. Central vestibular neurons but not afferents display a nonlinear relationship between output firing rate and input head
velocity. (A) Output firing rate as a function of head velocity. The inset shows the instantaneous firing rate and the head velocity stimulus as a
function of time and the various symbols correspond to different values of the head velocity and the corresponding firing rates. If the firing rate is
related linearly to the head velocity stimulus, then the curve relating the two should be well fit by a straight line. The slope of this line is then the
response gain. (B) Population-averaged firing rate response as a function of head velocity for afferents when stimulated with 0–5 Hz noise alone
(solid blue) and concurrently with 15–20 Hz noise (solid black). In both cases, the curves were well fit by straight lines (dashed lines) and largely
overlapped (0–5 Hz alone: R2 = 0.99, slope = 0.70 (spk/s)/(deg/s), y-intercept = 98 spk/s; 0–5 Hz with 15–20 Hz: R2 = 0.99, slope = 0.72 (spk/s)/(deg/s), y-
intercept = 98 spk/s). (C) Population-averaged firing rate response as a function of head velocity for afferents when stimulated with 15–20 Hz noise
alone (solid red) and concurrently with 0–5 Hz noise (long dashed black). Both curves were again well fit by straight lines (short dashed lines) and
largely overlapped (15–20 Hz alone: R2 = 0.99, slope = 1.97 (spk/s)/(deg/s), y-intercept = 102 spk/s; 15–20 Hz with 0–5 Hz: R2 = 0.99, slope = 2.06 (spk/
s)/(deg/s), y-intercept = 102 spk/s). Note, however, the increased slope with respect to panel B. (D) Population-averaged firing rate response as a
function of head velocity for central neurons when stimulated with 0–5 Hz noise alone (solid blue) and concurrently with 15–20 Hz noise (solid black).
In both cases, the curves were well fit by straight lines (dashed lines) although the solid black curve had a lower slope (i.e., gain) than the solid blue
curve (0–5 Hz: R2 = 0.98, slope = 1.56 (spk/s)/(deg/s), y-intercept = 67 spk/s; 0–5 Hz with 15–20 Hz: R2 = 0.87, slope = 0.83 (spk/s)/(deg/s), y-
intercept = 81 spk/s). (E) Population-averaged firing rate response as a function of head velocity for central neurons when stimulated with 15–20 Hz
noise alone (solid red) and concurrently with 0–5 Hz noise (long dashed black). While both curves were similar and largely overlapped, they were not
well fit by straight lines (short dashed lines) that underestimated the firing rate for head velocities ,210 deg/s (15–20 Hz: R2 = 0.64, slope = 2.32 (spk/
s)/(deg/s), y-intercept = 79 spk/s; 15–20 Hz with 0–5 Hz: R2 = 0.27, slope = 2.78 (spk/s)/(deg/s), y-intercept = 79 spk/s). We note that central neurons
did not display rectification since the firing rate was always above zero.
doi:10.1371/journal.pbio.1001365.g003
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Figure 4. Central neurons display a static nonlinear relationship between their output firing rate and their afferent input. (A) Low
(top) and high (bottom) frequency head velocity stimuli (gray) cause smaller and larger changes in afferent firing rate (green), respectively. These
differential changes in afferent firing rate in turn cause differential changes in central neuron firing rate (purple), respectively. Notably, the changes in
afferent firing rate caused by high frequency head velocity stimuli are distributed over a greater range and thus elicit nonlinear responses from VO
neurons, whereas this is not the case for those caused by low frequency head velocity stimuli. Note that the same scales were used for corresponding
panels in the bottom and upper rows. (B) Population-averaged firing rates of central VO neurons as a function of afferent firing rate for low (blue) and
high (red) frequency noise stimuli presented in isolation. Note that the curve obtained for the low frequency stimulus (blue) extends over a smaller
range than that obtained for high frequency (red) stimuli. Further, both curves are linear over the range for which they overlap. Also shown are best
linear fits to the portion of the curve below and above 90 Hz (dashed red lines). As such, the curve can be approximated by a piecewise linear
function. Inset: population-averaged firing rates of afferents as a function of the head velocity stimulus for low (blue) and high (red) frequency noise
stimuli presented alone. (C) Population-averaged firing rates of central VO neurons as a function of afferent input firing rates: (1) for the low
frequency stimulus when presented alone (blue) and concurrently with the high frequency stimulus (solid black); (2) for the high frequency stimulus
when presented alone (red) and concurrently with the low frequency stimulus (dashed black). Note that the curves obtained in response to the high
frequency stimulus when presented alone (red) and when presented concurrently with the low frequency stimulus (dashed black) overlapped before
(Figure 3E) and thus, not surprisingly, also overlap. Note also that only the curve obtained when the low frequency stimulus was presented
concurrently with the high frequency stimulus (solid black) does not overlap with the others. This is because the central VO neuron firing rate is
higher than that obtained for the low frequency stimulus when applied alone for values lesser than 110 Hz. Inset: population-averaged normalized
slopes under all four conditions. The afferent activity was estimated by fitting a linear model to previous experimental recordings from a large
population of afferents (see Materials and Methods).
doi:10.1371/journal.pbio.1001365.g004
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slopes (Figure 4C, inset), which confirms that central vestibular

neurons display a static boosting nonlinearity in response to these

stimuli.

Modeling and Predicting Central Vestibular Neuron
Responses to Sums of Arbitrary Stimuli

Does the static boosting nonlinearity in the input-output

relationship of central vestibular neurons account for their

nonlinear responses to sums of low and high frequency stimuli?

To address this question, we fit the experimentally recorded

central vestibular neuron input-output relationship in response to

afferent input when a given stimulus was presented in isolation.

Since individual central vestibular neurons receive input from a

large heterogeneous population of afferents [8], we estimated their

average activity by fitting a linear model to existing data (see

Materials and Methods). The input-output relationship in response

to this stimulus when another stimulus is presented concurrently

can then be obtained by averaging (see Materials and Methods).

Accordingly, it becomes possible, using this model, to predict the

change in the central vestibular neuron input-output relationship

to a given stimulus when another stimulus is applied concurrently.

Our results show that, when compared to experimental data, this

relatively simple model is surprisingly accurate at predicting the

change in afferent to central neuron input-output relationship to

the low frequency stimulus when the high frequency stimulus is

applied concurrently (Figure 5A, compare solid and dashed

curves). The same model also predicts little change in the input-

output relationship to the high frequency stimulus when the low

frequency stimulus is applied concurrently, consistent with our

experimental results (Figure 5B, compare solid and dashed curves).

Importantly, using this model, we were further able to predict

the relative gain attenuation in response to sums of stimuli with

given intensities and frequencies within the behaviourally relevant

range. It then becomes important to introduce new terminology to

distinguish both stimuli by other means than just their frequency

content, as was done until now. Thus, we will henceforth refer to

one stimulus as the ‘‘signal’’ and to the other as the ‘‘masker.’’

Note that, while the terms ‘‘signal’’ versus ‘‘masker’’ are arbitrary,

this division allows us to focus on the coding of one input (i.e., the

input designated as the signal). Our model shows stronger

attenuation of the response gain to a low frequency signal by

maskers with higher frequency content (Figure 5C). This is

because vestibular afferents display gains that increase as a

function of frequency. Moreover, our model shows stronger

attenuation of the response gain to a given signal by maskers with

higher intensity (Figure 5D). This is because maskers of greater

intensities are more effective at eliciting nonlinear responses from

central vestibular neurons. Thus, although it is not experimentally

feasible to test all combinations of maskers and signals, our model

allows us to make testable predictions of how a static nonlinear

input-output relationship attenuates central vestibular neuron

responses to a given signal in the presence of a masker over the

physiologically relevant range of frequencies and intensities. For

example, our model makes the prediction that a masker with a

given frequency content is equally effective at attenuating the

sensitivity to signals with either low or high frequency content

(Figure 5C).

A Linear-Nonlinear Cascade Model Verifies That Central
Vestibular Neurons Display a Static Boosting Nonlinearity

So far, our data and modeling results show that a static boosting

nonlinearity can explain why central neurons display reduced gain

to low frequency motion when applied concurrently with high

frequency motion. If this is true, then central vestibular neurons

should respond nonlinearly to any stimulus that contains high

frequencies. Moreover, the form of nonlinearity should be stimulus

independent. To test this prediction experimentally, we recorded

from afferents and central vestibular neurons during broadband

noise stimulation and used a more general approach to characterize

their responses. Specifically, we used a linear-nonlinear (LN)

cascade model [22] that is illustrated in Figure 6A (see Materials

and Methods). This model assumes that a neuron’s firing rate at any

instant is a function f of the convolution between the stimulus and an

optimal linear filter (i.e., the linear prediction) [22]. The form of the

function f can then be estimated by plotting the actual firing rate as a

function of the linear prediction (Figure 6A).

We first applied this model to our afferent data and found that

their output firing rates were well predicted by the optimal linear

filter alone as all data points were located close to the identity line

(R2 = 0.99860.001, n = 15) (Figure 6B). This was seen for both

regular (Figure S7A,B) and irregular (Figure S7C,D) afferents.

Notably, the slope of best straight line fit to the curve (Figure 6B,

red line) was not significantly different from unity (p = 0.966,

n = 15, pairwise t test).

Qualitatively different results were obtained for central vestib-

ular neurons. Indeed, we found that their output firing rates were

not well predicted by the optimal linear filter alone (Figure 6C) as

evidenced by significant deviations from the identity line (Figure

S7E,F). Notably, the slope of the best straight line fit to the curve

over the range (0–80 Hz) was significantly lower than the slope of

the best straight line fit to the curve over the range (80–160 Hz)

(p = 0.0014, n = 13, pairwise t test) (Figure 6C, compare red lines).

Additionally, the curve relating the actual firing rate to the linear

prediction in response to broadband noise stimuli closely

resembled the nonlinear input-output relationship obtained in

response to high frequency narrowband noise stimuli (compare

Figures 6C and 3E), which suggests that the frequency filtering

properties of central vestibular neurons are mostly inherited from

afferents. The actual responses were well predicted by the full LN

model (R2 = 0.9460.07, n = 13). We also note that the firing rate

values extrapolated from the best straight line fit to the curve over

the range (80–160 Hz) are negative over the range (0–20 Hz),

while the actual firing rate values are of course positive. We shall

return to this point in the discussion.

Finally, we compared the curves relating the actual firing rate to

the linear prediction for afferents and central vestibular neurons

for different stimuli (i.e., low frequency, high frequency, low+high

frequency, and broadband noise stimuli). The afferent curves

overlapped and were all located close to the identity line (Figure

S8A), confirming that the responses were well fit by linear models.

The curves for central vestibular neurons also overlapped, but

exhibited significant deviations from linearity only for stimuli that

contained high frequencies (Figure S8B). As such, our results using

LN models provide additional strong evidence that central

vestibular neurons indeed display a static boosting nonlinearity

that is preferentially elicited by the greater afferent firing rate

modulations caused by high frequency motion and that their

frequency filtering properties are largely inherited from those of

afferents.

How Does a Static Boosting Nonlinearity Give Rise to
Suppressed Response to Low Frequency Stimuli in the
Presence of High Frequency Stimuli?

Our results above have shown that a static boosting nonlinearity

can indeed account for the nonlinear responses of central

vestibular neurons. Here, we provide an intuitive explanation of

how a static boosting nonlinearity leads to the experimentally

Nonlinear Coding in Early Vestibular Processing
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observed response attenuation to low frequency stimuli when

presented concurrently with high frequency stimuli. First, consider

a piecewise linear input-output relationship between afferent firing

rate and central neuron firing rate such as that illustrated in

Figure 7A. If the afferent input is normally distributed with low

intensity such that it is constrained to the right side of the vertex

(i.e., the point at which the slope suddenly changes), then the

corresponding output firing rate will be linearly related to the

afferent input and thus will also be normally distributed (Figure 7A,

distribution and mean plotted in light purple). This is the situation

when low frequency stimuli are applied in isolation. In contrast, if

a normally distributed afferent input has a greater intensity and

thus spans a greater range of values extending past the vertex (e.g.,

when high frequency stimuli are applied), then the output firing

rate will be a nonlinear function of the input and thus will not be

normally distributed any longer. This is because the output firing

rate distribution has become skewed, thus shifting its mean to

higher values than what would be predicted if the input-output

relationship were linear (Figure 7A, distribution and mean plotted

in dark purple). Notably, the skew in the input-output distribution

Figure 5. A simple model accurately predicts nonlinear central VO neuron responses to sums of low and high frequency stimuli. (A)
Model (solid) and data (dashed) relationships between afferent firing rate and central VO neuron firing rate when the low frequency stimulus was
presented alone (blue) and concurrently with the high frequency stimulus (black). Note that the model accurately reproduces the decrease in slope
seen experimentally as evidenced by the large overlap between the model and data curves (R2 = 0.92). (B) Model (solid) and data (dashed)
relationships between afferent firing rate and VO neuronal firing rate when the high frequency stimulus was presented alone (red) and concurrently
with the low frequency stimulus (black). Note that the model also accurately reproduces the lack of change seen experimentally as the model curves
largely overlap with the experimental ones (R2 = 0.99). (C) % gain attenuation plotted as a function of signal and masker frequency. The stimulus for
which the response is computed is referred to as the signal, while the other stimulus is referred to as the masker. Maskers with higher frequency
content lead to greater gain attenuation. (D) % gain attenuation as a function of masker amplitude and frequency. Maskers of greater amplitude and
frequency lead to greater gain attenuation.
doi:10.1371/journal.pbio.1001365.g005
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will increase as a function of the input distribution intensity

(compare the three distributions in Figure 7B), which in turn will

increase the bias in the mean with respect to what is expected if the

distribution was linear (Figure 7B, inset). We note that, under

experimental conditions, the input intensity will increase when the

head velocity stimulus increases in either intensity or frequency

content.

Why then does a skewed output distribution result in higher

sensitivity to the low frequency stimulus when applied in isolation

than when applied concurrently with the high frequency stimulus?

To answer this question, note that the output firing rate in

response to a given value of the afferent input firing rate caused by

the low frequency stimulus must be averaged over the normal

distribution of values of the high frequency stimulus. This is

because both stimuli are not correlated. For a high value of the low

frequency stimulus (point 1, Figure 7C), the distribution of the

high frequency stimulus spans the linear range of the piecewise

linear input-output relationship. As such, the average output firing

rate in response to this value of the low frequency stimulus when

presented concurrently with the high frequency stimulus is equal

to that obtained when the low frequency stimulus is presented in

isolation. However, this is not the case for lower values of the low

frequency stimulus (points 2 and 3, Figure 7C). Indeed, in these

cases, the distribution of the high frequency input extends past the

vertex. As a consequence, the distribution of output firing rates is

skewed as explained above. The average central vestibular neuron

output in response to low values of the low frequency stimulus is

thus greater than what would be expected if the input-output

relationship were linear. Moreover, the skewness becomes greater

for lower values of the low frequency stimulus (compare the purple

output distributions corresponding to points 2 and 3, Figure 7C),

resulting in a greater bias in the output firing rate. This bias, in

turn, reduces the slope of the input-output relationship between

output and input firing rates when the low frequency stimulus is

Figure 6. A linear-nonlinear (LN) cascade model reveals that central vestibular neurons respond nonlinearly to broadband noise
stimulation. (A) Schematic showing the LN model’s assumptions. The stimulus (left) is convolved with a filter H(t) that is given by the inverse Fourier
transform of the transfer function (f ) in order to generate the linear predicted firing rate (middle). This linear prediction is then passed through a
static function f (which can be linear or nonlinear) to give rise to the predicted output firing rate (right). (B) Population-averaged function f for
afferents. Also shown is the best-fit line (R2 = 0.99860.001, n = 15) (red) whose slope did not significantly differ from unity (p = 0.99, n = 15, pairwise t
test). Inset: population-averaged filter H(t) for afferents. (C) Population-averaged function f for central VO neurons. Also shown are the best-fit straight
lines for the intervals (0–80 Hz) and (80–160 Hz) (red) whose slopes were significantly different from one another (p = 0.0014, n = 13, pairwise t test).
Inset: population-averaged filter H(t) for central VO neurons.
doi:10.1371/journal.pbio.1001365.g006
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Figure 7. Schematic showing how a nonlinear static relationship between input and output can lead to attenuated sensitivity to
sums of low and high frequency stimuli. (A) Input-output relationship showing a vertex (i.e., a sudden change in slope) (black curve). If we
assume that the input is normally distributed with low intensity (i.e., standard deviation) such that all the input values are to the right of the vertex
(light green distribution on x-axis), then the corresponding output distribution will also be normally distributed (light purple distribution on y-axis).
The mean output (light purple circle on y-axis) corresponds to the image of the mean input (dashed purple circle on y-axis; note that the light purple
and dashed purple circles were offset for clarity) as both input and output are linearly related. In contrast, for a higher intensity input that extends
significantly past the vertex (dark green distribution on x-axis), the corresponding output distribution (dark purple on y-axis) is skewed with respect to
the linear prediction (dashed purple on y-axis). The mean output (dark purple circle on y-axis) is thus greater than the linear prediction (dashed purple
circle on y-axis). (Note that here and below, we represented the distributions to have the same maximum value in order to emphasize the fact that we
are changing the standard deviation.) (B) Increasing the input distribution intensity for a given mean (compare red, yellow, and blue distributions)
causes a greater skew in the corresponding output distribution (unpublished data) and thus an increased bias in their means (red, yellow, and blue
dots on the y-axis and inset) as compared to the linear prediction (dashed yellow and blue dots on the y-axis). (C) Shifting the mean of the high
intensity input distribution to the left (compare points 1, 2, and 3 on the x-axis and the inset) makes it extend to the left of the vertex more and more
(compare the green curves on the x-axis), causing greater skewness in the corresponding output distributions (purple curves on the y-axis), which
creates a greater bias in the mean (dark purple points on y-axis) with respect to the linear prediction (light purple points on y-axis). As a result, the
mean output in response to a given value of the low intensity input (points 1, 2, and 3 on the x-axis) when the high intensity signal is present (dark
purple line) has a lower slope (i.e., gain) than when the high intensity signal is absent (light purple line). (D) Shifting the mean of the high intensity
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presented concurrently with the high frequency stimulus, as

compared to that obtained when the low frequency stimulus is

presented in isolation.

Finally, the above argument leads to the crucial question of why

central vestibular neurons display similar sensitivities to high

frequency stimuli when applied in isolation or concurrently with

low frequency stimuli. As illustrated in Figure 7D, low frequency

stimuli will tend to give rise to narrower distributions of afferent

input firing rates and thus smaller biases than high frequency

stimuli because of the high-pass filtering characteristics of afferents

(compare distributions in Figure 7D and 7C, respectively), thereby

leading to smaller attenuations in sensitivity.

Discussion

Summary of Results
What is the neural code used by the brain to represent self-

motion (i.e., vestibular) information? We showed that neurons at

the first central stage of vestibular processing respond nonlinearly

to sums of low and high frequency stimuli. This is because, when

stimuli contained low and high frequency motion components,

responses to the low frequency component were strongly

attenuated. Given that such responses were not observed in

afferents, we hypothesized that this occurs because central

vestibular neurons nonlinearly integrate their afferent inputs.

Computing input-output relationships revealed that afferent firing

rates were related linearly to head velocity in all stimulation

paradigms. In contrast, the relationship between head velocity and

central neuron firing rate was characterized by a significant

boosting nonlinearity for high frequency stimulation. Prior studies

have shown that higher frequency stimuli elicit greater changes in

afferent firing rate than do low frequency stimuli (reviewed in [8]).

We hypothesized that this frequency-dependent afferent response

plays a vital role in establishing the conditions for which central

vestibular neurons will preferentially display nonlinear responses.

We confirmed this hypothesis by plotting the central vestibular

neuron firing rate output as a function of the afferent firing rate

input, and then formulated a model to explain our findings. We

then demonstrated the generality of this model by predicting

neuronal responses to sums of arbitrary stimuli and conclude that

high-pass filtering characteristics displayed by afferents combined

with the nonlinear input-output relationship of central vestibular

neurons underlie their attenuated responses to low frequency

motion when presented concurrently with high frequency motion.

To test that this boosting nonlinearity was indeed static and

preferentially elicited by high frequency stimulation, we used LN

cascade models to predict responses to broadband noise stimula-

tion. We found that central vestibular neuron responses were well

fitted by these models and that the form of the nonlinearity closely

matched that obtained for high frequency narrowband noise

stimulation with our previous analysis, suggesting that the

frequency filtering properties of central vestibular neurons are

mostly inherited from that of afferents. Finally, we provided an

intuitive explanation as to why a static boosting nonlinearity can

lead to the attenuation of the response to low frequency motion in

the presence of high frequency motion. Specifically, the nonlinear

response of central neurons to high frequency motion creates a

skew in the output firing rate distribution, which increases its mean

with respect to what would be expected if the input-output

relationship was linear. This bias in turn decreases the input-

output relationship slope when low frequency motion is presented

concurrently with high frequency motion.

Origins of the Nonlinear Processing in Early Vestibular
Pathways

While our findings confirm that vestibular afferents display

linear responses over a wide frequency range, they further show

the novel result that central vestibular neurons respond non-

linearly to sums of low and high frequency stimuli, since they

violate the principle of superposition. This is surprising given that

previous reports have found that the high conductance state of

neurons in vivo can have a significant influence on their processing

of synaptic input through linearization in their input-output

relations [23–26], which is thought to extend the neuronal coding

range [27]. Our results further show that the nonlinear responses

of central vestibular neurons to sums of low and high frequency

self-motion are caused by a static boosting nonlinearity in their

input-output relationships. This nonlinearity differs from those

(directional asymmetry, soft saturation) described in prior studies

examining the responses of these same neurons [28,29]. We note

that our stimuli were designed as to not elicit ‘‘trivial’’

nonlinearities such as rectification and saturation from both

afferents and central vestibular neurons but that these will indeed

be elicited by high intensity stimuli [30].

What causes the observed boosting nonlinearity in central

vestibular neurons? Our results show that this nonlinearity is static,

and thus support the hypothesis that it is caused by intrinsic

mechanisms such as short-term synaptic plasticity [31], voltage-

dependent conductances [32], or the diversity in the innervations

patterns of regular versus irregular afferent inputs onto central

vestibular neurons [33] rather than network mechanisms such as

nonlinear inhibitory connections within the known recurrent

feedback loops of the vestibular nuclei/cerebellum [34,35]. It is,

however, difficult to determine the exact nature of these

mechanisms for several reasons. (1) Intrinsic mechanisms such as

synaptic conductance, passive membrane properties, and voltage-

gated currents of neurons in the vestibular nuclei have been

primarily been studied in mouse and guinea pig (reviewed in [36])

and not in primates. This is important because previous studies

have shown significant differences in the activities of rodent and

monkey vestibular nuclei neurons in vivo [37]. (2) Most prior

characterizations of intrinsic mechanisms were performed under

in vitro conditions, whereas the integration properties of vestibular

neurons differ significantly in vivo and in vitro [38]. Thus, further

studies involving in vivo intracellular recordings from single

primate central vestibular neurons are needed to uncover the

mechanisms that mediate the observed nonlinearity.

Consequences of Nonlinear Central Vestibular Processing
for Higher Vestibular Pathways and Perception

During everyday activities, such as walking or running, the

predominant frequencies of head rotation and translation are

input distribution to the left (compare points 1, 2, and 3 on the x-axis and the inset) makes the corresponding distributions of the low intensity input
extend to the left of the vertex more and more (green curves on the x-axis), causing greater skewness in the output distribution (purple curves on the
y-axis), which creates a greater bias in the mean (dark purple points on y-axis) with respect to the linear prediction (light purple points on y-axis).
Note, however, that the bias in the mean will be lower than in (C) since the input distributions now have a lower intensity as explained in (B). Thus,
the input-output relationship when the low intensity signal is present (dark purple line) will have a lower slope (i.e., gain) than when the low intensity
signal is absent (light purple line) but the effect will be weaker than in (C).
doi:10.1371/journal.pbio.1001365.g007
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within 0.6–10 Hz in both humans [39–41] and monkeys [14,42].

While significant harmonics up to 15–20 Hz can be present, their

magnitude is generally ,5% of the power found in the

predominant frequency range. Taken together, these findings

indicate that while active head movements cover a wide range of

frequencies, most stimulation occurs at relatively low frequencies.

This then leads to the question: What is the functional significance

of nonlinear integration of afferent input by central vestibular

neurons leading to attenuated responses to the low frequency

components of self-motion?

One possibility is that the relative enhancement of high

frequency power serves to effectively ‘‘whiten’’ (i.e., flatten) the

output power spectrum of sensory neurons during everyday

activities. For example, in vision, natural scenes are typically

described by a spatial frequency amplitude spectrum that

decreases as 1/frequency—or equivalently as a power spectrum

that decreases as 1/frequency2 [43,44]. A widespread view is that

early visual neurons are tuned in such a way as to compensate for

this decrease. Indeed, whitening would serve to equalize the neural

responses across frequencies as originally proposed by Field [43].

Specifically, a neuron tuned to high frequencies would require an

increased response gain to produce the same response as a neuron

tuned to low frequencies (reviewed in [45,46]). This mechanism

bears a striking resemblance to preferential encoding of high

frequency stimuli by central vestibular neurons demonstrated in

the present study. Another possible mechanism that has been

proposed to underlie whitening in the visual system is decorrela-

tion [47], which includes neurons with bandpass tuning curves for

which a portion of the curve rises with frequency. This latter

model is not a likely candidate strategy for early vestibular

processing since vestibular afferents and central neurons are

characterized by high-pass rather than band-pass tuning.

Another possibility, which relates to the argument above, is that

neuronal responses optimize our ability to reflexively respond to

transient unexpected events. In particular, central vestibular

neurons make descending projections to the spinal cord and

mediate the vestibulo-spinal reflexes that ensure stable posture [9].

We note that, to date, the vestibular stimuli experienced during

voluntary activities such as walking and running have primarily

been quantified while subjects locomoted ‘‘in place’’ [39].

However, these studies might have underestimated the frequency

content of natural vestibular stimuli. Indeed, higher frequency

stimuli are experienced during natural locomotion since heel

strikes can produce vibrations with frequencies as high as 75 Hz

[48]. It is likely that these high frequency components are filtered

out as the vibration passes up through the body. Thus, the

enhanced neural responses to high frequency motion could be an

effective coding strategy for countering the biomechanical filtering

properties of the body segments during unexpected postural

perturbations. Indeed, recent studies have demonstrated such

frequency-specific filtering of vestibular-evoked postural responses

in humans [49]. It is also noteworthy that central vestibular

neurons are also much less responsive to active than passive

motion [50,51]. Accordingly, their response selectivity is likely to

optimize our ability to reflexively respond to unexpected transient

events. For example, if standing while riding the metro, or

walking/running, one is likely to experience sudden stops or

unexpected motion for which it is vital to generate compensatory

postural reflexes.

Yet another possibility is that the nonlinear responses of central

vestibular neurons constitute an adaptation mechanism that

preserves the coding of both low and high frequency components

of self-motion by preventing rectification (i.e., a complete cessation

of firing). Specifically, such adaptation would serve to enhance the

coding range by allowing responses to higher stimulus intensities

through gain control. Gain control has been widely observed

across systems and can be caused by multiple mechanisms [52–

55]. Further studies that focus on how central vestibular neurons

adapt to changes in natural self-motion stimuli are needed to

investigate this possibility.

Finally, the central vestibular neurons that were the focus of the

present study make contributions to higher-order vestibular

processing including the computation of self-motion perception,

spatial orientation (reviewed in [56]). However, to date, prior

studies of self-motion perception [57] have focused on responses to

motion containing frequencies ,5 Hz and thus have only probed

the lower portion of the physiologically relevant frequency range

(i.e., 0–20 Hz) [14]. Accordingly, it is unlikely that the nonlinea-

rities observed in the present study would have been significantly

evoked in these studies. Interestingly, several studies have reported

that perceptual responses to low frequency vestibular input are

enhanced by a network property, termed velocity storage, which

functions to lengthen the time constant of the vestibulo-ocular

reflex [58–60]. This mechanism is mediated via reciprocal

connections between the vestibular cerebellum and nuclei, and

its dynamics are encoded in the responses of single central

neurons. Our results predict that central neurons would exhibit

dynamics consistent with velocity storage but that the amplitude of

this effect should be reduced when low and high frequency stimuli

are applied concurrently. Future experiments will be needed to

investigate how the response selectivity of central vestibular

neurons shapes postural responses as well as the perception of

self-motion and spatial orientation.

The Emergence of Feature Extraction: Function and
General Principles Across Systems

As an alternative to the whitening hypothesis mentioned above,

theoretical studies suggest that a common underlying principle of

sensory processing is that the representation of information

becomes more efficient in higher brain centers because neurons

in these areas respond more selectively to specific features of

natural sensory stimuli. This principle, commonly referred to as

‘‘sparse coding,’’ has been investigated in different sensory systems

(see [4] for a review). Some of the most compelling evidence for a

sparse code comes from experiments using stimuli resembling

those which would be encountered during natural vision in

primary visual cortex [61] and area V4 [62]. Parallel findings in

the auditory [63], somatosensory [64], and olfactory [65] systems

have provided further evidence that sensory processing is generally

characterized by an increase in sparseness at higher levels. Here

we focused on understanding the mechanisms underlying integra-

tion of afferent input by central vestibular neurons. While the

linear filtering properties of central vestibular neurons and

afferents were similar, confirming our previous results [10], we

have shown here that a static nonlinearity causes a decreased

response to low frequency stimuli in the presence of high

frequency stimuli in central vestibular neurons but not afferents.

We propose that this decreased response to the low frequency

components of self-motion corresponds to feature detection in that

it enables central vestibular neurons to respond selectively to the

high frequency components. This is consistent with our previous

results showing that individual central vestibular neurons transmit

less information about the detailed time course of the stimulus

than individual afferents [10]. We suggest that this enhanced

feature selectivity displayed by central vestibular neurons could

constitute a signature of sparse coding and that further sparsening

occurs at subsequent levels of processing.

Nonlinear Coding in Early Vestibular Processing
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Our findings also suggest the intriguing possibility that central

vestibular neurons implement gain control through divisive

normalization, similar to that previously shown to occur in the

visual [66], auditory [67], and olfactory [68] systems (see [69] for a

review). In sensory systems for which neurons are tuned to

different features of complex natural stimuli, divisive normaliza-

tion provides an efficient nonlinear coding strategy that can reduce

dependencies between stimulus features. Specifically, when

multiple features are present in a given stimulus, the activity of a

neuron tuned to a given feature is obtained by normalizing the

response to that feature presented in isolation by the summed

activity of neighbouring neurons tuned to the other features. As a

result, an advantage is that divisive normalization effectively

implements sensory gain control such that the neural response to a

given feature is adaptively attenuated when other features are

present. The attenuated response to low frequency head rotations

that we observed in central vestibular neurons when these are

presented concurrently with high frequency head rotations could

be a signature of divisive normalization. Further studies are,

however, needed to fully test this hypothesis and to understand the

functional implications of the relatively negligible attenuation that

was seen for high frequency stimulation.

Finally, our results provide evidence for a nonlinear mechanism

that enables the preferential attenuation of the response to a given

stimulus when multiple stimuli are presented at the same time.

Such responses to stimuli consisting of sums of low and high

frequency components are also seen in other systems and may thus

be a general feature of sensory processing. For example,

simultaneous masking presents some similarities with the effect

described here as the presence of a high frequency sound can

significantly degrade the perception of a low frequency sound [70–

72]. Further, non-classical receptive field stimulation can strongly

attenuate the responses to low but not high frequency input

[61,73]. We hypothesize that mechanisms similar to those

described here might mediate these effects in other systems.

Materials and Methods

Three macaque monkeys (two Macaca mulatta and one Macaca

fascicularis) were prepared for chronic extracellular recording using

aseptic surgical techniques [10,74,75]. All procedures were

approved by the McGill University Animal Care Committee

and were in compliance with the guidelines of the Canadian

Council on Animal Care.

Data Acquisition
The experimental setup and methods of data acquisition have

been previously described for both vestibular afferents [18,19,76]

and vestibular nuclei neurons [10,51]. We used standard

techniques to perform single unit recordings from 18 vestibular

afferents [10,76,77] that innervate the horizontal semicircular

canals and 21 vestibular-only (VO) neurons [10,51,74] in the

medial vestibular nuclei that were sensitive to horizontal rotations.

Resting discharge regularity in afferents was quantified by the

normalized coefficient of variation (CV*) [10,78]. Vestibular

afferents with a CV*,0.15 were classified as regular, whereas

those with a CV*$0.15 were classified as irregular as done

previously [18,19,79]. As such, five afferents were classified as

regular and the remaining 13 were classified as irregular. VO

neurons were classified as either type I or type II depending on

whether they are excited or inhibited by rotations towards the

ipsilateral side, respectively [80]. Nine VO neurons were type I

and 12 were type II. Data from both groups were pooled as no

notable difference was observed when quantifying their responses

to the stimuli used here (unpublished data).

Experimental Design
We used two classes of head velocity stimuli to characterize the

responses of vestibular afferents and central neurons to horizontal

rotations. The first class of stimuli consisted of noise stimuli

characterized by a Gaussian distribution of angular velocities with

zero mean and standard deviation (SD) of 20u/s each lasting 80 s.

We used four different noise stimuli whose frequency content

spanned the frequency range of natural vestibular stimuli (0–

20 Hz) [14]: (1) low-pass filtered Gaussian white noise (8th order

Butterworth, 5 Hz cutoff frequency), henceforth referred to as the

low frequency noise stimulus; (2) band-pass filtered Gaussian white

noise (4th order Butterworth, 15–20 Hz band), henceforth referred

to as the high frequency noise stimulus; (3) the linear sum of the

low and high frequency noise stimuli; and (4) low-pass filtered

Gaussian white noise (8th order Butterworth, 20 Hz cutoff

frequency), henceforth referred to as the broadband noise

stimulus. Our noise stimulation protocol consisted of the low

frequency stimulus by itself, then the high frequency stimulus by

itself, then the linear sum of the two, and finally the broadband

noise stimulus.

The second class of stimuli consisted of single frequency

sinusoidal rotations each lasting 80 s of amplitude 15u/s and

frequencies 3 Hz and 17 Hz, henceforth referred to as the low and

high frequency sinusoidal stimuli, respectively. These frequencies

were chosen because they span the frequency range of natural

vestibular stimuli (0–20 Hz) [14]. Our stimulation protocol

consisted of delivering the low frequency sinusoidal stimulus, then

the high frequency sinusoidal stimulus, and then the linear sum of

the two.

Traditional Linear System Analysis
For the analysis of responses to sinusoidal stimuli s(t), the spike

train from each neuron was converted into a binary sequence r(t)

with a bin width of 1 ms. The value of any given bin was set to 1 if

it contained an action potential and 0 otherwise, as done

previously [18]. This binary sequence was then convolved with a

Kaiser window with cutoff frequency 0.1 Hz above the stimulus

frequency to obtain an estimate of the time dependent firing rate

fmeasured(t) [81,82]. The response gain was then computed by fitting

a first order model ffit(t) = b+g * s(t2td) to the data. Here b is the

bias, g is the gain, and td is the latency, respectively. We used a least

squares regression to find the best fit parameter values that provide

the maximum variance accounted for (VAF) given by 12[var

[ffit(t)2fmeasured(t)]/var(fmeasured(t))]. Here var is the variance and

fmeasured(t) represents the actual firing rate [50,74].

For noise stimuli, the stimulus waveform s(t) was also sampled

with timesteps of 1 ms. The response sensitivity was computed

from the gain G(f) = |Psr(f)/Pss(f)|, where Psr(f) is the cross-

spectrum between the stimulus s(t) and binary sequence r(t), and

Pss(f) is the power spectrum of the stimulus s(t). All spectral

quantities (i.e., power-spectra and cross-spectra) were estimated

using multitaper techniques with 8 Slepian functions [83].

Estimates of gain for low (0–5 Hz) and high (15–20 Hz)

frequencies were obtained by averaging the gain curves G(f)

between 0 and 5 Hz and between 15 and 20 Hz, respectively.

Coherence Measures
We also used the coherence function to measure the neural

response to the noise stimuli used in this study. The coherence is

defined by:
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C(f )~
DPsr(f )D2

Pss(f )Prr(f )
ð1Þ

Here Prr(f) is the power spectrum of the response r(t). Based on the

number of trials and tapers used in this study, the confidence limit

for the magnitude of the coherence being significantly different

from zero at the p = 0.05 level is 0.097 [83,84] and all neurons in

our dataset displayed maximum coherence values that were

greater than 0.097 for at least one of the stimulation protocols.

It is important to note that, unlike the sensitivity G(f), the

coherence is based on the signal-to-noise ratio SNR(f) = C(f)/

[12C(f)] and thus takes neural variability into account [16]. As

such, measuring the response using gain and coherence measures

can sometimes give qualitatively different results [17,18,85]. The

coherence is also related to a lower bound on the mutual

information [86] that measures the amount of information that

can be decoded linearly [87].

Stationarity
We tested that the neural responses to both sinusoidal and noise

stimuli were stationary in the following way. We divided each

recorded neural response r(t) into 4 epochs of length 20 s and

computed the mean firing rate, gain, and coherence in each

epoch. We found that these did not differ significantly from one

another for all neurons in our dataset and all stimuli (p.0.05, one-

way ANOVAs).

Normalization
All gain and coherence measures were normalized in the

following way. The curves in response to the high frequency

stimuli (noise or sinusoidal) were normalized by their values at

17 Hz. The curves in response to low frequency stimuli were also

normalized by these values. The curves obtained in response to the

sum of the low and high frequency stimuli were normalized by

their values at 17 Hz.

Attenuation
We quantified response gain attenuation by:

% attenuation~100 � Gstim,alone{Gstim,together

Gstim,alone

ð2Þ

where Gstim,alone is the gain in response to stimulus ‘‘stim’’ when it

is presented by itself and Gstim,together is the gain in response to

stimulus ‘‘stim’’ when it is presented concurrently with another

stimulus. We also quantified coherence response attenuation by:

% attenuation~100 � Cstim,alone{Cstim,together

Cstim,alone

ð3Þ

where Cstim,alone is the coherence in response to stimulus ‘‘stim’’

averaged over the stimulus’s frequency range when it is presented

by itself and Cstim,together is the coherence in response to stimulus

‘‘stim’’ averaged over the stimulus’s frequency range when it is

presented concurrently with another stimulus.

Input-Output Relationships
We quantified the output as the time varying firing rate, which

was obtained by filtering the response r(t) using a Kaiser filter with

cutoff frequency 5 Hz above the highest frequency contained in

the stimulus input [81]. We then computed the cross-correlation

function between the filtered response and the horizontal head

velocity stimulus s(t) and noted the lag at which it was maximal.

This lag was then used to align the response r(t) with the stimulus

s(t). We then plotted r(t) as a function of s(t) and took the average of

values in bins of 1 deg/s. To quantify whether these curves were

well-fit by a straight line, we performed a linear least-squares fit

over the range 10 to 20 deg/s and computed R2 over the range

230 to 220 deg/s.

Rescaled Input-Output Relationships
We rescaled input-output relationships in order to plot the

output firing rate of VO neurons as a function of the input afferent

firing rate. Because central vestibular neurons receive input from a

heterogeneous population of afferents, we estimate the afferent

input firing rate in the following manner. First, we took the

average gain curves of regular and irregular afferents as a function

of frequency obtained by Sadeghi et al. [19] since this corresponds,

to the best of our knowledge, to the largest dataset on primate

vestibular afferents. We then fit these curves using the following

expression [20,88,89]:

Gest(f )~
A u Tc(1zu T1)

(1zu Tc)(1zu T2)
ð4Þ

where u = 2 p i f. Here Tc and T2 are the long and short time

constants of the torsion–pendulum model of canal biomechanics

and T1 is proportional to the ratio of acceleration to velocity

sensitivity of the afferent response. Similar models have more

recently been shown to provide an accurate description of canal

afferent responses in monkeys [79,90] up to 20 Hz [91], in

chinchillas [88,92] and mice [93]. We used A = 0.428 (spk/s)/

(deg/s), T1 = 0.015 s, T2 = 0.003 s, and Tc = 5.7 s to fit the

average gain curve for regular vestibular afferents [20]. A was

adjusted to match the data of Sadeghi et al. [19] under control

conditions. To fit the average gain curve of irregular afferents, we

used A = 0.765 (spk/s)/(deg/s), T1 = 0.0085 s, T2 = 0.003 s, and

Tc = 5.7 s. A and T1 were adjusted to match the average gain

curve for C and D-irregulars from Sadeghi et al.’s [19] data under

control conditions since C and D-irregulars were encountered with

roughly equal probability [19].

The input afferent firing rate is then given by:

raff (s)~Gaff szbias ð5Þ

Gaff ~
GregzGirreg

2
ð6Þ

where Greg and Girreg are the gains of regular and irregular

afferents averaged over the stimulus’s frequency content, respec-

tively, and Gaff is the average between the two values. We took the

average since about 50% of afferents encountered were regular

and the other 50% were irregular in Sadeghi et al.’s [19] dataset.

We used a bias of 104.30 spk/s, which corresponds to the average

baseline firing rate of the afferent population observed experi-

mentally [19].

Model
Our model assumes that VO neurons display a static input-

output relationship with respect to their afferent input. We

estimated this relationship by fitting a 6th order polynomial to the

Nonlinear Coding in Early Vestibular Processing

PLoS Biology | www.plosbiology.org 16 July 2012 | Volume 10 | Issue 7 | e1001365



input-output relationship obtained experimentally with the high

frequency noise stimulus. As a result, the output firing rate of the

VO neuron is given by:

rVO(raff )~F raff

� �
ð7Þ

where rVO is the VO neuron’s firing rate, raff is the afferent firing

rate, and F is the estimate of the static input-output relationship.

We now consider the input s to consist of two stimuli. We will

refer to one stimulus as the ‘‘signal’’ and to the other as the

‘‘masker.’’ Note that, while the terms ‘‘signal’’ versus ‘‘masker’’ are

arbitrary, this division allows us to focus on the coding of one input

(i.e., the input designated as the signal).

The VO neuron’s response to the signal and masker stimuli is

then given by:

rVO(signalzmasker)~F raff (signalzmasker)
� �

ð8Þ

~F Gaff ,signal signalzGaff ,masker maskerzbias
� �

ð9Þ

where Gaff,signal and Gaff,masker are the afferent gains to the signal and

masker, respectively. These are obtained by averaging the afferent

gains over the signal and masker’s frequency contents, respectively.

In order to obtain the VO neuron’s firing rate as a function of the

signal alone, it is necessary to average over the distribution of

values that can be taken by the masker. As signal and masker are

not correlated, this distribution is equal to the probability

distribution of the masker, which is taken to be normal with

mean 0 and standard deviation smasker, thus:

P(masker)~
1

smasker

ffiffiffiffiffiffi
2p
p e

{ masker2

2smasker ð10Þ

The VO neuron’s firing rate is then given by:

rVO(signal)~SrVO(signalzmasker)Tmasker ð11Þ

~

ðz?

{?

dx rVO(signalzx) P(x) ð12Þ

where x is the masker. The integral was evaluated numerically

using a Riemann sum approximation with binwidth 1 deg/s. This

model can then be used to predict the VO neuron’s input-output

relationship when arbitrary signal and masker stimuli are used. In

order to get some intuition, we expanded F into a Taylor series in

equation (12) to obtain:

r(signal)~SF Gsignal signalzbias
� �

TmaskerzGmaskerF
0

Gsignal signalzbias
� �

SmaskerTmaskerz
G2

masker

2
F 00

Gsignal signalzbias
� �

Smasker2Tmaskerz:::

ð13Þ

where F9 and F0 are the first and second derivatives of F,

respectively. The first term simply corresponds to the firing rate

when no masker is present (i.e., s2
masker~0) and the term

SmaskernTmaskeris equal to the nth order moment of the Gaussian

distribution P(masker). In particular, all moments for n odd are

equal to zero (this comes from the fact that the distribution is

symmetric with respect to its mean) while the second moment is

simply equal to the variance s2
masker. Neglecting all higher order

moments gives:

rVO(signal)~rVO,0(signal)z
s2

maskerG
2
aff ,masker

2
F 00

Gsignal signalzbias
� � ð14Þ

where rVO(signal) is the VO neuron’s firing rate for a given value of

the signal in the presence of the masker and rVO,0(signal) is the firing

rate for the same value of the signal when the masker is absent (i.e.,

s2
mas ker~0). Inspection of equation (14) shows that the masker has

no effect on the output firing rate rVO(signal) if F is a linear function,

as we then have F0(x) = 0 for any x. Further, the sign of the

correction depends solely on the sign of the second derivative since

all other terms are positive. As such, the masker will increase the

average firing rate in response to the signal in regions where F is

convex and decrease it in regions where F is concave. The amount

by which the firing rate increases/decreases grows in magnitude

with the masker variance s2
mas ker but also depends on the gain of

the afferents to the masker Gaff, masker. Since the afferents display

gains that increase as a function of frequency, maskers with higher

frequency content will lead to a greater correction in firing rate

than maskers with lower frequency content for a given variance

s2
mas ker. Equation (14) then allows us to evaluate the percentage

attenuation in gain by taking its derivative and evaluating it at

signal = 0 and substituting the result into equation (2):

% attenuation~{100|

s2

maskerG2

masker
2

F 000 biasð Þ
F 0 biasð Þ ð15Þ

where F- is the third derivative of F.

Linear Nonlinear Cascade Model
We used a linear-nonlinear (LN) cascade model [22] to

characterize the response properties of both afferents and VO

neurons to noise stimuli. This model predicts that a neuron’s firing

rate rpredicted at any instant is a function f of the linear firing rate

rlinear plus the baseline firing rate rbias. The linear firing rate is

obtained by convolving the stimulus with the optimal linear filter

H(t). Thus, we have:

rpredicted (t)~f rlinear(t)ð Þ ð16Þ

rlinear(t)~rbiasz(H � s)(t) ð17Þ

where ‘‘*’’ denotes the convolution operation and H(t) is the inverse

Fourier transform of the transfer function ~HH(f )~Psr(f )=Pss(f ). We

estimated f by plotting the actual firing rate r(t), which was

computed as described above, as a function of the linear prediction

rlinear [22]. To quantify whether these curves were well-fit by a

straight line, we performed a linear least-squares fit over the ranges

80–120 and 100–140 spk/s for central VO neurons and afferents,

respectively. We then computed the R2 over the ranges 217–120

and 20–140 spk/s for central VO neurons and afferents, respec-

tively. In practice, H(t), rbias, and f were all computed using the first
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half of the recorded activity for a given neuron. We then compared

the predicted firing rate rpredicted(t) computed using equation (16)

against the actual firing rate r(t) for the second half of the recorded

activity and quantified the goodness-of-fit of the LN model by

computing R2.

Statistics
Values are reported as mean 6 STD in the text. Error bars or

gray bands represent 1 SEM. Throughout, ‘‘**’’ and ‘‘*’’ indicate

statistical significance using a paired t test at the p = 0.01 and

p = 0.05 levels, respectively. ‘‘NS’’ indicates that the p value was

above 0.05.

Supporting Information

Figure S1 Central VO neurons but not afferents respond

nonlinearly to sums of low and high frequency noise stimuli as

quantified by coherence measures. (A, B) Coherence curves as a

function of frequency for an example VO neuron (A) and averaged

over the population (B). (C) Population-averaged average normal-

ized coherence values for central VO neurons. (D, E) Coherence

curves as a function of frequency for an example regular afferent

(D) and averaged over the population (E). (F) Population-averaged

average normalized coherence values for regular afferents. (G, H)

Coherence curves as a function of frequency for an example

irregular afferent (G) and averaged over the population (H). (I)

Population-averaged average normalized coherence values for

irregular afferents.

(TIF)

Figure S2 Central vestibular neurons respond nonlinearly to

sums of sinusoidal stimuli. (A–C) Example central vestibular

neuron responses to 3 Hz (A), 17 Hz (B), and 3+17 Hz (C)

sinusoidal rotations. The insets show the power spectra of the

input stimuli (black) and output firing rate (red and blue). (D,

E) Comparison between the actual response and that predicted

from a linear system for the same example neuron for the 3 Hz

(D) and 17 Hz (E) components of 3+17 Hz stimulation. (F)

Population-averaged normalized gains for central VO neurons.

Note the gain for 3 Hz is strongly attenuated in the presence of

17 Hz (p,1023, paired t test, n = 11). In contrast, the gain at

17 Hz was not significantly altered by simultaneously present-

ing the 3 Hz stimulus (p = 0.97, paired t test, n = 8). (G)

Population-averaged percentage attenuation at low (3 Hz) and

high (17 Hz) for central neurons. The firing rate estimates were

obtained by convolving the spike trains with a Kaiser filter (see

Materials and Methods).

(TIF)

Figure S3 Analysis of unfiltered spike trains confirms that

central vestibular neurons respond nonlinearly to sums of

sinusoidal stimuli. (A–C) Spike train power spectra for the same

example central VO neuron shown in Figure S2 to 3 Hz (A),

17 Hz (B), and 3+17 Hz (C) sinusoidal rotations. Note that the

power at 3 Hz was lower for 3+17 Hz than for 3 Hz stimulation

and that the power at 17 Hz for 17 Hz stimulation was similar to

that for 3+17 Hz stimulation.

(TIF)

Figure S4 Central VO neurons as well as afferents do not show

rectification and/or saturation when stimulated by the low and

high frequency head rotations used in this study. (A–C) Phase

histograms for an example VO neuron (A), regular afferent (B),

and irregular afferent (C). The solid curves show the best

sinusoidal fits. The dashed lines indicate the mean firing rates.

Note that in no case do the histograms display either saturation or

rectification. The population-averaged percentage of bins in the

phase histograms corresponding to values less than 5% of the

mean was 0 in more than 98% of cases, indicating no significant

rectification. This was also true for 3 Hz and 3+17 Hz sinusoidal

rotation (unpublished data) and for all neurons in the population.

The population-averaged Variance-Accounted-For (VAF) of the

sinusoidal fit for all three types of neurons was not significantly

different between the different sinusoidal stimuli (p.0.15, t tests).

This was also true for the noise stimuli (unpublished data).

(TIF)

Figure S5 Afferents display a linear relationship between output

firing rate and input head velocity. (A) Population-averaged firing

rate as a function of head velocity for regular afferents when the

low frequency (0–5 Hz) noise stimulus was applied in isolation

(blue) and concurrently with the high frequency (15–20 Hz) noise

stimulus (black). Inset: firing rate as a function of head velocity for

an example regular afferent. (B) Population-averaged firing rate as

a function of head velocity for regular afferents when the high-

frequency (15–20 Hz) noise stimulus was applied in isolation (red)

and concurrently with the low frequency (0–5 Hz) noise stimulus

(dashed black). Inset: firing rate as a function of head velocity for

the same regular afferent. (C) Population-averaged firing rate as a

function of head velocity for irregular afferents when the low

frequency (0–5 Hz) noise stimulus was applied in isolation (blue)

and concurrently with the high frequency (15–20 Hz) noise

stimulus (black). Inset: firing rate as a function of head velocity

for an example irregular afferent. (C) Population-averaged firing

rate as a function of head velocity for irregular afferents when the

high-frequency (15–20 Hz) noise stimulus was applied in isolation

(red) and concurrently with the low frequency (0–5 Hz) noise

stimulus (dashed black). Inset: firing rate response as a function of

head velocity for the same irregular afferent.

(TIF)

Figure S6 Individual central neurons display nonlinear respons-

es. (A) Firing rate as a function of head velocity for an example

central VO neuron when the low frequency (0–5 Hz) noise

stimulus was applied in isolation (blue) and concurrently with the

high frequency (15–20 Hz) noise stimulus (black). Both curves

were well fit by straight lines (dashed lines). (B) Firing rate as a

function of head velocity for the same example central VO neuron

when the high frequency (15–20 Hz) noise stimulus was applied in

isolation (red) and concurrently with the low frequency (0–5 Hz)

noise stimulus (long dashed black). Note that both curves were not

well fit by straight lines (short dashed lines).

(TIF)

Figure S7 Characterization of central VO neurons and afferents

by LN cascade models. (A) Actual firing rate as a function of the

linear prediction for an example regular afferent. Inset: the filter

H(t) for this same afferent. (B) Population-averaged actual firing

rate as a function of the linear prediction for regular afferents.

Inset: population-averaged filter H(t) for regular afferents. (C)

Actual firing rate as a function of the linear prediction for an

example irregular afferent. Inset: the filter H(t) for this same

afferent. (D) Population-averaged actual firing rate as a function of

the linear prediction for irregular afferents. Inset: population-

averaged filter H(t) for irregular afferents. (E) Actual firing rate as a

function of the linear prediction for an example central VO

neuron. Inset: the filter H(t) for this same VO neuron. (F)

Population-averaged actual firing rate as a function of the linear

prediction for central VO neurons. Inset: population-averaged

filter H(t) for central VO neurons. Throughout, the identity line is

shown in green.

(TIF)
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Figure S8 LN analysis reveals that central vestibular neurons

but not afferents display a static nonlinearity in response to

different self-motion stimuli. (A) Population-averaged actual firing

rate as a function of the linear prediction for afferents in response

to 0–20 Hz noise (green), 0–5 Hz noise (blue), 15–20 Hz noise

(red), and 0–5 Hz+15–20 Hz noise (black). Note that all the curves

are linear and overlap but that the blue curve extends over a

narrower range than all the others. All the curves were further well

fit by straight lines (R2 = 0.99 in all cases). (B) Population-averaged

actual firing rate as a function of the linear prediction for central

VO neurons in response to 0–20 Hz noise (green), 0–5 Hz noise

(blue), 15–20 Hz noise (red), and 0–5 Hz+15–20 Hz noise (black).

Note that all the curves overlap but that the blue curve extends

over a narrower range than all the others. As such, the blue curve

is relatively better fit by a straight line (0–5 Hz: R2 = 0.91; 15–

20 Hz: R2 = 0.58; 0–5 Hz+15–20 Hz: R2 = 0.37; 0–20 Hz:

R2 = 0.62).

(TIF)
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