
1Scientific RepoRts | 6:32057 | DOI: 10.1038/srep32057

www.nature.com/scientificreports

Minimum Copies of Schrödinger’s 
Cat State in the Multi-Photon 
System
Yiping Lu & Qing Zhao

Multi-photon entanglement has been successfully studied by many theoretical and experimental 
groups. However, as the number of entangled photons increases, some problems are encountered, 
such as the exponential increase of time necessary to prepare the same number of copies of entangled 
states in experiment. In this paper, a new scheme is proposed based on the Lagrange multiplier and 
Feedback, which cuts down the required number of copies of Schrödinger’s Cat state in multi-photon 
experiment, which is realized with some noise in actual measurements, and still keeps the standard 
deviation in the error of fidelity unchanged. It reduces about five percent of the measuring time of 
eight-photon Schrödinger’s Cat state compared with the scheme used in the usual planning of actual 
measurements, and moreover it guarantees the same low error in fidelity. In addition, we also applied 
the same approach to the simulation of ten-photon entanglement, and we found that it reduces in 
priciple about twenty two percent of the required copies of Schrödinger’s Cat state compared with the 
conventionally used scheme of the uniform distribution; yet the distribution of optimized copies of the 
ten-photon Schrödinger’s Cat state gives better fidelity estimation than the uniform distribution for the 
same number of copies of the ten-photon Schrödinger’s Cat state.

From fundamental tests of quantum mechanics1 to quantum teleportation, quantum key distribution, and quan-
tum communications2–4, the quantum entanglement has wide applications in different areas. Recently, a single 
photon has been recognized to teleport multiple degrees of freedom simultaneously, which includes spin and 
orbital angular momentum5. Also the Greenberger-Horne-Zeilinger (GHZ) states created in experiment have 
been obtained by combining the momentum and polarization6–10. Several experiments have been performed to 
validate multi-photon entanglement6–8,10–12. In some of these experiments and also in related experiments13–15, an 
indispensable tool is the entanglement witness for certification of entanglement. Generally, the expectation value 
of entanglement witness can be evaluated by fidelity16. The precise estimation of fidelity requires many identical 
copies of the prepared state17. On the other hand, the coincidence count rate of multi-photon entangled states 
decreases exponentially with a linear increase in the number of entangled photons, which is generated by the 
phenomenon of the nonlinear process of parametric down-conversion in BBO18–22. Hence, collecting sufficient 
copies of multi-photon entanglement state costs much longer time, for example, in eight-photon entanglement it 
takes 170 hours to produce the sufficient copies of eight-photon Schrödinger’s cat (SC) state (See the label of Fig. 3  
of ref. 7). Up to now, a study of ten-photon entanglement or more is inaccessible in experiment since the coinci-
dence count rate of ten-photon entanglement state is less than 9 counts per hour7. It needs nearly three months to 
prepare sufficient copies, for example, 110 copies of the ten-photon SC state to certify entanglement according to 
the current technology. (See Appendix “Preparation of Ten-photon SC state”).

Discrimination of a quantum state by adaptive process is developed recently. The adaptive process is to split 
the conventional measurement processes into several pieces and to choose the current measurement suita-
bly based on the results of previous measurements. The standard of selection is to minimize the probability of 
errors23; the probability is estimated by the known information. Generally, when we actually use the adaptive 
process described above we go through two steps: The first step is to get crude information and the second step is 
to rectify it and get a precise density matrix24,25.

In this paper, an efficient method is developed to reduce the number of copies of an unknown state, i.e., 
Schrödinger’s cat state mixed with some noise, to certificate entanglement in the multi-photon experiment. 
Specifically, the conventional measurement is split into several steps. For each step, the optimal distribution of 
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identical copies of the unknown state on different measurement settings (and the least number of copies as a sum 
of all those copies of the unknown state) are calculated by the proposed model. The measurement result from 
previous steps provides the value of parameters for future steps. In our model, the unknown state is supposed to 
be a pure SC state or SC state in the presence of noise. Since the entanglement validation of SC state is through 
fidelity13, the optimization introduces fidelity as a criterion. When fidelity is greater than 0.5, the experimentally 
prepared state is certified to be entangled13. The target of optimization is to search for the minimum number of 
copies of the unknown state that can achieve the error bound of fidelity with small fidelity variation; therefore the 
the interval of fidelity variation can be estimated and the minimum number of copies of state is obtained.

Minimum copies of multi-photon Schrödinger’s Cat state
The experimental n-qubit SC state is denoted by a 2n ×  2n density matrix ρexp. Its fidelity with the pure state |SC〉  
is defined as

ρ ρ= = .F SC SC SC SC SC( ) Tr( ) (1)exp exp exp

To calculate the F SC( )exp , Eq. (1) can be written as
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Now setting entanglement witness operator w as:
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in Eq. (2), we arrive at
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where 〈 w〉  is the expectation of entanglement witness16,26. Hence, Fexp(|SC〉 ) can be calculated by evaluating 〈 w〉 . 
In Eq. (3), |SC〉  〈 SC| is decomposed into the form
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where π σ π σ= +πM k n k ncos( / ) sin( / )k n x y/
10,16. See Appendix “Entanglement Witness” for more details.

The n-qubit SC state requires at least n +  1 settings to calculate fidelity (see Observation 1 in ref. 16). Based on 
Eq. (5), the standard deviation of fidelity is deduced,
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In Eq. (6), tj is the total number of copies of n-qubit entanglement state that projected into the jth measurement 
setting, = + .j n1, 2, , 1  Its value equals to the sum of accumulated n-fold coincidence counts in all different 
bases of the jth setting. Here accidental coincidence count is ignored since it is almost zero when n is large. The P1 
is equal to the summation of two relative frequencies. One relative frequency is the case that all qubits are pro-
jected into horizontal polarizations ⊗H H( ) n, and the other relative frequency is the case that all qubits are 
projected into vertical polarizations ⊗V V( ) n. Here, the meaning of relative frequency is the ratio of the number 
of copies of a state projected into a base to the number of copies of the state measured in the all bases belonging to 
this setting. Similarly, the Pj is the linear combination of relative frequencies of different basis in the jth setting. It 
should be noteworthy that measurement setting means a group of complete basis into which copies of a state are 
projected and relative frequencies gained simultaneously. The details are presented in the appendix “Standard 
Deviation of Fidelity”.

We intend to apply fewer copies of the unknown state to estimate fidelity with same accuracy. Let ε0 denote the 
given upper bound of standard deviation of fidelity since the number of copies of a state relies on it. Our objective 
is to use as few copies of the state as possible, and simultaneously, to narrow down the fidelity to a small interval. 
Therefore, the following model is proposed: for n-qubit SC state, we have
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It should be noted that tj obtained from Eq. (7) is sufficiently large, since the larger tj is, the higher the probability 
the result of Eq. (7) has, which will be discussed in “Characteristics of optimization of the successful probabilities”. 
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Based on numerical results, the solution of Eq. (7) has large tj in most cases and the probability for the above 
model is close to 1. Following is the obtained analytical solution of Eq. (7). Let ε ε=0

2 , then
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The derivation of the Eq. (8) can be found in the section of “Theoretical derivation of minimum copies of 
multi-photon Schrödinger’s Cat state”.

Results
Direct estimation of fidelity for experimental eight-photon SC state and simulated ten-photon 
SC state. The advantage of our method over the existing approaches can be demonstrated by the experiment 
of eight-photon entanglement. When sufficient copies of eight-photon SC state in the presence of noise (ρ8photons) 
are projected into different settings in experiment, fidelity is calculated by total accumulated coincidence counts 
on different basis and then the eight-photon entanglement can be verified7. In this section, our method is to 
change the number of copies of prepared SC state (ρ8photons) measured in different settings. The results show that 
total copies of prepared SC state can be reduced, while fidelity precision remains the same.

Our model is applied to eight-photon entanglement, here n =  8. Let the prepared eight-photon SC state in 
experiment be ρ8photons, which is a SC state mixed with noise. In order to compare the optimized results with the 
experiment, the error bound of fidelity, ε0, is set to 0.016, which is the same value as the one used in experiment7. 
According to entanglement witness, an eight-photon SC state requires at least nine settings to determine fidelity 
uniquely, shown in equation (2) in ref. 7. Let |H〉  denote horizontal polarization and |V〉  denote vertical polariza-
tion. Define + = + θH e V( )/ 2i , − = − θH e V( )/ 2i , then the nine measurement settings are 
defined as
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Furthermore, 1305 copies of ρ8photons are prepared in experiment7. Notice that 1305 is not directly given in 
the ref. 7, but it is used to draw the graphes and calculate fidelity in ref. 7. This number was provided to us by the 
author of that paper. The number can also be roughly calculated by the copies of ρ8photons per hour and the total 
hours spent. That is 9 ×  40 +  9 ×  25 +  9 ×  15 ×  7 =  1544, in which the coincidence counting rate can be found in 
the 11th paragraph of ref. 7 and the hours spent for different settings can be found in the label of Fig. 3 of ref. 7. 
Accidental coincidence count is very small in the eight-photon experiment, therefore it is neglected.

A numerical simulation of experimental 8-photon entanglement using our model is performed. Firstly, a set 
of copies of a quantum state measured at various settings is defined as “distribution of copies”. Three different 
distributions (experimentally applied distribution of copies of ρ8photons, optimal distribution of copies of the state 
obtained from Eq. (8), and uniformity distribution of copies of the state) are considered separately, and compared 
with each other. The number of copies of ρ8photons for each case is listed in Table 1. The first column is the tag of set-
ting. The optimal distribution of the copies of ρ8photons calculated by Eq. (8) is listed in the last column. Obviously, 
the total number of copies of ρ8photons required is cut down to 1253, thus 52 copies of ρ8photons (about 5 percent) are 
saved compared with experiment. Since the coincidence count rate is close to nine (8.88) per hour (in the 11th 
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paragraph of ref. 7), approximately 5.9 hours can be saved in the experiment while keeping the same precision of 
fidelity.

For each case, fidelity can be calculated from new relative frequencies obtained by simulating the experimental 
process in computer according to the truly precise relative frequencies in different settings. In simulation, the 
actual relative frequency is calculated according to Born’s rule. It also requires to know density matrix in this rule. 
Fortunately, the density matrix of ρ8photons can be obtained by experimental data through PhaseLift approach. Its 
detail can be found in section of “optimization of multi-qubit experimental and simulated data via density matri-
ces”. Since summation of the real relative frequency of different bases in a same setting is equal to one, the interval 
between 0 and 1 is divided into 28 sub-intervals and the range for each of the sub-interval is equal to the value of 
the corresponding relative frequency. A random number between 0 and 1 is produced with the equal probability 
for each value between 0 and 1. And the interval it lies in is found, and the number of event for this interval adds 
up to one. After producing random numbers with the number of copies of ρ8photons for the setting, different inter-
val gets a different number of event. Then relative frequencies can be calculated. Subsequently, simulated fidelity 
is obtained. We also divide the fidelity range from 0 to 1 into 50 equal portions. Event number is added to one 
when the calculated fidelity belongs to the corresponding interval. All three situations (experiment, optimization 
and uniformity) are repeated for 550 times separately, which means 550 fidelities are calculated. The number of 
events per interval is accumulated and observed, as shown in Fig. 1. Figure 1a shows that when all 1305 copies of 
ρ8photons are applied, the experimental results give better estimation of fidelity than the uniform distribution since 
the height of the outline for uniform distribution on the vertical axis is lower than the experimental one. The 
outlines for experiment and optimization are also described, which almost coincide with each other. However, 
optimization only costs 1253 copies of the ρ8photons, which is smaller than the 1305 copies of ρ8photons required by 
the experiment, as shown in Fig. 1b. The Fig. 1c demonstrates that optimization is also better than the uniform 
distribution.

At present there is no way to create enough copies of ten-photon SC state to certify entanglement in exper-
iment. Numerical test is produced to estimate fidelity based on a computer created density matrix ρ10photons 
whose fidelity with pure ten-photon SC state is 0.8414. It is carried out in the situation of uniform distribution 
in each setting (100 copies of ten-photon SC state for each setting) and optimization. The process is the same as 
eight-photon entanglement. Both cases are all repeated for 100 times separately, then the distributions of fidelities 
are obtained, as shown in Fig. 2. It is observed that 22.45% copies of simulated ten-photon SC state ρ10photons can 
be saved according to Eq. (8) by comparing with uniform distribution on each setting.

Obviously, the optimization yields a better estimation of fidelity with limited copies of state. The scheme given 
here is useful in certifying the multi-qubit entanglement state and can be generalized to any state by changing the 
form of constraint of Eq. (7).

Optimization of multi-qubit experimental and simulated data via density matrices. In addition 
to the direct estimation of fidelity, we also estimate a density matrix first by phaselift27, and then calculate fidelity.

The model for calculating density matrix is constructed based on the procedures given in refs 28–35; the noise 
case is applied27,36,

∑ ρ

ρ ρ

| − |

≥ =
µ ν

µ ν µ νM fMinimize Tr( )

subject to 0, Tr( ) 1, (10)
,

, ,

Setting Experiment Uniformity Optimization

S8photons,1 352 145 415

S8photons,2 200 145 106

S8photons,3 107 145 103

S8photons,4 100 145 106

S8photons,5 110 145 103

S8photons,6 111 145 108

S8photons,7 106 145 101

S8photons,8 116 145 108

S8photons,9 103 145 103

Summation 1305 1305 1253

Table 1.  Distribution of copies of ρ8photons under different case. The first row represents the number of copies 
of ρ8photons that is the summation of the number of accumulated coincidence counts projected into all the bases 
of the first measurement setting. The following eight rows represent the number of copies of ρ8photons that 
projected into the other eight settings corresponding to θ π π= 0, /8, , 7 /8. The last row is the total cost of 
copies of ρ8photons in the experiment of ref. 7, uniform distribution and our optimization. The second column is 
the cost of number of copies of ρ8photons in the experiment for different setting. The third column represents 
uniform distribution of copies of ρ8photons in each setting. The last column represents the copies of ρ8photons 
obtained in the optimization.
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where ρ is density matrix, Mμ,v is positive operator-valued measures (POVMs) in the μ-th bases of the ν-th set-
ting, fμ,ν is the relative frequency in the μ-th bases of the ν-th setting.

The quantum state tomographies for three, four and eight-photon entanglement are conducted. When putting 
the corresponding experimental frequencies fμ,ν into Eq. (10), the density matrix is calculated out. Our objective is 
to use the least copies of an unknown state to obtain a density matrix close to the real one. The real density matrix 
ρexp is approximately obtained with the use of a large number of copies of the state prepared in experiment. Then, 
ρexp is applied to gain new frequencies according to Born’s rule through the simulation of experiment process on 
computer. These frequencies are applied to obtain the density matrix ρre. Finally many density matrices ρre are 
obtained under different number of copies of the state and compared with the ρexp achieved in the experiment.

Several examples are given below. The density matrix of the three-photon SC state (ρexp_3qubits) is obtained by 
using the experimental data and construction method summarized by Eq. (10) with Pauli measurement, as shown 
in Fig. 3a. The two large elements on the diagonal of the density matrix ρexp_3qubits are equal to 0.50188 for |HHH〉 
〈 HHH| and 0.38419 for VVV VVV . The real parts of two main elements on the anti-diagonal are both 0.37238 
on HHH VVV  and VVV HHH . The imaginary parts are quite small, so are not drawn. The density matrix of 
four-photon SC state (ρexp_4qubits) is also obtained by using experimental data and phaselift, as shown in Fig. 3b. 
The result is obtained by Pauli measurement and Eq. (10). Two large elements on the diagonal of the density 
matrix are equal to 0.50637 for HHHH HHHH  and 0.36161 for VVVV VVVV . The real parts of elements on 
the anti-diagonal are both 0.35944 on HHHH VVVV  and VVVV HHHH . Since the ρexp_3qubits (Fig. 3a) and 
ρexp_4qubits (Fig. 3b) have very small noise and the purity is high, density matrix of three-qubit (ρ3qubits) (Fig. 3c,d) 
with much more noise is created for the following simulation. Two large elements on the diagonal of the density 
matrix are equal to 0.3716 for HHH HHH  and 0.3412 for VVV VVV . The real parts of two main elements on 
the anti-diagonal are both 0.3504 on HHH VVV  and VVV HHH . The corresponding imaginary part is nearly 

Figure 1. (a) The number of events versus fidelities for both experimental distribution and uniform 
distribution. (b) The outlines for experiment and optimization, which almost coincide with each other. 
Optimization only costs 1253 copies of ρ8photons, which is a smaller number than the 1305 copies of ρ8photons 
required by the experiment. (c) The number of events versus fidelities for both optimization distribution and 
uniform distribution.

Figure 2. The distribution of events’ number of fidelity of ten-photon entanglement state (ρ10photons). The 
blue vertical line represents the fidelity between the simulated state ρ10photons and pure ten-photon SC state, 
which equals to 0.8414. Different lines are used to connect adjacent points. Black line represents the optimized 
fidelity distribution and red line represents uniform distribution. It is observed that optimized distribution has 
more events accumulated near the real fidelity at 0.8414 than uniform distribution.
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approach to zero. The density matrix of the eight-photon system (ρ8photons) is also drawn in Fig. 4. Obviously, only 
the real part of elements in four corners of the density matrix are larger than 0.2; other elements are much less 
than it, which is the characteristic of SC state. Besides, the imaginary part is too small; therefore, it is not drawn. 
By the density matrix of Fig. 3a, we reconstructed the ρexp_3qubits under different number of pauli measurement. 
The reconstructed density matrix is ρest. Figure 5 exhibits fidelities and Mean Square Error (MSE) when a different 
number of POVMs is applied. When sampling number of POVMs achieves around 45, fidelity is in a stable value 
(around 0.7) and the corresponding MSE is near 0.

Similarly, the following four measurement settings are defined for three qubits measurement.

Figure 3. Density matrices (ρexp_3qubits, ρexp_4qubits, ρ3qubits). Different colors are applied to represent the value of 
elements of density matrices. (a) The real part of experimental density matrix of three-qubit (ρexp_3qubits). (b) The 
real part of experimental density matrix of four-qubit (ρexp_4qubits). (c) Real part of three-photon density matrix 
(ρ3qubits) by random creation. (d) Imaginary part of three-photon density matrix (ρ3qubits) by random creation. 
The error bound for each element of ρexp_3qubits and ρexp_4qubits is no larger than 0.005.

Figure 4. The real part of experimental density matrix of eight-photon SC state (ρ8photons). Different colors 
are applied to represent the values of the elements of density matrix.
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Two measurement settings in ref. 37, projecting the state into S3qubits,1 and S3qubits,2 used in ref. 37, can also be 
applied to certify entanglement. For the three-qubit SC state, the density matrix (ρ3qubits) are measured in four 
settings or two settings, respectively, and then the fidelity is estimated, as shown in Fig. 6. It shows the distribution 
of number of fidelity between a pure SC state and estimated one when 10000 copies of three-photon SC state 
ρ3qubits are measured. The fidelity between ρ3qubits and pure three-qubit SC state is 0.7068. We use Random to rep-
resent the distribution of − − −500 1000 5000 3500, which represents the number of copies of ρ3qubits prepared in four 
settings, such as 500 is prepared in the S3qubits,1, 1000 is for the setting of S3qubits,2, 5000 for S3qubits,3, and 3500 for 
S3qubits,4. Optimization means − − −3630 2570 2670 1130, in which 3630 copies of ρ3qubits are projected into the setting 
of S3qubits,1, 2570 copies of ρ3qubits are projected into S3qubits,2, 2670 are for the setting of S3qubits,3, 1130 are for the set-
ting of S3qubits,4. “Uniformity” means 2500−2500−2500−2500, which means all four settings are projected with the 
same number of copies of ρ3qubits (2500). “Two setting” means 5000−5000, which represents the number of copy of 
ρ3qubits prepared in two settings, such as 5000 is for S3qubits,1, and 5000 for S3qubits,2. Both two-setting distribution and 
the optimized distribution of copies of ρ3qubits ( − − −3630 2570 2670 1130) give the best estimation of fidelity, while 
the randomized distribution ( − − −500 1000 5000 3500) gives the worst estimation. Christ38 mentioned that a bias 
exists for fidelity estimation when the semi-definite constraint is added to the maximum likelihood approach, and 
this bias is based on density matrix. Here PhaseLift is applied, and there is no obvious bias for fidelity estimation 
when the number of copies of ρ3qubits approaches 10000, as shown in Fig. 6. However, there is an obvious bias when 
the number of copies of ρ3qubits drops to 1000 and the number for the setting of S3qubits,2 is switched into the setting 
of S3qubits,4 in two-setting case, as presented in Fig. 7.

Fidelity estimation is also compared and analyzed in different initial conditions, such as the number of copies 
of ρ3qubits, shown in Fig. 8, which presents 10000 copies of ρ3qubits provide much better estimation of fidelity than 
200 copies of the state. Furthermore, optimization always gives better estimation of fidelity than uniform distri-
bution of copies of ρ3qubits.

Optimization of the number of copies via experimental feedback. Let us note that Pj in Eq. (8) 
should be known before calculating tj, and there is no way to obtain the precise value of Pj without density matrix 
via Born’s rule or experimental measurement. In “Direct estimation of fidelity for experimental eight-photon SC 
state and simulated ten-photon SC state”, we preestimate a density matrix based on the preparation of copies 
experimentally. In “Optimization of multi-qubit experimental and simulated data via density matrices”, we esti-
mate a precise density matrix by PhaseLift. Here, we show how to calculate them through the experiment itself. 
Take eight-photon SC state experiment as an example. In experiment, pure eight-photon SC state is the target 
state that needs to be prepared. It can be taken as a priori to approximately decide Pj, such as P1 is a value near to 

+⊗ ⊗H H SC SC V V SC SCTr(( ) ) Tr(( ) )8 8 ,  and Pj is  near to a value given by Eq.  (32), 
= +j n2, 3, , 1. However, the experimentally prepared state is not pure |SC〉  and it takes too long time to 

estimate Pj precisely, an optimization procedure is proposed based on the experiment. It divides the process of 

Figure 5. Fidelities and MSEs’ of state ρest under different number of POVMs. ρest is the estimated density 
matrix from ρexp_3qubits. The fidelity is calculated by ρ=Fidelity Tr SC SC( )est pure est, . The MSE (Mean Square 
Error) is calculated by ρ ρ ρ ρ= − −

− −

†MSE Tr [( ) ( )]est qubits est qubitsexp 3 exp 3 .
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measurement into a few steps. Instead of measuring one setting for a prolonged time to obtain the frequencies 
within small error margins, and then continue to measure the next setting for the same time, and so on. We 
divided this total long time into several intervals, and changed the order of measurements. The order is to meas-
ure all the required settings one by one for a much shorter time, then based on the measurement results, the Pj can 
be estimated roughly. After that, the extra number of copies of a quantum state that needs to be prepared and 
measured for each setting can be given from Eq. (8) by inputting the rough Pj. Afterwards, more copies of the 
quantum state are prepared and measured according to the tj given. Later on, more precise frequencies can be 
obtained and this process can be repeated until the final precision for fidelity is reached. Figure 9 shows the meas-
urement order when the process is conducted only twice. We simulated this process in computer, which only costs 
a very short period of time, as shown in Fig. 10.

Specifically, the main process is as follows. We introduce a superscript to represent the number of  
steps in optimization. The superscript l of a parameter represents the parameter applied in the l-th step, i.e. ε1 
represents the value ε used in Eq. (8) for the first round of measurement. At the beginning of fidelity  
estimation, ε1 is set to a large number, such as 0.01, and all of Pj are originally set to = =P P 1/2j j

1 , 
=   +j n1, 2, 3, , 1, (Pj

1 can also be chosen according to pure target state |SC〉 , such as P1
1 can be a value close to 

+⊗ ⊗H H SC SC V V SC SCTr(( ) ) Tr(( ) )n n , so that the suitable solution tj
l can be obtained by solving 

Eq. (8). The experiment is performed according to the tj
1 copies of the quantum state. When all tj

1 copies of the 
prepared quantum state are projected into a measurement setting, Pj

2 can be obtained. After that, input Pj
2 instead 

of Pj
1, and have ε1 become smaller; consequently, the tj

2 can be obtained. Then copies of the state with the number 
of −t tj j

2 1 are projected into the jth measurement setting in the second round of experiment, so on and so forth. 
Measurement is ended when εiter is sufficiently small, obvious,

ε ε ε ε ε> > > > > . 

(12)l iter1 2 3

Extra time is needed for optimization; however it is much shorter by comparing with the time required for the 
preparation of copies of multi-photon entanglement state, as shown in Fig. 10. The iteration makes the experiment 

Figure 6. The distribution of fidelities between the target pure SC state and the estimated states under 
different number of copy distribution on different settings. “Random” means the number of event of fidelity 
when distribution of copy of ρ3qubits goes − − −“500 1000 5000 3500”, in which the 500 copies of state ρ3qubits are 
projected into S3qubits,1; 1000 copies of ρ3qubits is projected into S3qubits,2; 5000 copies of ρ3qubits is projected into the 
basis of set of S3qubits,3 and 3500 copies of ρ3qubits is projected into S3qubits,4. Similarly, “Optimization” represents the 
event number of fidelity when distribution of copies of ρ3qubits is − − −“3630 2570 2670 1130”, in which 3630 copies 
of state ρ3qubits are projected into S3qubits,1; 2570 copies of ρ3qubits is projected into S3qubits,2; 2670 copies of ρ3qubits is 
projected into S3qubits,3 and 1130 copies of ρ3qubits is projected into S3qubits,4. “Uniformity” means the distribution is 

− − −“2500 2500 2500 2500”, which represents all is equal to 2500 for the number of copies of state ρ3qubits that 
projected into S3qubits,1, S3qubits,2, S3qubits,3 and S3qubits,4. “Two Setting” represents the both equals to 5000 for the 
copies of ρ3qubits that projected into S3qubits,1 and S3qubits,2. The range of fidelity is split into 250 intervals on average 
between 0 and 1 to compare the event number. Different number of events that fidelity lies into a certain interval 
is gained, such as, if the calculated fidelity is 0.005, then it belongs to the interval between 0.004 and 0.008, the 
number of events belong to this interval is added to 1, and so forth. Fidelity is estimated for 550 times in all four 
situations. Black squares represent the number of events accumulated in each interval for the case of 

− − −“500 1000 5000 3500”; Red circles represent for the case of − − −“3630 2570 2670 1130”; Blue triangles represent 
for the case of − − −“2500 2500 2500 2500” and pink triangles represent for the case of −“5000 5000”. The fidelity 
between pure three-qubit SC state and ρ3qubits is 0.7068. The points are connected by the lines with the same 
color of the points. It is observed that red circles and pink triangles have the most events near this value. 
Therefore both the “Optimization” ( − − −“3630 2570 2670 1130”) and “Two setting” ( −“5000 5000”), perform better 
for the estimation of fidelity. While the black squares for the random one gives the worst estimation.
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have more pauses between different settings during the measurement process. Mostly, switching settings cost 
more time, generally which is about 3 or 4 times of the switching time in conventional measurement. Anyhow the 
time required for optimization is much shorter than that spent on the preparation of the copies of multi-photon 
entanglement state. Generally, switches and optimizations only cost less than two minutes, while the coincidence 
count rate of eight-photon entanglement state is so low that it costs several hours to produce enough copies of the 
state for only one setting. Therefore, the time in calculation and switching time can be neglected compared to the 
preparation of copies of multi-photon entanglement state.

In the following, a specific example is given. Numerical simulation is applied to a four-qubit SC state mixed 
with gaussian noise. The density matrix is ρ4qubits, whose trace is equal to one and satisfies semi-definite condi-
tion. The fidelity between ρ4qubits and pure SC state is 0.9374. In simulation, parameters are chosen as ε1 =  0.01, 
ε2 =  0.001, ε4 =  0.0001, ε4 =  0.00001. The five measurement settings are required and listed as follows:

θ θ θ θ θ θ

θ θ θ π

θ θ θ θ θ θ

θ θ θ π

θ θ θ θ θ θ

θ θ θ π

θ θ θ θ θ θ

θ θ θ π

=

= + + + + − −

− − =

= + + + + − −

− − =

= + + + + − −

− − =

= + + + + − −

− − = .

⊗ ⊗ ⊗

⊗ ⊗

⊗

⊗ ⊗
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All the initial numbers of copies of ρ4qubits for each setting are set at 5. Other initial parameters for 5 measure-
ment settings are set to: P1 =  1/2, P2 =  1/2, P3 =  1/2, P4 =  1/2, P5 =  1/2, respectively. In Fig. 11, the ρ4qubits is taken 

Figure 7. The distributions of fidelities between target pure SC state or experiment ρexp_3qubits and 
estimations obtained from the 1000 copies of ρ3qubits. The cyan vertical line at 0.7068 represents the fidelity 
between ρ3qubits and pure three-qubit SC state. Green vertical line at 0.82274 represents fidelity between 
experiment ρ

− qubitsexp 3  and pure SC state. In the figure, “a” represents the fidelity between the estimation and 
experiment ρ

− qubitsexp 3 . “b” represents the fidelity between the estimation and target pure state. − − −“499 1 1 499” 
represents the distribution of fidelity when 499 copies of ρ3qubits are projected into the bases of S3qubits,1; 1 copy of 
ρ3qubits is projected into the bases of S3qubits,2, 1 copy of ρ3qubits is projected into S3qubits,3 and 499 copies of ρ3qubits are 
projected into S3qubits,4. The number of events of fidelities between estimations and target pure state in this case is 
denoted by pink triangle, pink dashed line is applied to connect them. The number of events of fidelities 
between the estimation and experiment in this case is denoted by blue triangle and blue dashed line is applied to 
connect them. − − −“363 257 267 113” represents fidelity distribution obtained from optimization distribution on 
four settings applied by 1000 copies of experimental three-qubit SC state (ρ

− qubitsexp 3 ) built by Pauli 
measurements. − − −“363 257 267 113” represents 363 copies of ρ3qubits are projected into S3qubits,1, 257 copies of 
ρ3qubits is projected into S3qubits,2, 267 copies of ρ3qubits is projected into S3qubits,3 and 113 copies of ρ3qubits is projected 
into S3qubits,4. Red circles are applied to denote the events of fidelities between the estimations and experiment. 
Red line is applied to connect them. Black squares represent the number of events of fidelity between the 
estimation and target pure state. Black line is applied to connect them. It is observed that − − − −a“363 257 267 113 ” 
performs better for fidelity estimation than − − − −a“499 1 1 499 ”. − − − −b“363 257 267 113 ” performs better than 

− − − −b“499 1 1 499 ”. Therefore, optimization distribution of copies of ρ3qubits performs better than the performance 
of two settings.
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as the test matrix. Its horizontal axis represents the number of iteration, which means the number of the round 
of measurement. The corresponding point is the average number of extra copies of the state ρ4qubits that needs to 
be projected into each setting for the next round of measurement. The curve connects the number of required 
copies of ρ4qubits for each same setting. The error bar is one standard deviation, which is obtained by repeating the 
optimization program for 100 times. When the iteration ends, the Pj is listed in Table 2.

We define R as the ratio of the εl applied in the current round of measurement to the ε −l 1 in the previous round 
of measurement, and let R for different rounds of measurement be equal to each other, that is 

ε ε ε ε ε ε= = = = =−
 R / / /l l2 1 3 2 1 . The different values are tested to search for the best ratio costing the 

least number of copies of a state. Figure 12 shows the number of copies of state randomly created at different R 
when its value is between 0.05 and 0.9. It is observed that the most number of copies is required when the ratio is 
1/2, it increases at a wave type before this value, and decreases after this value. Specifically, the following proce-
dure is conducted. Initially, the number of copies of a randomly created state is an integer between 4 to 7 for each 
setting, P1, P2, , P5 are all randomly given values between 0.25 and 0.75, and ε is 0.01. Then, a fixed R, such as 0.1, 
is applied. It means ε is set to 0.001 in the second round of measurement, 0.0001 in the third round, and so on. 
Eq. (8) is applied to calculate the required copies (tj) of the state for each round measurement. Then tj is summed 
up as the total number of the copies of the state in current round of measurement (∑ tj j). The iteration stops 
when ε is smaller than 0.0003. The minimum number of copies of the state can be found by repeating above steps 
by changing the R. It is found that the R near 0.15 requires the least number of copies of a randomly created state 
(178). The total iteration number for each setting for most created states is about 3 or 4 to achieve the final ε, 
0.0003. It is also noticed that the required number of copies is even less when the R approaches 0.9. However, it is 
not suitable to apply the large value for the ratio ε since too less copies of a state may lead our model to hold with 
a low probability. It will be discussed in the following section.

Figure 8. The distributions of number for events of fidelities between estimations and target pure SC state 
when the fidelities are obtained from the density matrices that are constructed by 200, 1000 and 10000 
copies of ρ3qubits. The black down triangle connected by black solid line represents the number of events of 
fidelities when they are calculated by optimization distribution of total 200 copies of ρ3qubits on all the four 
settings. Purple star connected by dashed line represents the number of events of fidelities when it is calculated 
by uniform distribution of 200 copies of ρ3qubits on all the four settings. Blue up triangle connected by solid line 
represents the number of events of fidelities when it is calculated by optimization distribution of 1000 copies of 
ρ3qubits on all the four settings. Magenta diamond connected by dashed line represents the number of events of 
fidelities when it is calculated by uniform distribution of 1000 copies of ρ3qubits on all the four settings. Olive 
square connected by solid line represents the number of events of fidelities when it is calculated by optimization 
distribution of 10000 copies of ρ3qubits on all the four settings. Red circle connected by short dashed line represents 
the number of events of fidelities when it is calculated by uniform distribution of 10000 copies of ρ3qubits on all the 
four settings. Optimization distribution of 200 copies of ρ3qubits is − − −“73 51 53 23”, which represents the 
distribution of fidelity when 73 copies of state ρ3qubits are projected into S3qubits,1; 51 copies of ρ3qubits is projected 
into S3qubits,2, 53 copies of ρ3qubits is projected into S3qubits,3 and 23 copies of ρ3qubits is projected into the bases of 
S3qubits,4. Similarly, uniform distribution ( − − −“50 50 50 50”), ( − − −“250 250 250 250”), ( − − −“2500 2500 2500 2500”), 
optimization distribution ( − − −“363 257 267 113”) and ( − − −“3630 2570 2670 1130”) all follow the same rule as 

− − −“73 51 53 23”. Namely, the first number is the number of copy of ρ3qubits that projected into the setting of 
S3qubits,1; the second number is the number of copy of ρ3qubits that projected into the S3qubits,2; the third number is the 
number of copy of ρ3qubits that projected into S3qubits,3 and the last number is the copies of ρ3qubits that is projected 
into the bases of S3qubits,4. 10000 copies of ρ3qubits give much smaller error or standard deviation of fidelity than 200. 
Optimization always gives more centralized estimation of fidelity than uniform distribution under the same 
number of copies of ρ3qubits.
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Discussion
Characteristics of optimization of the successful probabilities. It is noticed that the summation of 
number of copies of an unknown state projected into the same setting must be larger than a certain value, since a 
large value can confirm the model to hold with probability close to one.

In the above sections, the minimum number of copies of an unknown state is obtained and its fidelity belongs 
to the interval with the certain high probability. Hoeffding’s inequality is a mathematical way to describe the 
probability. It states that the sample average = ∑X X t/  of t independent, not essentially identical distributed, 
bounded random variables with ∈ =Prob X a b[ [ , ]] 1i i i  for = i t1, 2, ,  satisfies

∑
− ≤ −

≤ − −

Prob X E X h
t h b a

[ [ ] ]
exp[ 2 / ( ) ] (14)i i

2 2 2

for all h >  0, where Xi is a variable, ai is the lower bound, bi is the upper bound, t is the number of samples, E X[ ] 
denotes the mean value of X, h is the definite value that equals to the maximum deviation from expectation39,40.

Now this inequality is applied to certificate experiment of multi-photon entanglement. The measurement 
response of a single copy of an unknown state is taken as the value of a single random variable. Since photon 

Figure 9. Comparison between traditional and optimization measurement of three-qubit state. The 
color of line segment represents the different setting. The length of line segment represents the time for the 
corresponding measurement. Traditional measurement order is to finish the measurement of each setting one 
by one, as shown by the Pastel yellow area. The optimization measurement is iterated twice as shown by the light 
blue area.

Figure 10. The required time of optimization for different number of copies of a state. The red circle 
represents running time of eight-photon optimization. Black square represents running time of four-qubit 
optimization. It is observed that the total time to calculate Eq. (8) and simulate the experiment is less than 100 
seconds for both cases. Therefore compared with several hours spend to prepare copies of eight-photon state in 
experiment. It can be negelected.
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detectors can only give the feedback, 0 or 1, which leads to bi =  1 and ai =  0. X corresponds to a relative frequency, 
denoted as fj, where j is to distinguish different measurement settings. Hence the expectation E X[ ] corresponds 
to the probability pj. The total copy of a state for the jth setting is represented by tj instead of t. By replacing all of 
them, we obtain

− ≤ − ≤ −Prob f p h t h[ ] exp[ 2 ], (15)j j j j j
2

where hj is the deviation from true probability pj. It means

∈ − + − − .⩾Prob f p h p h t h[ ( , )] 1 2 exp[ 2 ] (16)j j j j j j j
2

Figure 11. The change of optimization number of copy of ρ4qubits of fidelity estimation corresponding 
to different iteration numbers with different settings. π/4, 2π/4, 3π/4, and π. “Setting for H/V” represents 
the number of copy of ρ4qubits projected into S3qubits,1. “Setting for θ =  π/4” represents for S4qubits,2, “Setting for 
θ =  2π/4” represents for S4qubits,3, “Setting for θ =  3π/4” represents for S4qubits,4, “Setting for θ =  π” represents for 
S4qubits,5. Error bar represents one standard deviation.

P1 0.9339

P2 0.0316

P3 0.9491

P4 0.0325

P5 0.9474

Table 2.  The final Pj when iteration ends.

Figure 12. The required copies of a state for different R. For each R, numerical test is conducted for 10 times. 
Black square is used to represent the number of copies of the state. Error bar is mean standard deviation. The 
number of copies of state rises at wave type when the R increases but no larger than 1/2 and decreases with the R 
when the R is larger than 1/2.
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Then

− ∈ − − − + − − .⩾Prob f p h p h t h[1 (1 ,1 )] 1 2 exp[ 2 ] (17)j j j j j j j
2

Therefore,

− − ∈ − −  + − − − .⩾Prob f f p h p h t h[ (1 ) (2( ) 1, 2( ) 1)] 1 2 exp[ 2 ] (18)j j j j j j j j
2

Let fi −  (1 −  fj) be pj. Hence,

∈ − −  + − − − =  + .⩾Prob P p h p h t h j n[ (2( ) 1, 2( ) 1)] 1 2 exp[ 2 ], 2, 3, , 1 (19)j j j j j j j
2

Let − −p h2( ) 1j j  be −Pj  and + −p h2( ) 1j j  be +Pj , and based on Eq. (36), ∈ 





− +k k k,j j j , where

= − −+ + + − −{ }k Max P P P P1
4

(1 ), 1
4

(1 ) ,
(20)1 1 1 1 1
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4

(1 ), 1
4

(1 ) ,
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then from Eq. (8), one has

ε
=

∑
+

+
=
+ +( )

t
k k

, (24)i
i j

n
j1

1

ε
=

∑
.−

−
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(25)i
i j

n
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1

Therefore the ∈ − +t t t[ , ]i i i  in Eq. (8) when the holding probability of model Eq. (7) is considered.
Obviously, hj has the impact on +ti  and −ti . The larger hj is, the larger the gap has between +ti  and −ti . Large hj 

and ti from Eq. (15) are needed to keep results with high probability. However, large ti costs too much experimen-
tal time. Large hj may introduce a very large gap between +ti  and −ti , which may lead to the wrong number of 
copies of an unknown state. Therefore, it requires to choose suitable hj and ti.

By comparing the optimization results with the experiment, it is found that only 986 copies of ρ8qubits are used 
compared with the 1305 copies of ρ8qubits in eight photon experiment, which specifies that 24 percent copies of 
eight-photon SC state (ρ8qubits) can be saved. Specifically, hj is chosen to be 0.2 for all j. According to joint proba-
bility, ∏ pj j is calculated, in which pj is the successful probability for each setting. For eight-photon measurement, 

= j 1, 2, , 9, the final probability is 0.9972 for experiment after 1305 copies of ρ8qubits are measured. We 
observed same probability is obtained when 110 copies of ρ8qubits for each setting are used and all hjs’ are chosen as 
0.2.

In the above analysis, we assume Hoeffding’s inequality describes the probability precisely. In the following, 
numerical simulation is produced to confirm the above mathematical tool. The density matrix (ρ8qubits) is calcu-
lated from experimental frequencies, and new relative frequencies are obtained under a certain number of copies 
of ρ8qubits in a random simulation of experimental process that gets the relative frequency by computer. “P1” is 
the summation of relative frequency that the all qubits projected into horizontal polarization and the relative 
frequency that the all qubits projected into vertical polarization. The real value of “P1” is 0.8068 when the number 
of copy is sufficiently large. When failing probability is set less than 0.0001, Fig. 13 shows how “P1” behaves under 
different number of copy of ρ8qubits. In the figure, red circle and blue triangle are drawn according to Hoeffding’s 
inequality, and “P1” can be estimated much more precisely with an increasement of prepared copies of the state 
ρ8qubits. It is observed that all the numerical simulated points lie in the region between upper and lower bounds. 
Therefore, Hoeffding’s inequality can be applied to describe the Pj in multi-photon entanglement.

Extension of the optimization of the number of copies of a state to quantum-state 
tomography
The surprising thing brought to us is the optimization in the fidelity estimation can be extend to quantum state 
tomography. The optimization model for tomography is constructed as follows: Let ρ0 be a d ×  d density matrix of 
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real experimental created and ρ be the estimated density matrix via limited copies of ρ0. For n qubit state tomog-
raphy, we build

∑
ρ ρ ε− ≤
ν

ν
=

TMinimize

subject to , (26)

n

F

1

0 0

s

where Tν represents the number of copies of ρ0 of the νth setting, ν distinguishes different measurement settings, 
and ns is the total number of measurement setting. According to Born’s rule,

ρ
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1, 2, , , 1, 2, , , (27)s
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where μ distinguishes different measurement operators in the same setting, d is the dimension of density matrix, 
and Pμ,ν is the probability when ρ0 is measured by operator Mμ,ν.

Let p represent the ν in Eq. (26). The solution of Eq. (26) is
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, d, p =  1, 2, 


, ns, and ν′ =  1, 2, 


, ns. The derivation of the solution of Eq. (26) is shown in “Theoretical 
derivation of minimum number of copies of a state in quantum-state tomography”.

Conclusions
We proposed an optimal approach assisting to find the minimum distribution of copies of a state, which is suffi-
cient to certify the entanglement of the state by fidelity. The main purpose is to facilitate an experiment to obtain 
better measurement strategy for fidelity estimations, for example, by changing the ratio of the number of copies 
of the state in different settings. To estimate fidelity directly from fewer copies of SC state (1253 copies), with 
optimized distribution, almost the same distribution of fidelity as the experimental one (1305) can be obtained. 
It not only saves time, but also keeps small error of fidelity. About five percent of measurement time (6 hours) is 
saved. Additionally, the distribution on the number of copies of ten-photon SC state is also simulated, and 22.45% 
of copies of the ten-photon SC state are saved, which further highlights the superiority of our scheme, and reveals 

Figure 13. The change of P1 in the setting of S1 corresponding to different number of copies of eight-photon 
SC state(ρ8qubits). Black square represents the numerical simulation, red circle represents the theoretical lower 
bound and blue triangle represents the theoretical upper bound. Numerical simulation is repeated for 10 times 
for each number of copies. It is observed that all the simulated points lie in the region that consists of point that 
is larger than the lower bound and smaller than the upper bound.
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that the optimized distribution of copies of a state in different settings gives better estimation of the fidelity than 
uniform distribution of copies of a state in all settings. Fidelity can also be calculated by the reconstructed density 
matrix. The result demonstrates that the optimized distribution provides the best estimation of the true state, the 
uniform distribution provides a worse estimation, while randomized distribution provides the worst estimation. 
With the increase of the number of copies of the state the differences between different distributions (uniform dis-
tribution and optimized distribution) become much smaller. Besides the state with high similarity with SC state, 
this approach can also be extended to other states in parallel. Furthermore, the scheme is extendable to tomogra-
phy when the MSE between the estimated density matrix and real density matrix is limited to a fixed value.

Preparation of ten-photon SC state
From second paragraph of ref. 7, the count rate of eight-photon event is about 2.8 ×  10−5 Hz. Accidental coinci-
dence counts can be neglected for eight-fold entanglement. Therefore two-photon event count rate is 

. × − Hz2 8 10 54 . Detecting ten-photon entanglement requires totally five independent pairs of entangled pho-
tons to present at the same time, so the ten-photon coincidence event scales as . × × = .−( 2 8 10 3600 ) 0 05685 54  
per hour. For ten-photon entanglement, 11 measurement settings are required according to the entanglement 
witness of SC state. If only 10 copies of ten-photon SC state are prepared and measured in one setting, then 110 
copies of SC state are required. Therefore, the corresponding time is (110/0.0568)hours =  1.9366 ×  103 hours =   
80.6917days ≈  3 months.

Entanglement witness
To calculate Fexp, each term in the decomposition of |SC〉 〈 SC| is measured to determine its expectation value. For 
an eight-qubit SC state, n =  8, the expectation values of all the terms on the right hand of Eq. (5) should be calcu-
lated. Specifically the total accumulated coincident counts on the i-th base are defined as nis, such as n1 copies of 
ρ8photons with all qubits are projected into horizontal polarization |H〉 , and n256 copies of ρ8photons with all qubits are 
projected into vertical polarization |V〉 . Relative frequencies on ⊗H H( ) 8 or ⊗V V( ) 8 can be calculated by 

∑ =n n/( )i i1 1
28

 or ∑ =n n/( )i i256 1
28

. To get the expectation value of the third term of Eq. (5), we have
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8
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8
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8
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8

exp 7 /8
8

exp
8
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in which π
⊗Mk /8

8  represents the expectation of the operator π
⊗Mk /8

8 . The estimation of expectation value of the oper-
ator θ θ θ θ= + + − − −π

⊗ ⊗M ( , , , , )k /8
8 8 is equivalent to all the expectations of various combinations of 

θ θ+ +, ,  and θ θ− −, , , due to

θ θ θ θ

θ θ θ θ θ θ

θ θ

= + + − − −

= + + − + + − −

+ .... + − − .

π
⊗ ⊗

⊗ ⊗

⊗

M ( , , , , )

( , , ) ( , , ) ( , , )

( , , ) (30)

k /8
8 8

8 7

8

There are 256 terms in all for a fixed θ. When the number of copies of state projected into different combina-
tions of bases |+ , θ〉  and |− , θ〉  are collected, the copy numbers corresponding to π

⊗Mk /8
8  are calculated from 

Eq. (30). Thus, the π
⊗Mk /8

8  can be evaluated10,13. From these measurements, the expectations of different terms 
appearing in the decomposition of the SC state entanglement witness are obtained.

Standard deviation of fidelity
The error is calculated from Poisson distribution in Figs 2 and 3 in ref. 10 for each term of Eq. (5).

Based on the experimental data of ref. 7, the all eightfold coincidences are mainly projected into ⊗H H( ) 8 or 
⊗V V( ) 8 in S8photons,1 setting. When the state is projected into the setting of horizontal or vertical polarization, 

the number of copies of ρ8qubits projected into ⊗H H( ) 8 is 148, and the number of copies of ρ8qubits projected into 
⊗V V( ) 8 is 136. The summation of total number is 68 when eight qubits are projected into other bases in 

S8photons,1. Therefore, the ratio P1 of the number projected into ⊗H H( ) 8 or ⊗V V( ) 8 to the total number is 
(148 +  136)/(136 +  148 +  68) =  (148 +  136)/352 =  284/352 =  0.8068, the ratio (1 −  P1) between the copy that 
some qubits are projected into the horizontal polarization |H〉  and some are projected into vertical polarization 
|V〉  and the total copy of ρ photons8  for this setting is 1–0.8068 =  0.1932. The small value in P1 and 1 −  P1 is defined 
as P1. Similarly, according to Eq. (30), a smaller value between 〈 〉π−

⊗M j( 2) /8
8  and − 〈 〉π−

⊗M1 j( 2) /8
8  is chosen as P j, 

=   j 2, 3, , 9. Therefore, = = .P 40/200 0 22 , = = .P 20/107 0 18693 , = = .P 20/100 0 24 , = = .P 21/110 0 19095 ,  
= = .P 23/111 0 20726 , = = .P 19/106 0 17927 , = = .P 24/116 0 20698 , = = .P 20/103 0 19429 , the largest ratio 

among them is 0.2072.
When the number of copy of state in the whole measurement time is large and the relative frequency that the 

copy of state projected into a base or several bases in a setting is close to 0, Poisson distribution can be approximated  
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by binomial distribution (Page 291 of ref. 41). Notice that the Poisson distribution here is not  
for the entangled photons created in BBO in time scale, but the distribution of number of copies of state on  
different measurement basis is satisfied. The binomial distribution is a special case of the Poisson binomial  
distribution, which is a sum of tj independent non-identical Bernoulli trials42. In our optimization model,  
binomial distribution is applied since the number of copy of state is quite large. Let P1 represent the  
 probability that the copy of state is projected into ⊗H H n or ⊗V V n in the setting of S1, where 

= ⊗ ⊗ − ⊗
S H H H H V V V V{ , , , }n n n

1
1 . And let P1 denote the ratio that the state collapses to other 

bases in S1, hence = −P P11 1. According to Figs 2 and 3 of ref. 10, a value in P1 or P1 is close to 1 and the other is 
close to 0 when t1 is much larger than 20. It satisfies the condition that Poisson binomial distribution can be 
approximately replaced by binomial distribution. Since the variance of the binomial distribution is −t P P(1 )1 1 1  
(Page 277 of ref. 41), then variance of number of events that SC state collapses to ⊗H n or ⊗V n is also the same 
value since − = −t P P t P P(1 ) (1 )1 1 1 1 1 1 . Therefore the standard deviation is −t P P(1 )1 1 1 . Besides, the P1 is 
defined as the ratio between the number of copies of state detected on a ⊗H H( ) n or ⊗V V( ) n basis and the 
total copies of state in S1. Therefore the standard deviation for the relative frequency is −t P P t(1 ) /1 1 1 1, which is 
equal to −P P t(1 )/1 1 1. This result is also used in the Eq. (4) of ref. 24.

From Eq. (1) and Eq. (5),
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ρ
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Then Eq. (31) can be rewritten as
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Here Eq. (30) is applied when n =  8 and k +  1 is denoted as j in last second step.
According to the previous analysis, the standard deviation of Pj is
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After further considering the formula of combined standard uncertainty43, the standard deviation of fidelity 
can be derived. We use Δ Fexp to represent it. Therefore,
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Theoretical derivation of Minimum copies of multi-photon Schrödinger’s Cat state
Let
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then the optimization problem is equivalent to
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where ε and kj are positive real constants, n is a positive integer, and tj is a variable of positive integer. In order to 
solve Eq. (37) easily, all the variables, including the number of copies of state, tj, are considered as real. The opti-
mized number of copies of state is then rounded off to the smallest integer greater than the final real tj.

The solution of the optimization problem is assumed to satisfy ε∑ ==
+

j
n k

t1
1 j

j
. If the optimal solution is not on 

the boundary, it means ε∑ <=
+

j
n k

t1
1 j

j
. Appropriate reduction in the number of tj can be made, while the inequality 

ε

∑ ≤



=

+
j
n k

t1
1 j

j
 is still satisfied. This is contradictory with the target function “ ∑ =

+ tMinimize j
n

j1
1 ”, therefore the 

optimal solution must exist on the bound.
The detailed process how to find the analytical solution of Eq. (37) will be shown below.
Now let



www.nature.com/scientificreports/

1 8Scientific RepoRts | 6:32057 | DOI: 10.1038/srep32057
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By substituting Eq. (38) into Eq. (37), we obtain
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The Lagrange multiplier method is applied to solve the problem. Since the target is the minimization of 
∑ =

+
j
n

x1
1 1

j
, Eq. (39) leads to
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From Eq. (41), the following equation is obtained,
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The constraint of Eq. (39) is
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From Eq. (42) and Eq. (43), λ is given by
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By substituting Eq. (44) into Eq. (42), we arrive at
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Rewriting Eq. (45) using Eq. (38), we have
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By substituting Eq. (36) into Eq. (46), Eq. (8) is obtained. The optimal results of Eq. (8) can be compared with 
experiment when the same coefficient P1 and Pjs are substituted.

Theoretical derivation of minimum number of copies of a state in quantum-state 
tomography
Since ρ ∈ ×Cd d, then
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Because Mμ,ν is orthogonal to each other, that is =µ ν µ ν′ ′
⁎Tr M M( ) 0, ,  if µ µ≠ ′ or ν ν≠ ′, then
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In the last step of Eq. (49), standard deviation of binomial distribution is applied, which can be found at the 
first paragraph of “Standard deviation of fidelity” in appendix for detail. When the measurement operator Mμ,ν 
belongs to the same setting ν, they have the identical number of copies Tμ,ν of ρ0, i.e. = = =ν ν νT T T d1, 2, , . We 
denote them to be Tv. Then model of Eq. (26) is equivalent to
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It is easy to find that the target of Eq. (50) is similar to Eq. (7) except the larger required number of settings 
and different coefficients.

Let ∑ 
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2, then the model has the following form
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Obviously, it has a similar form to Eq. (37), therefore its solution is the same as that of Eq. (8)
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If Mμν is non-orthogonal to each other, then
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Let ∑ − −µ µ µ ν µ ν µ ν µ ν µ ν µ ν′ ′ ′ ′ ′ ′ ′
⁎f f f f Tr M M(1 ) (1 ) ( ), , , , , , ,  be ν ν ′k , . Applying the similar substitutions as 

used in the orthogonal case, we have
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Substitute =ν νq T1/ , the constraint in the optimization becomes
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then the non orthogonal case has a similar result with the orthogonal one Eq. (51) except the different coefficient.
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