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Abstract: Ovarian cancer and pregnancy are two states in which the host immune system is exposed
to novel antigens. Indeed, both the tumor and placenta must invade tissues, remodel vasculature to
establish a robust blood supply, and evade detection by the immune system. Interestingly, tumor and
placenta tissue use similar mechanisms to induce these necessary changes. One mediator is emerging
as a key player in invasion, vascular remodeling, and immune evasion: extracellular vesicles (EVs).
Many studies have identified EVs as a key mediator of cell-to-cell communication. Specifically, the
cargo carried by EVs, which includes proteins, nucleic acids, and lipids, can interact with cells to
induce changes in the target cell ranging from gene expression to migration and metabolism. EVs
can promote cell division and tissue invasion, immunosuppression, and angiogenesis which are
essential for both cancer and pregnancy. In this review, we examine the role of EVs in ovarian
cancer metastasis, chemoresistance, and immune modulation. We then focus on the role of EVs in
pregnancy with special attention on the vascular remodeling and regulation of the maternal immune
system. Lastly, we discuss the clinical utility of EVs as markers and therapeutics for ovarian cancer
and pre-eclampsia.

Keywords: extracellular vesicle; exosome; syncytial knot; pregnancy; placenta; ovarian cancer;
invasion; immune modulation; angiogenesis; preeclampsia

1. Introduction

Cancer and pregnancy represent two physiologic states in which immunity must be
modulated for the growth of new tissue expressing novel antigens. Thus, tumor and pla-
centa tissue have both evolved mechanisms to evade host immunity [1,2]. The importance
of immunosuppression in tumor growth has been recognized for several decades leading to
the development of immune checkpoint inhibitors which continue to demonstrate efficacy
in several tumor types [3]. Cancer cells often carry a high mutation burden which can
contribute to the expression of tumor-associated antigens that the adaptive immune system
can recognize and target [4]. Just as malignant cells can express novel antigens, fetal and
placenta tissue are only haploidentical to the mother with the capacity to express antigens
not yet encountered by the maternal immune system. In pregnancies involving gestational
carriers, the carrier shares potentially no genetic background with the fetus but can carry
the fetus to term. If we consider the fetus to be a non-HLA matched tissue graft in this
scenario, we must question how the carrier’s immune system does not reject the fetus
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and allows it to grow to term. A major contributor to this tolerance is the placenta which
inhibits the maternal immune responses much in the same way that tumors suppress host
immunity [5].

Malignant and placenta cells both proliferate rapidly, invade tissues, establish robust
blood supplies, and create a microenvironment which renders immune cells, otherwise
capable of recognizing foreign antigens expressed by these tissues, ineffective at mediat-
ing a response [2]. Like tumor cells, trophoblasts of the placenta upregulate telomerase
and survivin expression to increase cell division while inhibiting apoptosis [6,7]. To in-
vade surrounding tissues or the uterus, tumor cells and trophoblasts decrease E-cadherin
expression and secrete matrix metalloproteases to mediate cell migration. Molecular path-
ways involved in tissue invasion are also shared between tumor cells and trophoblasts
including the JAK-STAT pathway, Rho-associated kinase, MAPKs, PI3K, and SMAD family
proteins [8,9]. Furthermore, both tissues rely on VEGF and mTOR pathways for robust
neoangiogenesis [10,11].

Many studies have demonstrated that tumor and placenta tissue use the same mecha-
nisms to suppress host immunity [2]. Approximately 40% of cells in the decidua are innate
immune cells with uterine NK (uNK) cells making up the majority of immune cells at the
maternal-fetal interface [12]. In contrast to peripheral NK cells, uNK cells do not express
CD16, the FcRγIIIA receptor, meaning that they do not participate in antibody-dependent
cell-mediated cytotoxicity [13,14]. In fact, uNK cells serve a modulatory rather than a
cytotoxic role in pregnancy by inducing differentiation of dendritic cells to a tolerogenic
phenotype [13]. Interestingly, tumor-associated NK cells share these characteristics of uNK
cells allowing tumor cells to persist despite low levels of major histocompatibility complex
I (MHCI) expression [15]. Regulatory T cells (Tregs) are another integral part of immuno-
suppression both within the uterus and systemically during pregnancy. Decreases in Treg
numbers during pregnancy can be associated with spontaneous abortion and pre-eclampsia
which are associated with perinatal and maternal mortality [16–19]. Tregs have long been
identified as drivers of immunosuppression in cancer by inhibiting antigen-specific re-
sponses and inflammation [20]. In pregnancy, T cell function is skewed toward a Treg and
Th2 dominated phenotype by the presentation of antigens in a tolerogenic context [21].
For example, dendritic cells (DCs) are a CD83+ Th2-promoting phenotype which induce
angiogenesis and tolerance in pregnancy [22]. Deficiency of DCs results in resorption
of fetal tissue in murine models even in syngeneic pregnancy in which neoantigens are
absent [23]. It is known that DCs in cancer have a similar phenotype induced by the
secretion of immunosuppressive mediators from the tumor [24]. Tumor and placenta cells
also downregulate the expression of HLA-A, B, and C alleles thus decreasing antigen
presentation altogether [25,26]. This ensures that cells expressing novel antigens are not
detected and targeted for apoptosis while modulation of NK cell activity ensures that cells
with low HLA expression levels are not killed. Instead of MHCI genes, tumor and placenta
tissue express HLA-G which interacts with inhibitory receptors on NK cells and cytotoxic
CD8+ T cells to thwart apoptosis [27–29]. While necessary for a successful pregnancy,
HLA-G expression is associated with poor outcomes in many different cancer types [30,31].
Other well-known inhibitory signals expressed by tumor and placenta cells include FASL,
TRAIL, and B7H1 which can induce lymphocyte death or anergy. Secretion of inhibitory
mediators such as interleukin 10 (IL-10), macrophage migration inhibitory factor (MIF),
and indoleamine 2,3-dioxygenase (IDO) also play a role in immunosuppression in these
two tissues. Through the expression of these surface signals and secreted mediators, tumor
and placenta tissue can inhibit immune cells which may enter the tissue and respond to
new antigens [2].

A newly recognized mediator of angiogenesis, invasion, and immunosuppression
in both pregnancy and cancer is extracellular vesicles (EVs) [32]. EVs are secreted from
all cells of the body and can be found in almost all bodily fluids. These particles can be
divided into different classes based on their compartment of origin within the cell, size,
surface marker expression, and cargo (Figure 1). Large EVs range from 500–2000 nm in
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diameter and include apoptotic bodies from dying cells and syncytial nuclear aggregates
(syncytial knots) from cytotrophoblast syncytialization into syncytiotrophoblasts. These
particles contain chromatin and organelles from the cell of origin [33]. Apoptotic bodies
express phosphatidylserine on their surfaces [34]. Medium EVs are microvesicles which are
derived by budding from the cell membrane. Microvesicles range in size from 50–1000 nm
in diameter and can express surface markers specific to the cell of origin. However, there
are several markers that are used to identify microvesicles regardless of their origin cell
including integrins, selectins, and CD40. Microvesicles contain proteins and nucleic acids
including mRNA, miRNA, and other non-coding RNAs. Lastly, exosomes are the smallest
EVs ranging in size from 40–200 nm in diameter and forming from endosomes which
give rise to multivesicular bodies (MVBs). MVBs are trafficked and sorted through the
endosomal sorting complexes required for transport (ESCRT) pathway with some being
sent to the lysosome for degradation while the contents of others, including exosomes,
are secreted from the cell. Again, the cell of origin determines any specific cargo found
within exosomes; however, their origin from MVBs and trafficking through ESCRT intro-
duces several markers that are shared regardless of cell of origin including Alix, TSG101,
tetraspanins (CD81, CD63, and CD9), and flotillin-1. Exosomes and microvesicles transport
similar cargo [35].
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While apoptotic bodies mediate phagocytosis of dead cell debris [36], recent studies
have demonstrated the role of microvesicles and exosomes in cell-to-cell communica-
tion [37]. Depending on their cargo, these particles can modulate recipient host activity.
Specifically, EVs shed by cancer cells can express markers which modulate immunity and
even interfere with cancer treatment including PD-L1 [38]. Placenta-derived EVs have also
been demonstrated to affect maternal immunity throughout each trimester [39]. In this
review, we highlight the role of EVs in angiogenesis, tissue invasion, and immunosuppres-
sion in ovarian cancer (OC) and pregnancy with a specific focus on how particles shed
from these tissues interact with the immune system.
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2. EVs in Ovarian Cancer
2.1. EVs from Ovarian Cancer Contribute to Metastasis, Establishment of the Premetastatic Niche
and Chemoresistance

Ovarian cancer is the seventh most common cause of cancer death in women and the
leading cause of mortality from gynecologic cancer [40]. Tumors arising from the ovary can
be divided based on the cell type. The majority (90%) of ovarian tumors are derived from
epithelial cells. The remaining 10% which are not of epithelial origin are less invasive. The
majority of epithelial ovarian cancers are serous ovarian cancers with endometroid, clear
cell, mucinous and unspecified tumors making up the remainder [40]. Non-specific signs
and symptoms including pelvic or abdominal pain, early satiety and increased abdominal
size delay diagnosis until later stages of disease.

Anatomically, tumors arising from the ovary are well-positioned to disseminate
throughout the peritoneum causing significant disease burden. Seeding of the peritoneum
and spread through ascitic fluid occurs and contributes to the poor prognosis of ovar-
ian cancer [41]. Therefore, it is imperative to understand the mechanisms of peritoneal
metastasis to develop strategies for early intervention. Recent studies demonstrate that
EVs released from ovarian cancer cells may facilitate the escaping of ovarian cancer cells.
Indeed, vesicles from metastatic type I epithelial ovarian cancer can induce apoptosis
of mesothelial cells which normally create a barrier between the ovaries and abdominal
cavity [42]. EVs derived from ovarian cell lines and primary ovarian tumors deliver mRNA
encoding matrix metallopeptidase 1 (MMP1) which can degrade extracellular matrix com-
ponents and induce activation of Caspase 1 thus triggering apoptosis in receiving cells [43]
(Figure 2). This demonstrates that EVs can deliver cargo which induces apoptosis in barrier
tissues such as the mesothelium enhancing metastasis of ovarian cancer through the ascitic
fluid. Ovarian tumor-derived EVs can also transfer MMP2 and MMP9 proteins to recipient
cells thereby mediating the degradation of extracellular matrix components to allow for
tumor cell migration [44].
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Other studies have demonstrated that epithelial ovarian tumor EVs can transfer CD44
to mesothelial cells thus inducing the epithelial-mesenchymal transition, downregulating
E-cadherin, and inducing MMP9 expression which promotes ovarian cancer invasion and
metastasis through degradation of the extracellular matrix [45]. Transfer of LIN28 by tumor
EVs can induce a metastatic phenotype in previously non-metastatic recipient cells and
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induce the epithelial-mesenchymal transition in co-cultured cells through the expression of
required genes including NOTCH1, WNT5A, NODAL, ZEB1, and SNAI2 [46]. Additionally,
claudin-4 overexpression in ovarian tumor-derived EVs can alter paracellular permeability
to facilitate metastasis [47].

In addition to their direct involvement in metastasis, ovarian cancer EVs are also
involved in the establishment of the premetastatic niche which provides a favorable
microenvironment for initial metastatic cells. Ovarian tumor EVs can convert healthy
fibroblasts to further differentiated cancer-associated fibroblasts (CAFs) which establish an
environment that favors angiogenesis, malignant cell invasion, and tumor growth. CAFs
also secrete factors which remodel the tumor stroma to inhibit immune responses [48,49]
(Figure 2). Induction of fibroblast differentiation to the CAF phenotype, in turn, promotes
tumor cell migration. Specifically, CAFs release exosomes containing TGF-β which triggers
the SMAD signaling cascade leading to increased cell migration [50]. Additionally, several
miRNAs released by ovarian tumor cells, and packaged within exosomes, contribute to the
establishment of the tumor microenvironment. These miRNAs induce tumor cell invasion,
immunotolerance, and mesothelial cell clearance [51]. It has been demonstrated that ascitic
fluid from ovarian cancer patients contains EVs which may promote tumor cell migration
necessary in metastasis by transferring molecules such as CD24 and EpCAM to recipient
cells which are associated with increased tumor invasiveness [52,53].

In addition to late diagnosis and early metastasis, another feature of ovarian can-
cer which contributes to poor prognosis is resistance to chemotherapy [54]. Pathways
to chemotherapy resistance include survival and proliferation of malignant cells with
mutated genes affecting drug targets, drug metabolism, and efflux pumps. EVs have been
demonstrated to play a role in the development of this resistance. Specifically, through the
delivery of miRNAs, EVs can induce the expression of detox enzymes and downregulate
chemotherapy targets [55].

Other studies have demonstrated that treatment of ovarian cancer cells with cisplatin
can induce the release of EVs which act on surrounding cells to increase invasion and drug
resistance [56] (Figure 2). Known as the bystander effect, this phenomenon refers to the
release of EVs from cells under potentially cytotoxic stress such as heat or chemotherapy.
The EVs released from stressed cells can induce a stressed state in cells which have not been
exposed to the stressor [57]. Thus, EVs from ovarian cancer cells treated with cisplatin, but
not untreated controls, are able to alter the phosphorylation state of key signaling proteins
including downregulation of CREB, ERK2, and TOR phosphorylation with upregulation of
JNK, p53, and p38 phosphorylation. These changes in phosphorylation state are associated
with chemotherapy resistance. Specifically, p38 activation has been previously demon-
strated to play a role in chemoresistance. This study also demonstrates how inhibition of EV
uptake can sensitize cells to cisplatin treatment [56]. Thus, EVs from tumor cells exposed
to chemotherapy may be a missing link in the induction of resistance. Furthermore, studies
using ovarian cancer spheroids to model the effects of cancer stem cells demonstrate that
EVs released after treatment with cisplatin can increase the migration of bone marrow
mesenchymal stem cells (MSCs). Subsequently, cisplatin induces secretion of IL-6, IL-8,
and VEGFA from MSCs which induces angiogenesis and increases migration of previously
non-invasive cancer cells [58].

In response to carboplatin therapy, ovarian cancer cells release EVs with miRNA
cargo that mediates chemoresistance and increases malignant cell viability. Specifically,
miR-21-5p alters the metabolism of receiving cells to increase glycolysis and the expression
of adenosine triphosphate (ATP)-binding cassette transporter (ABCB6) and detoxification
enzyme (GSHB). miR-21-3p and miR-891-5p increase the expression of DNA mismatch
repair enzymes and MYC targets thus helping to overcome the deleterious effects of
carboplatin therapy and promote cell cycle progression despite treatment [55].

Lastly, in determining the role of ovarian tumor-derived EVs in angiogenesis, studies
have demonstrated that EVs from ovarian cancer cells transfer miR-141-3p to endothelial
cells. This miRNA upregulates the JAK-STAT3 pathway through decreased expression of
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cytokine-inducible suppressors of cytokine signaling (SOCS)-5. Furthermore, miR-141-3p
has potential roles in the upregulation of VEGFR-2 expression on endothelial cells which
induces endothelial cell migration [59].

2.2. Ovarian Cancer EVs and Immunology

Inhibition of the immune response is key to tumor progression and metastasis in
all cancer types. Immunosuppression in cancer is evident not just within the tumor
microenvironment but also systemically [60]. Specifically, ovarian cancer progression
involves tumor-associated macrophages (TAMs) which stimulate the differentiation and
activity of Tregs to establish a tumor microenvironment that effectively evades the immune
system. Peritoneal tissue from patients with metastatic ovarian cancer demonstrates a
higher level of Tregs than Th17 cells compared to peritoneal tissue from patients with
benign ovarian tumors. In fact, the Treg/Th17 ratio can be used as a prognostic factor for
overall survival in patients with epithelial ovarian cancer [61]. Exosomes have a unique
role to play in this imbalance. Specifically, TAM-derived exosomes can transfer miRNAs
(miR-29a-3p and miR-21-5p) to helper T cells which inhibits STAT3 signaling causing an
imbalance between Tregs and Th17 cells which favors Treg function [61]. Ovarian tumor
cell lines exposed to hypoxic stress secrete exosomes containing miRNAs that promote
STAT3 phosphorylation which induces TAMs to assume a non-inflammatory M2 phenotype
favoring tissue repair and fibrosis [62] instead of antigen presentation.

In addition to tipping this balance between inflammation and immunosuppression,
ovarian tumor-derived EVs induce expansion of Tregs while increasing their inhibitory
activity and survival. This study demonstrated that microvesicles in ovarian cancer ascitic
fluid contain IL-10, TGF-β, and FasL. Co-culture of these microvesicles with CD4+ T cells
induces their differentiation into functional CD4+, CD25+, FOXP3+ Tregs. Thus, whether
through action on macrophages or direct interaction with T cells, tumor-derived EVs are
able to promote Treg expansion, function, and survival [63].

In addition to their modulation of innate immunity through macrophage function,
tumor-derived EVs also act on monocytes. Exosomes from ovarian cancer cells can activate
Toll Like Receptor (TLR) signaling in monocytes leading to IL-6 production. Activation of
STAT3 by IL-6 contributes to the immunosuppressive phenotype of the tumor microenvi-
ronment [64]. At the interface between the adaptive and innate arms of the immune system
are professional antigen presenting cells (APCs) that can present antigen while providing
costimulatory signals to antigen-specific T cells. The most effective APCs are dendritic
cells which can pick up antigens and present them to T cells in the draining lymph node.
Exosomes carrying Arg1 in the ascites and plasma of ovarian cancer patients can also drain
to the lymph nodes where they are taken up by dendritic cells and inhibit antigen-specific
T cell activation [65].

Additionally, ovarian tumor EVs can inhibit NK cell cytotoxicity. Studies demonstrate
that EVs from the malignant ascitic fluid are taken up by NK cells and increase tumor
growth in mouse models. Thus, there is evidence to suggest that ovarian tumor-derived
EVs can prevent tumor cell death through inhibition of NK cells which would normally
detect the decreased MHCI expression on tumor cells as a danger signal [66]. Ovarian
tumor EVs can also have direct cytotoxic effects on T cells thus evading another arm
of immune-mediated cell death. Exosomes carrying FasL not only downregulate the
expression of T cell receptors (TCRs) but activate T cell apoptosis as well. This acts as an
effective mechanism by which tumor cells can suppress antigen-specific responses without
directly interacting with T cells and risking detection. Additionally, exosomes from the
ascitic fluid of ovarian cancer patients can suppress TCR machinery by inhibiting CD3-zeta
and JAK3. Thus, TCRs are rendered non-functional and antigen-specific responses are
inhibited by targeting key signal transduction machinery [67].

Exosomes from ovarian tumors can have a direct effect on T cell activation not only
by inhibiting signal transduction, but also by preventing the translocation of NFκB and
nuclear factor of activated T-cells (NFAT) into the nucleus which is the downstream effect
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of TCR signaling required for T cell activation [68]. These transcription factors increase
the production and secretion of cytokines which act in an autocrine and paracrine manner
to increase T cell activity and survival. For T cells to become activated, these key tran-
scription factors must enter the nucleus where they induce cytokine production and T
cell proliferation. Inhibition of T cell activation seems to be mediated by the expression
of phosphatidylserine on the surface of ovarian tumor-derived EVs [68,69]. Studies have
demonstrated that gangliosides on the surface of exosomes can also prevent T cell activa-
tion. Specifically, ganglioside GD3 on the surface of exosomes isolated from malignant
ascitic fluid inhibits T cell activation through the TCR [70].

Lastly, in addition to the effects of EVs on specific immune cell populations, co-
culture of ascites-derived EVs from ovarian cancer patients with peripheral lymphocytes,
hematopoietic stem cells, and DCs demonstrates that these EVs are able to induce apoptosis
in a variety of peripheral immune cells. This demonstrates that regardless of the mechanism
of action on specific activation and proliferation pathways, tumor-derived EVs can induce
immune cell death [71]. In addition to apoptosis, EVs from peritoneal fluid of patients
with ovarian cancer ascitic fluid increases the expression of immunosuppressive genes in
lymphocytes compared to exosomes from ascitic fluid of patients with ovarian cysts. These
broad effects on immune cell activation can ensure that any lymphocytes in the tumor
microenvironment can become skewed toward an inhibitory phenotype [72].

3. Placenta-Derived EVs in Pregnancy

Extracellular vesicles can be detected in maternal circulation during pregnancy, in-
creasing in concentration as pregnancy progresses and in gestational complications [32].
Current studies demonstrate that EVs from the placenta and fetus can transport cargo to
recipient maternal cells thus playing a necessary role in different gestational processes
including trophoblast migration, placenta implantation, and tissue/vascular invasion
required for placentation [73]. EVs provide a mechanism of communication between ma-
ternal and fetal tissues. For example, epithelial cells from the endometrium treated with
estrogen and progesterone secrete EVs containing proteins involved in implantation such
as fibulin1, laminin-α5, and type XV collagen [74]. Upon uptake of these endometrial EVs,
trophoblast cells demonstrate increased adhesion through activation of the focal adhesion
kinase (FAK) pathway. Similar to tumor-derived EVs, miRNAs also play a role in cell adhe-
sion and invasion. For example, miR-30d from endometrium can increase the expression
of Itgb3, Itga7, and Cdh5 which promote embryo adhesion in mouse models [32].

Within the placenta, three trophoblastic cell types can be found: extravillous cytotro-
phoblasts (EVTs), villous cytotrophoblasts (vCTBs), and syncytiotrophoblasts (STBs). EVTs
are responsible for the invasion of the maternal decidua for implantation and establishment
of vascular connections between maternal and fetal tissue. vCTBs are precursor cells to
STBs which line placental villi. vCTBs fuse and differentiate to form multinuclear STBs
which form the outer surface of the fetal placenta and have specialized functions such as
hormone secretion, transport of nutrients and gases, removal of waste products, and main-
tenance of immune tolerance [75]. STBs are responsible for the shedding of syncytial knots
and represent the primary source of placenta-derived EVs found in maternal circulation,
thus playing a key role in feto-maternal communication [73].

3.1. Role of Placenta-Derived EVs in Vascular Remodeling

As in cancer, angiogenesis and vascular remodeling are crucial parts of implantation
and placenta growth. Specifically, uterine spiral artery remodeling is required for the estab-
lishment of a route between maternal and fetal circulation. This requires the recruitment
of vascular smooth muscle cells to the tissue. Studies have demonstrated that exosomes
from EVT cell lines are involved in vascular remodeling through the delivery of MMPs
to vascular smooth muscle and endothelial cells [76]. EVs from the placenta, including
from EVTs, vCTBs, STBs, and mesenchymal stem cells, promote vascular cell migration
necessary for angiogenesis [77]. Lastly, exosomes from EVTs can increase TNFα production
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by human umbilical vein endothelial cells (HUVECs) when the source cells are grown
under conditions with low oxygen tension. Induction of TNFα was associated with a
miRNA profile specific to EVT grown in hypoxic conditions and caused a decrease in
endothelial cell migration [78].

3.2. Immunomodulatory Activity of EVs in Pregnancy

Similar to tumor tissue, the placenta also sheds EVs which can inhibit inflammation
and recognition of fetal tissue by maternal immune cells. While cancer represents a
globally suppressed immune state, the inflammatory landscape in pregnancy depends on
gestational age [79,80]. Specifically, the first trimester can be associated with inflammation
from implantation of the placenta and the establishment of the fetal-maternal interface.
After this and up to parturition, however, the maternal immune system is suppressed
to allow for the continued growth of the fetus, which expresses antigens encoded by
both maternal and paternal genes [81]. A potential role for EVs in the first trimester
has been demonstrated by examining the proteome of EVs from over 50 first-trimester
placentas [82]. This study isolated EVs from placenta explants and demonstrated an
increase in the expression of proteins involved in vesicular uptake and inflammation
including annexin V, calreticulin, complement proteins, and minor histocompatibility
antigens. Additionally, other studies have demonstrated the expression of FasL on first-
trimester placenta EVs [83,84].

STB-derived EVs dampen immunologic responses which can promote cell death. For
example, they express ligands for inhibitory receptors on NK cells including MIC-A/B
and UL-16 binding proteins. Thus, while STBs do not express MHCI which allows the
placenta to evade detection by maternal T cells recognizing paternal and fetal antigens, they
also evade NK cell death which classically targets cells that have downregulated MHCI
expression [85]. The HLA-null nature of STBs withstanding, these cells can express minor
histocompatibility antigens encoded by paternal genes. Studies have demonstrated that two
such antigens DDX3Y and HA-1 are found on the surface of syncytial nuclear aggregates
where they may induce differentiation of antigen-specific Tregs. Through this mechanism,
EVs play a role in tolerizing maternal immune cells to fetal-specific antigens [86].

As in cancer, a hallmark of immunosuppression in pregnancy is inhibition of the
adaptive immune response. FasL on exosomes released from first-trimester placentas can
induce apoptosis of T cells [83]. Further studies have demonstrated the expression of
FasL on exosomes from term placentas as well. Interestingly, this study demonstrated
the presence of FasL and TRAIL arranged in aggregates on exosome surfaces which can
relay death signals to interacting cells including T cells in vitro [87]. Further skewing T
cell function toward an inhibitory phenotype, EVs released from BeWo cells, a choriocarci-
noma cell line used to model trophoblast cells, promote differentiation of helper T cells to
Tregs and expansion of these anti-inflammatory cells through 10 kDa Heat Shock Protein
expression [88].

While contributing to normal immunosuppression at the fetal-maternal interface in
healthy pregnancy, EVs have also been implicated in complications such as preeclampsia
(PE) (Figure 3). Clinically defined as the onset of hypertension with proteinuria during
pregnancy, PE affects 2–8% of women worldwide every year and is a leading cause of ma-
ternal and fetal morbidity and mortality. While inflammation and defects in angiogenesis
are described in models of PE, the cause(s) of these dysfunctions remains unknown [89].
Recent studies have demonstrated that EVs may have a role in the pathogenesis of PE.
Increased levels of placenta-derived EVs are found in maternal circulation in women with
early-onset or severe PE compared to healthy pregnant controls [90,91]. Placenta-derived
EVs from PE remain in the circulation longer than placenta EVs from a healthy preg-
nancy. This is mediated by the increased expression of anti-phagocytic markers on the
surface of PE placenta-derived EVs such as CD47 with concomitant downregulation of
phosphatidylserine [92].
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Treatment of trophoblasts with PE sera increases the release of large vesicles containing
HMGB1 which is a signal of cell damage that induces sterile inflammation. Thus, these large
particles can activate the endothelium to upregulate ICAM-1 potentially contributing to
inflammation and leukocyte recruitment [93]. Trophoblasts from PE placentas secrete EVs
which contain higher concentrations of miR-141. These EVs can induce T cell proliferation
thus contributing to the shift in immunity toward a pro-inflammatory phenotype associated
with PE [94]. Other miRNAs implicated in PE pathophysiology include miR-548c-5p.
Downregulation of miR-548c-5p in serum EVs increases the secretion of IL-12 and TNF-α
while increasing levels of nuclear NF-κB in macrophages. These inflammatory cytokines
and activation of macrophages promote a shift in immunity to Th1 phenotype [95]. EVs
released by STBs in PE can also activate inflammation. For example, STBs from PE placentas
secrete exosomes which increase the production of superoxide by neutrophils. This effect
may increase the formation of neutrophil extracellular traps (NETs) and is thought to
contribute to the pathologic inflammation described in PE [96].

STB-derived EVs can also interact with monocytes and macrophages in PE. Larger
EVs such as syncytial nuclear aggregates (SNAs or syncytial knots) and apoptotic bodies
induce anti-inflammatory mediators. Specifically, co-culture of macrophages with SNAs
promotes IL-10 secretion and IDO expression thus inhibiting inflammation. Downregula-
tion of MHCII expression on macrophages is also induced and promotes decreased antigen
presentation and T cell activation [97,98].

STB-derived EVs from PE placentas stimulate inflammatory cytokine production by
PBMCs. Specifically, PBMCs secrete IL-1β in response to PE and first trimester EVs but
not healthy, term EVs from STBs. PE STB-derived EVs also heighten cytokine responses to
LPS indicating that EVs play a role in increasing baseline inflammation in PE [99]. A key
feature of PE is the activation of platelets and a pro-coagulant state. EVs from PE placentas
isolated by placental perfusion demonstrate high levels of tissue factor and can stimulate
platelet activation. In this model treatment with aspirin can inhibit STB EV-induced platelet
aggregation. This may provide insights into the efficacy of aspirin in the treatment of
PE [100].

Other EV cargo proteins associated with inhibition of the immune system include
syncytin-2 which is found on the surface of exosomes secreted by villous cytotrophoblasts
(CTBs) and STBs. Encoded by an endogenous retrovirus, syncytin-2 is essential for syn-
cytialization of CTBs to form STBs. Additionally, this protein has an immunosuppressive
domain. Interestingly, levels of syncytin-2 are decreased in PE. The immunosuppressive
domain of syncytin-2 decreases T cell activation and downregulates the production of Th1
cytokines. This study demonstrates that syncytin-2 on the surface of exosomes has the
same effect when EVs are co-cultured with PBMCs. Knockdown of syncytin-2 in EV source
cells ablated this effect demonstrating the role of EV cargo in the systemic immunologic
shift from Th1 to Th2-dominant immunity in pregnancy [101].
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In addition to their roles in immune system inhibition, EVs may also play a role in
delivery by promoting the secretion of inflammatory cytokines such as IL-6 and IL-8 from
maternal cells of the myometrium and decidua. These EVs also induced prostaglandin E2
(PGE2) secretion which promotes myometrial contractions [102].

4. Potent Clinical and Therapeutic Interest of EVs Derived from Ovarian Cancer or
Placental Cells
4.1. EVs as Markers of Pathology

For both OC and PE, markers for early diagnosis are still not available. EVs represent
an attractive diagnostic tool because they can be isolated from blood or other fluids offering
patients a minimally invasive option compared to tissue biopsy. In addition, the lipid
bilayer allows for EVs to package and protect their contents from enzymes found in the
blood and tissues [103].

4.1.1. EVs as Marker of OC

It has been demonstrated that ovarian tumor-derived EV contents differ from healthy
tissue EVs, suggesting that they could be used in the diagnosis of OC or as a prognostic
marker of overall survival [104]. Overexpression of several proteins has been identified in
OC-derived exosomes compared to exosomes derived from healthy ovarian epithelial cells
and may be useful in the diagnosis or prognosis of OC, for review [52,105]. Among these
proteins, epithelial cell surface antigen (EpCAM), CD24, and CA125 have been confirmed
by several different studies [106–108].

In addition to EV protein cargo, miRNA cargo may also be associated with clinical
outcomes in OC. Several miRNAs have been identified as potential biomarkers for OC [109].
Specifically, comparison of miR-21, miR-141, miR200a, miR-200b, miR-200c, miR-203, miR-
205, and miR-214 levels in serum-derived exosomes from healthy (10) and OC (50) patients
demonstrated a significant difference in the level of miRNA expression. Furthermore, these
miRNAs were stable in serum EVs. Together, these results suggest that exosome miRNA
cargo could be used as clinical markers of disease [109].

In contrast, other EV miRNAs could be used as a marker of treatment response in OC.
Analysis of six different miRNAs (let-7e, miR30c, miR-125b, miR-130a, miR-335) found in
OC-derived exosomes demonstrated an upregulation of let-7e in paclitaxel-resistant OC
cells and a downregulation in cisplatin resistant OC cells [110]. Conversely, miR-125b, miR-
30c, miR-130a, and miR-335 were downregulated in all drug-resistant cell lines, suggesting
that these miRNAs could be used as markers of treatment response in OC [110]. In addition
to proteins and miRNA, several other molecules such as phosphatidylserine expressed in
OC vesicles may be useful for OC diagnosis for review [111].

Despite these studies, further research is necessary to identify EV cargo with sufficient
sensitivity and specificity for clinical use. Indeed, all current studies are conducted on small
sample sizes. Nevertheless, EpCAM, CD24, and miR-200b could be promising markers,
alone or in combination with other biomarkers, as they have been confirmed by several
studies. Multicenter clinical trials are still required to validate the effectiveness of EV-based
markers for OC diagnosis or prognosis.

4.1.2. Placenta-Derived EVs as Markers of PE

PE is associated with placental dysfunction and altered circulating placental EVs in
maternal plasma [90,91,112]. This observation has led several groups to investigate the
diagnostic potential of placenta-derived EVs as a biomarker of PE (for review [113]).

These studies suggest that in addition to the observed altered level of placenta-derived
EVs in maternal plasma [90,112,114], specific protein cargo (PLAP, Annexin V, TIMP-1,
PAI-1, or glycosylated form of Siglec-6) [90,91,115,116] or miRNA content (in particular
miR-486-1-5p and miR-486-2-5p) [90] is upregulated in plasma of women with PE and
may be useful for diagnosis. However, the differences in isolation techniques of placenta-
derived EVs, markers for EV subtype identification, and placenta-specific markers to verify



Biomedicines 2021, 9, 1257 11 of 17

the placental origin of EVs limit the development of relevant biomarkers for early diagnosis
of PE.

4.2. Looking Ahead: Therapeutic Roles for EVs

The immune and angiogenesis modulation properties of EVs, the decreased risks
associated with the transplantation of live cells and the lack of ethical concern make
placental-derived EVs promising in regenerative medicine.

Salomon et al. observed that EVs released from placenta-derived MSC can induce
migration and angiogenic capillary-like formation of placental microvascular endothelial
cells, hence suggesting their possible therapeutic role in supporting vasculogenesis and
angiogenesis for tissue repair in the ischemic setting [117].

Since this article, several studies have reported that placenta-derived EVs administra-
tion can suppress inflammatory response and/or promote cell regeneration in a different
preclinical model of diseases such as pulmonary fibrosis [118], hepatic fibrosis [119]; vas-
cular repair [120], kidney regeneration [121], lung repair [122], and Duchenne muscular
dystrophy [123].

In addition to their own roles, EVs are also attractive candidates for drug delivery [124].
Indeed, EVs could be used to introduce miRNA to cancer cells to induce tumour suppressor
genes. As proof of concept, exosomes were purified from primary-cultured omental fibrob-
lasts of OC patients and loaded with a tumor suppressor (TS) miRNA [125]. Treatment
with TS-miRNA-loaded-exosomes increased TS miRNA expression level in OC cell lines,
suppressed the expression of TS-miRNA targets, and decreased cell proliferation and inva-
sion. In xenograft mouse models, treatment with these exosomes also decreased peritoneal
dissemination. Altogether, these studies suggest that miRNA replacement therapy using
exosomes derived from non-malignant cells may be a promising tool for treatment of OC.

Despite the great interest of EVs as a new therapeutic tool in regenerative medicine
and cancer treatment, there are still challenging issues regarding their use. These include
the development of a standardization method for their isolation, storage and administration
route, and the limited information about their effects on tissue behavior.

5. Conclusions and Future Perspective

Many studies have demonstrated the crucial role of EVs in ovarian cancer and preg-
nancy. Trophoblast and OC-derived EVs are involved in cell invasion, migration, angiogen-
esis, and immune modulation. However, if the functions of OC and trophoblast-derived
EVs are similar, their mechanism of action is different.

EVs can provide many opportunities for the development of clinical tests for the
diagnosis and prognosis of OC or PE, or therapeutic tools in regenerative medicine and
cancer treatment. However, many limitations hinder the proper study of EVs as well as
their use as a diagnostic or therapeutic tool. Specifically, the lack of a standardized protocol
for EV isolation prevents consistent comparisons between studies. Many protocols are used
to isolate EVs including centrifugation, precipitation, chromatography-based methods,
immunological separation techniques and microfluidic devices. Different methods create
inconsistencies between studies and prevent rigorous comparison and accurate interpreta-
tion of the current literature. Thus, a standardization of the methods used to isolate EVs is
necessary to establish standards for diagnostic testing. Additionally, an improvement in
the methods to characterize EVs is necessary. Since EVs of different sizes and or different
markers have different functions, it is imperative to know which specific type is being
analyzed for diagnosis or used for therapy. Many technologies are used to characterize
EVs including ELISA, flow cytometry, dynamic light scattering, nanoparticles tracking
analysis, and new technologies such as nano-plasmonic exosome (nPLEX) assay, integrated
magneto-electrochemical exosome (iMEX), ExoCounter, ExoSearch, and Microfluidic affin-
ity separation chip. The development of these last micro- and nano-technologies increased
the sensitivity of EV characterization and isolation and may overcome the technical chal-
lenges limiting the clinical potential of these vesicles in the near future.
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