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Abstract
Background: Translation initiation site (TIS) identification is an important aspect of the gene
annotation process, requisite for the accurate delineation of protein sequences from transcript
data. We have developed the MetWAMer package for TIS prediction in eukaryotic open reading
frames of non-viral origin. MetWAMer can be used as a stand-alone, third-party tool for post-
processing gene structure annotations generated by external computational programs and/or
pipelines, or directly integrated into gene structure prediction software implementations.

Results: MetWAMer currently implements five distinct methods for TIS prediction, the most
accurate of which is a routine that combines weighted, signal-based translation initiation site scores
and the contrast in coding potential of sequences flanking TISs using a perceptron. Also, our
program implements clustering capabilities through use of the k-medoids algorithm, thereby
enabling cluster-specific TIS parameter utilization. In practice, our static weight array matrix-based
indexing method for parameter set lookup can be used with good results in data sets exhibiting
moderate levels of 5'-complete coverage.

Conclusion: We demonstrate that improvements in statistically-based models for TIS prediction
can be achieved by taking the class of each potential start-methionine into account pending certain
testing conditions, and that our perceptron-based model is suitable for the TIS identification task.
MetWAMer represents a well-documented, extensible, and freely available software system that
can be readily re-trained for differing target applications and/or extended with existing and novel
TIS prediction methods, to support further research efforts in this area.

Background
Translation initiation in eukaryotic mRNA molecules typ-
ically follows the basic mechanism postulated by the
scanning hypothesis [1], according to which the 40S
ribosomal subunit binds to the 5'-cap of an mRNA, scans
in the 5' → 3' direction until the first AUG is encountered,
stalls to recruit the 60S subunit, and forms the 80S ribos-
omal particle, which then proceeds unencumbered with
translation to render a protein product (reviewed in [2]).

Roughly 10% of eukaryotic transcripts are subject to so-
called leaky scanning [3], in which the ribosome contin-
ues scanning beyond the first AUG codon until it encoun-
ters one in a more favorable context [4]. Alternative
methods to initiate translation from certain RNAs of viral
origin exist, including, one, the formation of kissing stem-
loops to facilitate translation initiation from a 5'-proximal
methionine codon [5] and, two, usage of internal ribos-
omal entry sites [6]. Efficient translation initiation from
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non-methionine codons is also possible in eukaryotes
[7,8]. In the present work, we are concerned only with
modeling 5'-cap-dependent translation initiation occur-
ring at AUG codons in eukaryotic protein coding genes of
non-viral origin.

A variety of approaches to in silico translation initiation
site (TIS) detection in nucleotide sequences have been
previously considered, including perceptrons [9], single,
multilayer artificial neural networks (ANNs) [10], multi-
ple, multilayer ANNs [11], linear discriminant analysis
[12], mixture Gaussian models [13], unsupervised cluster-
ing algorithms [14], support vector machines [15-17],
expectation maximization [18], and hidden Markov mod-
els [19]. Unfortunately, none of these methods are con-
veniently available in the form of open source, distributed
software. In part, our motivation for this work is to pro-
vide a software framework for the implementation and
testing of a variety of different algorithmic approaches to
TIS identification. Software systems such as ESTScan
[20,21] and Diogenes [22], originally developed for
detecting significant open reading frames in (potentially
errant) cDNA sequences, have also been used to identify
TISs, although empirical results suggest that these meth-
ods are inappropriate for the task [23]. One strategy for
integrating TIS detection methods into computational
gene finding pipelines, as opposed to predicting TISs in
mRNA sequences per se, is to refine results produced from
a separate gene finding tool. For example, the TICO tool
[14,24] was developed to refine prokaryotic gene structure
annotations generated by the GLIMMER program [25,26].
The mechanism of translation initiation in prokaryotes
differs considerably from that of eukaryotes [27]. Here, we
describe the MetWAMer system, developed primarily for
post-processing spliced alignment-based eukaryotic gene
annotation results provided in the gthXML format [28]. A
variant of the MetWAMer code is abstracted from any spe-
cific gene prediction system and allows TIS prediction in
eukaryotic reading frames as generated by any procedure,
thus facilitating integration into other gene prediction
software and workflows.

In the following we first describe MetWAMer and its
incorporated TIS-finding algorithms and then discuss
applications to annotating transcripts from the model
plant Arabidopsis thaliana. MetWAMer currently imple-
ments five distinct methods for TIS detection. Among
these, the best performer is the perceptron-based flank-
contrasting weighted log-likelihood ratio routine
(PFCWLLKR), which combines local TIS feature scores
and scores probing the contrast in coding potential of
sequences flanking a site. MetWAMer allows the user to
develop and apply stratified parameter sets for an arbi-
trary number of data clusters. We demonstrate the poten-
tial for stratified parameter deployment to yield

considerable increases in TIS prediction accuracy relative
to a homogeneous parameter strategy. Also discussed are
strategies for parameter selection in practice, depending
on prior assessment of the likelihood that the transcript
under consideration is or is not 5'-complete. Source code
implementing this package is released under the ISC
license, and is available for download from [29]. It is also
registered as Additional File 1 in this report.

Implementation
In the following subsection, we briefly describe the com-
ponents of the MetWAMer software. Then we discuss the
distinct algorithms implemented for TIS-identification
and report our training and testing approaches for Arabi-
dopsis data.

The MetWAMer system
The MetWAMer code, written in the C programming lan-
guage, implements the executable files MetWAMer.CDS
and MetWAMer.gthXML. MetWAMer.CDS is the generic
application for TIS prediction in eukaryotic open reading
frames, as derived via any computational procedure. Met-
WAMer.gthXML is a special-purpose variant of the soft-
ware, specifically tailored to refine gene structure
predictions generated by the GenomeThreader [30] and
GeneSeqer [31] programs for spliced alignment-based
gene structure annotation. GenomeThreader and GeneSe-
qer, like most other spliced-alignment tools, do not make
explicit predictions concerning translation initiation sites,
but rather are restricted to the identification of reading
frames in genomic sequences for which transcript evi-
dence or homologous sequences suggest a protein coding
function. MetWAMer.gthXML extends the 5'- and 3'-most
termini of these annotated reading frames such that a
maximal (non-stop) open reading frame (ORF) is real-
ized. (No distinction between MetWAMer.gthXML and
the more generic MetWAMer.CDS variant exists subse-
quent to reading frame maximization; we therefore refer
to the system as "MetWAMer" for the remainder of this
article.) MetWAMer scans for methionine-encoding sites
in this maximal reading frame, considering their potential
as translation initiation sites under a variety of scoring
schemes, described below, in an attempt to identify a TIS
for the gene structure under consideration. At most one
prediction per maximal ORF is made, if and only if the
optimal solution rendered exceeds some method-specific
quality threshold.

Common to all detection methods implemented in Met-
WAMer is utilization of a start-methionine signal-specific
weight array matrix (WAM) that records position-specific
base transition frequencies proximal to methionine
codons in protein coding sequences. Here, WAMs charac-
terize position-specific dinucleotide abundances; see the
Stratified training and testing section below for a more
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detailed description. The train_MetWAM utility from the
MetWAMer package can be used to develop such a WAM,
given appropriate training data. The first in-frame methio-
nine codon encountered, subsequent to a specified offset
in the training sequence, is considered to be the true TIS
for that sequence. Training of the methionine weight array
matrix proceeds by tabulating dinucleotide frequencies
from five positions upstream of the adenine through three
positions downstream of the guanine residue of the perti-
nent methionine codon. Next, the system advances 105
bases in the training instance, to resume scanning for in-
frame methionine codons, each of which will be classified
as a false TIS; dinucleotide frequencies proximal to these

false TISs are tabulated in the same manner as true TISs
(see Figure 1). Following tabulation of dinucleotide fre-
quencies at true and false TISs in training data, these are
converted to relative frequencies, yielding the WAM,
which enables calculation of the likelihood that a site in
question is a true or false TIS.

Methionine log-likelihood ratios
The log-likelihood ratio (LLKR) approach to TIS predic-
tion functions by scanning the ORF for in-frame ATG
codons. (We use ATG to denote a methionine codon, as
opposed to AUG, because MetWAMer scans for potential
TISs in conceptually spliced genomic sequences.) A con-

Extraction of training dataFigure 1
Extraction of training data. A genomic protein coding sequence is conceptually spliced into an open reading frame, which is 
extended at its 5'- and 3'-termini to render a maximal (non-stop) reading frame. For LLKR, WLLKR, and BAYES, only 
sequences comprising the immediate context of true and false TISs (defined as five bases upstream through three bases down-
stream of the ATG codon's adenine residue) are extracted for modeling the TIS signal. For flank-contrasting methods, both TIS 
contexts and flanking sequences (96 nt in length per flank) are extracted for training signal and content sensors, respectively. A 
minimal distance between true and false TISs of 105 nt is used.
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straint is imposed on the protein length implied by any
potential start-methionine such that if the ATG served as
a true translation initiation site, the resulting protein must
exceed 50 amino acid residues. Using the trained methio-
nine-WAM, the method scores each such feasible site by
calculating the likelihood that it is a true initiation site
and taking the ratio of this value relative to the likelihood
that it is not a true start site. The system identifies the
methionine codon yielding the optimal value among such
likelihood ratios, and provided the log of this ratio is non-
negative, the LLKR routine returns it as the predicted start-
methionine. The non-negativity constraint implements a
classification threshold, imposed because we require the
likelihood of the potential start site to favor its actually
being a true TIS. If the system fails to identify any in-frame
ATG codons, or the best-scoring site's score is negative-val-
ued, then LLKR returns no prediction for the maximal
ORF being surveyed.

Weighted methionine log-likelihood ratios
The weighted log-likelihood ratio approach (WLLKR) is
identical to LLKR, but each in-frame ATG's log-likelihood
ratio score is scaled as a function of the induced protein
product's coverage of the maximal ORF. Precisely, cover-
age x is defined as the ratio of the length of the implied
amino acid chain starting from the TIS under considera-
tion over the length of the maximal ORF. For a true TIS,
we expect the coverage value to be close to unity, as it
would be unusual for a long, uninterrupted reading frame
to be evolutionarily maintained in a genome, yet not be
encoding an expressed, functional protein product.
Empirically, we settled on weights calculated as w(x) = x3

(other convex functions give commensurate results). The
WLLKR routine optimizes over weighted log-likelihood
ratios for all in-frame ATG codons, returning a predicted
start-methionine if and only if the optimal such value is
non-negative.

Multiplicative-based flank-contrasting with weighted methionine log-
likelihood ratios
MetWAMer also implements an approach to start-methio-
nine prediction that considers two descriptive features of
potential TISs: weighted methionine log-likelihood ratio
scores as used by the WLLKR routine (signal sensing) and
the ratio of coding potential in a swath of sequence down-
stream from the site to that of a swath upstream of it, eval-
uated under a coding hypothesis (content sensing).
Intuitively, we expect that the coding potential of the
sequence downstream from a true site – which is, by defi-
nition, coding – would exceed that upstream of it – which
is, by definition, non-coding – and that the ratio of the
former to the latter should be greater in true sites as
opposed to false. Coding probabilities of sequence swaths
(96 nucleotides in length) are computed using a fifth-
order χ2-interpolated Markov chain model [25,26] as

implemented in the IMMpractical library [32]. The idea of
integrating both content- and signal-based features into
TIS prediction has been explored before [11,12,33],
although the methodologies used here are distinct from
previous studies.

For the multiplicative-based flank-contrasting with
weighted methionine log-likelihood ratios (MFCWLLKR)
method, the signal- and content-based scores, expressed
in log space, are added. The system optimizes over these
scores at viable, in-frame start-methionine sites, and if the
best-scoring site's score is non-negative, it is returned by
the routine as its TIS prediction.

Perceptron-based flank-contrasting with weighted methionine log-
likelihood ratios
The perceptron-based flank-contrasting with weighted
methionine log-likelihood ratios (PFCWLLKR) routine
considers the same descriptive features as MFCWLLKR,
but uses a perceptron as a multivariate utility function, as
opposed to the multiplication operator. Perceptrons
implement linear discriminants, and as such require line-
arly (or near-linearly) separable data sets to provide good
classification performance (see, e.g., §4.1.7 of [34]). Intu-
itively, we expect that the two dimensions corresponding
to the signal- and content-based features exhibit linear (or
near-linear) separability: both weighted log-likelihood
ratios of methionine sites and log-likelihood ratios of the
coding potentials of downstream to upstream content
swaths should be greater-valued in true start methionines
as opposed to false, non-start ones. Linear and sigmoid
units are used to implement perceptrons in the Met-
WAMer system; each of these neural elements can learn a
continuous-valued function that can be thresholded to
enable discrete, binary classification; excellent discussions
of these methods can be found in §4.4.3 of [35] and §20.5
of [36]. Thus, linear and sigmoid units can be used to opti-
mize over viable candidate start-methionine codons.

PFCWLLKR returns the best such potential TIS if and only
if it is classified as being a true site by the perceptron.
Although Stormo et al. used a perceptron to classify trans-
lation initiation sites in bacteria in a pioneering study [9],
they considered an entirely distinct feature set.

Bayesian TIS prediction
Lastly, we also considered a Bayesian approach (BAYES)
to predicting TIS sites. Each viable start-methionine in the
maximal reading frame is considered under two separate
models, one that the ATG is a true translation start codon
and the other that it is not. The maximum a posteriori
(MAP) hypothesis among this set of possibilities is com-
puted, and if the site it denotes is represented as being a
true TIS, BAYES returns this result as its TIS prediction.
Otherwise, the method refrains from making any predic-
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tions. Calculation of the MAP hypothesis is formulated as
follows. A prior distribution is derived for each maximal
reading frame being surveyed: each in-frame ATG, under
the model of its being a true initiation site, is given a prior
probability proportional to the relative length of the pep-
tide it induces compared with that of the maximal reading
frame. Similarly, under the model of not being a TIS, each
such site is assigned a prior probability proportional to
the complement of its prior probability of being a true
one. These values are normalized so as to collectively rep-
resent a valid probability mass function over all putative
start-methionine sites, under both models. The likelihood
of data is modeled using log-likelihood scores computed
with the methionine-WAM.

Data sets
Only gene annotations marked as curated in the current Ara-
bidopsis thaliana annotation made available by TAIR (version
7, [37]) were used for developing methionine-weight array
matrices. In TAIR, a curated status implies that these struc-
tures have been either manually inspected or are supported
by full-length cDNA evidence. Training instances were fur-
ther required to encode protein products at least 100 amino
acid residues long, whose initial codon was ATG. For anno-
tations satisfying these criteria, coding sequences were
extracted from genomic templates using supplied reference
coordinates. Because the TAIR annotation contains deliber-
ate indel mutations in certain coding sequences with respect
to genomic templates (see, e.g., gene models At1g03530.1
http://www.plantgdb.org/AtGDB-cgi/getRegion.pl?dbid=2
&chr=1&l_pos=879997&r_pos=883891 and At5g21105.1
http://www.plantgdb.org/AtGDB-cgi/getRegion.pl?dbid=2
&chr=5&l_pos=7172277&r_pos=7178249), and these mod-
ifications are not reflected in genomic reference coordinates,
only parsed coding sequences having lengths divisible by
three were retained for analysis. This overall process is imple-
mented in the parse tigr codseqs utility from the MetWAMer
package, which processes documents provided in the TIGR
XML format [38].

These data were then post-processed to purge transposa-
ble elements and curtail redundancy. All coding
sequences with significant matches (E-value < 10-15) to a
sequence present in the TIGR plant repetitive element
database [39], calculated using BLASTN [40], were elimi-
nated. To limit redundancy in the remaining data, the
BLASTClust utility [40] was used: sequence pairs having ≥
80% nucleotide identity covering ≥ 80% of the longest
sequence's length were clustered. Any sequence that clus-
tered with one or more others was eliminated from the
data set, i.e., we retained only one gene from each cluster.
This resulted in 19,703 TIS-containing genes being
retained for analysis.

A non-TIS-containing data set was compiled also, for test-
ing the methods' abilities to not predict a TIS when none

is present. The TIS-containing gene set was used as a start-
ing point, from which we excluded single-exon genes. Of
the remaining structures, the first coding exons (known to
contain true TISs) were ablated from the conceptually
spliced mRNAs; either 0, 1, or 2 bases were clipped from
the 5'-terminus of these second exons in order to preserve
the original reading frame. Next, sufficient flanking
genomic sequences upstream of these exons were pre-
pended, to facilitate the flank-contrasting methods – we
remain neutral as to whether these are contributed
entirely from the first ORF-disrupting intron of the gene,
or if they might also include fragments from one or more
upstream exons, 5'-UTR introns, or intergenic sequences.
In total, 16,121 non-TIS-containing instances were
retained for analysis.

Stratified training and testing
In addition to homogeneous training, which does not
address the possibility of characteristic features of poten-
tially distinct biological classes of translation initiation
sites, the calc_medoids utility of MetWAMer implements
a method for developing stratified training data sets,
which can be used to parameterize MetWAMer for cluster-
specific TIS prediction behavior. The k-medoids algo-
rithm, as implemented in the C Clustering Library [41], is
used to calculate medoids (instances in each of the k clus-
ters for which the distance to all other elements of the
cluster are minimized), using a non-redundant set of
translation initiation site sequences (five bases upstream
of the ATG codon through three bases downstream). The
Hamming distance is used to measure pairwise similarity
of such instances.

MetWAMer implements a total of six possible methods for
utilizing cluster-specific information during the predic-
tion phase, when the true class of the sequence's TIS is
unknown beforehand: three distinct measures of a site's
"closeness" to those in a given cluster are defined, and
each measure can be used either by selecting the best
parameter set for every site encountered during scanning
(modulating) or by choosing the best set on the basis of
the first in-frame ATG encountered, and committing to
the exclusive use of it for scoring any remaining putative
TISs in the reading frame (static). Thus, these combina-
tions comprise a collection of parameter set indexing
strategies, which allow for lookup of those partition-spe-
cific parameters most appropriate for scoring a site.

The first measure considered is the Hamming distance,
which lends itself to an indexing strategy in which, for a
putative TIS, its distance is computed relative to the k
medoids identified in the clustering step; cluster-specific
parameters corresponding to the medoid whose Ham-
ming distance is minimal to it, are used to score. The
PWM-based indexing method utilizes cluster-specific
position weight matrices for measuring the site's similar-
Page 5 of 16
(page number not for citation purposes)

http://www.plantgdb.org/AtGDB-cgi/getRegion.pl?dbid=2&chr=1&l_pos=879997&r_pos=883891
http://www.plantgdb.org/AtGDB-cgi/getRegion.pl?dbid=2&chr=1&l_pos=879997&r_pos=883891
http://www.plantgdb.org/AtGDB-cgi/getRegion.pl?dbid=2&chr=5&l_pos=7172277&r_pos=7178249
http://www.plantgdb.org/AtGDB-cgi/getRegion.pl?dbid=2&chr=5&l_pos=7172277&r_pos=7178249


BMC Bioinformatics 2008, 9:381 http://www.biomedcentral.com/1471-2105/9/381
ity to known clusters, and the parameter set whose repre-
sentative PWM renders the putative TIS most likely is used
for scoring. Specifically, a PWM characterizes position-
specific mononucleotide distributions at genetic elements
such as promoter sites, splice sites, or translation initia-
tion sites [42]. Here, the likelihood of a potential TIS as
having been generated by the (trained) PWM is given by

where i indexes each position in the site (the adenine res-

idue of the ATG codon is assigned position 0), and  is

the relative frequency of base Bi ∈ {A, C, G, T} in position

i of the aligned training sequences. Finally, a WAM-based
indexing method is implemented, which is analogous to
the PWM-based strategy, though (first-order) weight array
matrices are used for computing likelihoods, rather than
PWMs. For a potential TIS site, the likelihood of its having
been generated by the WAM is computed by MetWAMer
as

where i indexes each position in the site, and

 is the relative frequency of

the observed dinucleotide Di,i+1 occurring at position i in

aligned training data.

Test design
A five-fold cross-validation strategy was used to assess the
methods on the task of translation initiation site detection
competency. Because the TIS-containing instances consist
only of known coding sequences from gene structures,
and in practice MetWAMer scans for potential TISs across
a maximal ORF, we extended the coding sequences at
their 5'-termini to achieve a maximal, non-stop reading
frame, thereby presenting the system with the challenge of
disambiguating spurious (in-frame) methionine codons
in the extended reading frame from true start codons – we
make no considerations as to whether these extended
sequences are derived from 5'-UTRs, introns in 5'-UTRs, or
intergenic sequences. Methionine-WAMs and Markov
chains were trained on each cross-validation replicate and
then used to train a sigmoidal perceptron, using a learning
rate of 1 × 10-5. Sigmoid units outperformed linear units
in all experiments we conducted (data not show), so we
do not consider the latter further. As a baseline for com-
parison of the implemented models, we consider also the
1st-ATG method, which predicts the first in-frame ATG it
encounters in the maximized reading frame as a TIS. Tests

using non-TIS-containing instances were conducted simi-
larly, though reading frames were not maximally
extended at their 5'-terminus. The testing procedure is
shown pictorially in Figure 2.

To assess the performance of MetWAMer relative to prior
art in translation initiation prediction, we compared our
system with the NetStart [10], TIS Miner [43], TISHunter
[17] and ATGpr [12] programs.

Results
Computational TIS identification in TIS-containing ORFs
Table 1 summarizes TIS prediction accuracy in TIS-con-
taining ORFs. Given the knowledge that the transcript
under consideration is 5'-complete, the simple strategy of
predicting the leftmost ATG to be the TIS ("1st-ATG") is
seen to give the best performance by far. The 94% sensitiv-
ity and specificity merely reflects the proportion of tran-
scripts not subject to leaky scanning. All other methods
incorporate uncertainty about 5'-completeness and specif-
ically allow for the possibility of observing a non-TIS-con-
taining transcript fragment (prediction of which for this
test set would always result in a false negative instance).
Restricting attention to the method-specific results
obtained under homogeneous parameter usage, it can be
seen that MFCWLLKR has better sensitivity than the
remaining methods, with PFCWLLKR exhibiting compa-
rable levels. PFCWLLKR dominates the remaining models
in terms of specificity. WLLKR is the third-most successful
method at identifying true TISs, though it suffers from a
relatively high rate of false negative predictions. The
BAYES routine makes fewer true positive predictions than
WLLKR, and more false positive and false negative identi-
fications.

Cluster-specific parameter results were produced by first
stratifying the data with respect to the clusters identified
by k-medoids, for k = 3, conducting five-fold cross-valida-
tion analyses independently for each cluster, and averag-
ing the results. Thus, we explicitly leveraged information
concerning the true cluster to which a test sequence's TIS
belongs. All methods increased markedly in TIS predic-
tion performance. To demonstrate that this observation is
not simply an artifact due to potentially over-fitting the
models to smaller training set sizes, we randomly split the
data into three separate partitions and repeated the analy-
sis. The random split results are essentially indistinguish-
able from those obtained using homogeneous
deployment, and thus we may conclude that the perform-
ance gains from cluster-specific parameter training reflect
non-random effects.

Computational TIS identification in transcripts undergoing 
leaky scanning
1,150 instances from the TIS-containing data set are
known to contain in-frame ATGs upstream from the true
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TIS. Table 2 provides TIS prediction statistics derived
exclusively from these cases. By definition, 1st-ATG is a
complete failure in this scenario. PFCWLLKR has greater
sensitivity than all other methods under all parameter
deployment strategies with the exception of cluster-spe-
cific, in which MFCWLLKR bests it by roughly 0.35%.
WLLKR strictly dominates all methods in terms of specifi-
city, outperforming the second-best method, PFCWLLKR,
by under four percent for any parametrization strategy.

PFCWLLKR should be more prone to false positive predic-
tion on these sequences because the upstream ATGs
would typically have better coding potential contrast than
the true TIS.

Method performace on non-TIS-containing transcript 
fragments
Table 3 provides TIS prediction performance statistics in
non-TIS-containing instances. 1st-ATG performs worse
than all other methods, under every deployment
approach. Under homogeneous parameter deployment,
WLLKR dominates the remaining methods, with BAYES
being second-best, and PFCWLLKR third-best, with sensi-
tivities varying in a range of less than three percent. Again,
it is observed that cluster-specific parameter usage leads to
considerable performance gains, whereas random splits
produce results essentially indistinguishable from the
homogeneous-based results.

TIS detection competency testsFigure 2
TIS detection competency tests. Shown are two distinct testing scenarios for TIS identification competency in maximal, 
TIS-containing reading frames and in reading frames lacking a true TIS. In TIS-containing tests, three outcomes are possible: the 
system predicts the true TIS as the TIS for the gene (TP), it predicts a false TIS as the gene's TIS (FP), or it fails to predict any 
TIS for the gene (FN). In the non-TIS-containing scenario, the system either (correctly) refuses to predict a TIS for the gene 
(TN) or mislabels some in-frame ATG as a TIS (FP).
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Comparison with other TIS prediction tools
Based on results shown in Tables 1, 2, 3, we identify
PFCWLLKR as the superior method currently imple-
mented in MetWAMer, and therefore used it as a bench-
mark for comparison with other TIS prediction tools.
Specifically, we consider PFCWLLKR used under the
homogeneous parameter deployment approach. We com-
pare this method with the NetStart [10], TIS Miner [43],
TISHunter [17] and ATGpr [12] programs. Because Net-
Start is a TIS classifier, and not a TIS prediction system, we
interpreted its results as follows. For all potential TISs
scored by the program, we ranked each instance on the
basis of its score. If the best-scoring instance was classified
as a true TIS (marked "Yes"), it was selected as the pro-
gram's single TIS prediction; else, we interpreted the result
as the system's decision to make no TIS prediction at all.
We used the web interface to the program available at
http://www.cbs.dtu.dk/services/NetStart/ and used its
Arabidopsis-specific parameters. The TIS Miner program,
available at http://dnafsminer.bic.nus.edu.sg/Tis.html
was used with default paramters, with the number of pre-
dictions set to 1. We used a classification threshold of 0.5
for this program, such that if the TIS prediction it returned
was at least 0.5, it was selected as the system's prediction,

while if not, this was interpreted as its decision not to
return a TIS prediction. This threshold setting performed
best over a range of values tried (data not shown). Finally,
the TISHunter and ATGpr programs, available at http://
bioinfo.ucr.edu/~hli/ and http://flj.hinv.jp/ATGpr/atgpr/
index.html, respectively, were used with default settings.
All raw output generated by these tools on our test data is
available as supplementary information at [29].

As depicted in Table 1, PFCWLLKR handily outperforms
the NetStart system, though it is bested by the TIS Miner
(albeit by a slight margin), TISHunter and ATGpr pro-
grams on these TIS-containing instances. In no case are
the competing programs able to outperform 1st-ATG.
Table 2 demonstrates that PFCWLLKR is considerably bet-
ter than the competing methods at identifying a true TIS
when an in-frame site occurs upstream from it, however.
Finally, Table 3 shows that PFCWLLKR is far better at
declining to predict a TIS when none are present than any
of the four competing programs.

Performance gains by parameter set indexing
Based on the results shown in Tables 1, 2 and 3, we
decided to focus on the PFCWLLKR method in the follow-

Table 1: Method performances on TIS-containing data.

Parametrization Method TP FP FN Sn Sp

1st-ATG 18,553 1,150 0 0.9416 0.9416
TISHunter 17,789 1,914 0 0.9029 0.9029
ATGpr 17,160 2,543 0 0.8709 0.8709
TIS Miner 15,521 3,650 532 0.7877 0.8096
NetStart 5,123 14,527 53 0.2600 0.2607

homogeneous LLKR 9,268 9,318 1,117 0.4704 0.4987
WLLKR 12,511 4,486 2,706 0.6350 0.7361
MFCWLLKR 15,167 4,535 1 0.7698 0.7698
PFCWLLKR 14,692 4,191 820 0.7457 0.7781
BAYES 10,121 6,482 3,100 0.5137 0.6096

cluster-specific LLKR 11,964 6,946 793 0.6072 0.6327
WLLKR 14,931 3,085 1,687 0.7578 0.8288
MFCWLLKR 16,576 3,127 0 0.8413 0.8413
PFCWLLKR 16,209 2,834 660 0.8227 0.8512
BAYES 12,399 4,988 2,316 0.6293 0.7131

random split LLKR 9,191 9,402 1,110 0.4665 0.4943
WLLKR 12,491 4,507 2,705 0.6340 0.7349
MFCWLLKR 15,183 4,519 1 0.7706 0.7706
PFCWLLKR 14,648 4,198 857 0.7434 0.7772
BAYES 10,084 6,509 3,110 0.5118 0.6077

19,703 TIS-containing instances were used in three separate five-fold cross-validation experiments. Results are shown from applying a non-stratified 
parameter set (homogeneous), a priori-known cluster-specific parameter sets for k = 3 (cluster-specific), and group-specific parameter sets for a 
random three-way split of the data (random split). TP represents the number of instances for which the method correctly identified a TIS; FP for 
which a prediction was made, though incorrect; and FN for which no prediction was made, but should have been (see Figure 2). 

, and .Sn TP
TP FP FN= + + Sp TP

TP FP= +
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ing. Indeed, although we assessed all the methods in the
experiments described below, PFCWLLKR was superior in
all cases (data not shown).

As shown in Tables 1 and 3, all parametric methods exhib-
ited an increase in successful TIS identification when
using stratified parameter sets, suggesting that considera-
ble improvements in statistically-based models for TIS
prediction can be achieved by taking the appropriately
defined class of each potential start-methionine into
account. This motivated the development of a lookup
method for indexing appropriate parameter sets when the
class of a test sequence's true TIS is not known before-
hand. Table 4 provides results obtained using PFCWLLKR
on TIS-containing data, under the six parameter indexing
schemes described in the Implementation subsection
Stratified training and testing. For any given value of k ∈
{3, 5, 10}, static WAM-based indexing performs best over-
all. Additionally, increasing values of k resulted in

increased performance on these data. All indexing
approaches improved under static parameter lookup rela-
tive to modulating, for all deployment strategies. This can
be explained given the observation that in-frame ATGs
upstream from true TISs are relatively rare, e.g., they occur
with a frequency of roughly 1,150/19,703 ≈6% in Arabi-
dopsis, and thus, provided the similarity measure used can
recover the site's corresponding class with good fidelity,
performance should closely approximate that obtained
under a priori-known cluster-specific parameter usage.

Table 5 presents results analogous to Table 4, for non-TIS-
containing data. Again, static parameter lookup yielded
results superior to those obtained under the modulating
approach. Increases in k typically resulted in a greater
number of false positive predictions being made, resulting
in progressively lower performance.

MetWAMer as a TIS classifier
Although MetWAMer is not a TIS classifier per se, each TIS
prediction method utilizes some form of discriminant

Table 2: Distinguishing in-frame, upstream ATG sites from true 
TISs

Parametrization Method TP FP FN Sn Sp

1st-ATG 0 1,150 0 0.0000 0.0000
TISHunter 69 1,081 0 0.0600 0.0600
ATGpr 97 1,053 0 0.0843 0.0843
TIS Miner 216 832 102 0.1878 0.2061
NetStart 216 930 4 0.1878 0.1885

homogeneous LLKR 437 671 42 0.3800 0.3944
WLLKR 531 467 152 0.4617 0.5321
MFCWLLKR 525 625 0 0.4565 0.4565
PFCWLLKR 542 551 57 0.4713 0.4959
BAYES 442 511 197 0.3843 0.4638

cluster-specific LLKR 552 550 48 0.4800 0.5009
WLLKR 663 380 107 0.5765 0.6357
MFCWLLKR 683 467 0 0.5939 0.5939
PFCWLLKR 679 419 52 0.5904 0.6184
BAYES 567 406 177 0.4930 0.5827

random split LLKR 434 672 44 0.3774 0.3924
WLLKR 522 468 160 0.4539 0.5273
MFCWLLKR 530 620 0 0.4609 0.4609
PFCWLLKR 541 551 58 0.4704 0.4954
BAYES 439 512 199 0.3817 0.4616

TIS identification statistics are reported exclusively for the 1,150 
maximal reading frames containing in-frame ATG sites upstream from 
the true TIS, under three distinct parameter utilization approaches: 
homogeneous, a priori-known cluster-specific with k = 3, and three-
fold random split. TP represents the number of instances for which 
the method correctly identified a TIS; FP for which a prediction was 
made, though incorrect; and FN for which no prediction was made, 

but should have been (see Figure 2). , and 

.

Sn TP
TP FP FN= + +

Sp TP
TP FP= +

Table 3: Method performances on non-TIS-containing data

Parametrization Method TN FP Sn

1st-ATG 688 15,433 0.0427
TISHunter 0 16,121 0.0000
ATGpr 0 16,121 0.0000
TIS Miner 3,142 12,979 0.1949
NetStart 575 15,546 0.0357

homogeneous LLKR 5,179 10,942 0.3213
WLLKR 7,260 8,861 0.4503
MFCWLLKR 1,688 14,433 0.1047
PFCWLLKR 6,785 9,336 0.4209
BAYES 6,813 9,308 0.4226

cluster-specific LLKR 6,385 9,736 0.3961
WLLKR 8,080 8,041 0.5012
MFCWLLKR 1,995 14,126 0.1238
PFCWLLKR 8,685 7,436 0.5387
BAYES 8,057 8,064 0.4998

random split LLKR 5,155 10,966 0.3198
WLLKR 7,176 8,945 0.4451
MFCWLLKR 1,687 14,434 0.1046
PFCWLLKR 6,748 9,373 0.4186
BAYES 6,824 9,297 0.4233

16,121 non-TIS-containing instances were used in three separate five-
fold cross-validation experiments. Results are shown from applying a 
non-stratified parameter set (homogeneous), a priori-known cluster-
specific parameter sets for k = 3 (cluster-specific), and group-specific 
parameter sets for a random three-way split of the data (random 
split). TN represents the number of instances for which the method 
(correctly) refused to predict a TIS, and FP denotes the number for 
which some prediction was made, though always incorrect (see Figure 

2). .Sn TN
TN FP= +
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technique with which to evaluate whether the best-scor-
ing in-frame ATG (a putative TIS) is a true or false site. Fig-
ure 3 shows receiver operating characteristic (ROC) curves
for the sigmoidal perceptron element of PFCWLLKR,
which was assayed on the task of labeling ATG codons as
true or false TISs under distinct parameter deployment
strategies. Five-fold cross-validation was used to classify
34,229 instances, 19,703 of which were known TISs from
the TIS-containing gene set and 14,526 of which were the
first in-frame ATG codons (false TISs) from the non-TIS-
containing set (the negative instances number fewer than
the 16,121 instances used in Table 3 because 1,595 of the
truncated, multiple-exon gene structures lacked any in-
frame ATG). The ROC plots demonstrate that utilization
of a priori-known cluster-specific parameter sets yields a

classifier superior to that obtained using a single, homo-
geneous set. However, WAM-based indexing yielded a
classifier worse than both the others. This seems due to
the comparatively worse performance of the parameter set
lookup strategies in general at rejecting false TISs (e.g.,
compare PFCWLLKR performance results in Table 3 with
those in Table 5).

Biological interpretation of TIS classes
Given the improved performance of the methods under
the a priori-known cluster-specific parameter deployment
strategy, we wondered if any underlying biological basis
for the grouping obtained by k-medoids, for k = 3, may
exist. Clustering was performed using a non-redundant set
of TISs, and the cluster-specific consensus sequences
derived from position-specific mononucleotide distribu-
tions perfectly recovered each cluster's associated medoid

Table 4: Effect of parameter set indexing strategy on 
PFCWLLKR performance using TIS-containing data

k Indexing strategy TP FP FN Sn Sp

3 modulating edit 14,395 4,944 364 0.7306 0.7444
PWM 14,270 5,020 413 0.7243 0.7398
WAM 14,388 4,949 366 0.7302 0.7441

static edit 15,895 3,157 651 0.8067 0.8343
PWM 15,757 3,226 720 0.7997 0.8301
WAM 15,916 3,158 629 0.8078 0.8344

5 modulating edit 13,753 5,540 410 0.6980 0.7128
PWM 13,856 5,501 346 0.7032 0.7158
WAM 14,208 5,267 228 0.7211 0.7296

static edit 15,908 2,781 1,014 0.8074 0.8512
PWM 16,080 2,704 919 0.8161 0.8560
WAM 16,454 2,634 615 0.8351 0.8620

10 modulating edit 12,849 6,364 490 0.6521 0.6688
PWM 13,861 5,647 195 0.7035 0.7105
WAM 14,169 5,422 112 0.7191 0.7232

static edit 15,729 2,441 1,533 0.7983 0.8657
PWM 16,755 2,135 813 0.8504 0.8870
WAM 17,156 2,013 534 0.8707 0.8950

19,703 TIS-containing instances were used in five-fold cross-validation 
experiments, in which parameter sets were selected for putative TIS 
evaluation according to best cluster fit established by either the 
Hamming distance relative to cached medoids (edit), position weight 
matrix scores (PWM), or weight array matrix scores (WAM). 
Parameter indexing was tested under both modulating (cluster 
assignment for each site separately) and static (cluster assignment 
based on the leftmost ATG) approaches. k denotes the number of 
clusters considered. TP represents the number of instances for which 
the method correctly identified a TIS; FP for which a prediction was 
made, though incorrect; and FN for which no prediction was made, 

but should have been (see Figure 2). , and 

.

Sn TP
TP FP FN= + +

Sp TP
TP FP= +

Table 5: Effect of parameter set indexing strategy on 
PFCWLLKR performance using non-TIS-containing data

k Indexing strategy TN FP Sn

3 modulating edit 5,074 11,047 0.3147
PWM 5,134 10,987 0.3185
WAM 5,069 11,052 0.3144

static edit 6,170 9,951 0.3827
PWM 6,279 9,842 0.3895
WAM 6,119 10,002 0.3796

5 modulating edit 4,537 11,584 0.2814
PWM 4,484 11,637 0.2781
WAM 4,262 11,859 0.2644

static edit 5,993 10,128 0.3718
PWM 6,065 10,056 0.3762
WAM 5,679 10,442 0.3523

10 modulating edit 4,190 11,931 0.2599
PWM 3,708 12,413 0.2300
WAM 3,533 12,588 0.2192

static edit 6,345 9,776 0.3936
PWM 5,537 10,584 0.3435
WAM 5,199 10,922 0.3225

16,121 non-TIS-containing instances were used in five-fold cross-
validation experiments, in which parameter sets were selected for 
putative TIS evaluation according to best cluster fit established by 
either the Hamming distance relative to cached medoids (edit), 
position weight matrix scores (PWM), or weight array matrix scores 
(WAM). Parameter indexing was tested under both modulating 
(cluster assignment for each site separately) and static (cluster 
assignment based on the leftmost ATG) approaches. k denotes the 
number of clusters considered. TN represents the number of 
instances for which the method (correctly) refused to predict a TIS, 
and FP the number for which some prediction was made, though 

always incorrect (see Figure 2). .Sn TN
TN FP= +
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(see Figure 4). While these consensus sequences were
fairly weak – as evidenced by the high degree of entropy at
each position in the TIS alignment – the observation nev-
ertheless indicates that the clustering algorithm's results
are meaningful, and also suggests the possibility of at least
three distinct groups of TISs in Arabidopsis. The possibility
that these could correspond to distinct gene classes was
explored using a non-parametric statistical test on onto-
logical annotations, in which the significance of cluster-
specific distributions of GOslim (specifically, cellular
component) terms [44] was determined by sampling
same-size sets from the full population of terms. We
labeled a cluster as being over- or underrepresented with

respect to a particular GOslim term if its frequency in the
class was in the top or bottom five values in comparison
with 99 randomly-sampled sets, respectively. Clusters 1
through 3 contained 6,298; 5,039; and 3,019 instances
having associated GOslim terms, respectively, with the
overall population containing 14,356 terms. Our results,
presented in Table 6, suggest that cluster 1 is largely
depleted of plastid and ribosomal genes, while cluster 2 is
enriched for these; cluster 3 is enriched for plastid and
cytosolic genes. However, these observations should per-
haps be deemed inconclusive, as many genes in our data
set do not yet have associated GOslim terms, and for those
that did, such annotations should typically be considered
tenuous at present.

Discussion
Our results on the TIS-containing data set suggest that,
compared with the methods implemented in MetWAMer,
a policy of labeling the first ATG as TIS in a maximal ORF
wil achieve quite good (though imperfect) results. How-
ever, in practice we cannot always assert whether a maxi-
mal ORF has sufficient 5'-coverage so as to include the
gene's true TIS, or whether a spurious in-frame ATG occurs
upstream from it. In such cases, the 1st-ATG strategy fails,
as it does in cases of leaky scanning, thus sustaining the
importance of further development of statistical TIS pre-
diction methodologies that capture the sequence features
recognized by the ribosome in translation initiation. In

Receiver operating characteristic curves for the perceptron element of PFCWLLKRFigure 3
Receiver operating characteristic curves for the per-
ceptron element of PFCWLLKR. The classifier was 
assessed on the task of distinguishing ATG codons as true or 
false TISs, under distinct parameter deployment strategies: 
the dotted curve denotes perceptron performance obtained 
under a priori-known cluster-specific parameter usage, the 
solid curve that from homogeneous parameter deployment, 
and the dashed curve from WAM-based parameter set 
indexing. A true positive is defined as a true TIS labeled as 
such, whereas a false positive denotes a false TIS labeled by 
the classifier as true. These plots were generated using the 
ROCR package [62].
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Table 6: Cluster-specific over- and underrepresentation of 
GOslim terms

GOslim term High Low Normal

cell wall 1,2,3
chloroplast 3 1 2
cytosol 3 1 2
ER 1,2,3
extracellular 3 1,2
Golgi apparatus 1,2,3
mitochondria 2 1 3
nucleus 1 2,3
other cellular components 1,2,3
other cytoplasmic components 2 1,3
other intracellular components 1,2,3
other membranes 1,2,3
plasma membrane 1,2,3
plastid 2,3 1
ribosome 2 1 3
unknown cellular components 1 2,3

Arabidopsis transcripts were clustered into three sequence clusters 
based on TIS similarity. Within these clusters, the numbers of gene 
models with associated GOslim terms are, respectively, 6,298, 5,039, 
and 3,019. Clusters denoted as being "High" for a specific term were 
determined to be enriched in genes labeled as such, relative to the full 
population of terms, by a randomization test. Those labeled "Low" 
were found to be relatively impoverished in genes labeled with the 
associated term, and "Normal" as being neither significantly over- nor 
underrepresented.
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this work, we present a number of distinct models for TIS
prediction, the most successful of which mixes content-
and signal-based features of putative TISs using a percep-
tron (PFCWLLKR). Furthermore, we demonstrate that, in
the model plant Arabidopsis, TIS prediction can be
enhanced by integration of class-specific parameter sets,
regardless of the prediction method utilized.

We attribute the well-balanced performance of PFCWL-
LKR to the biological plausibility of the features pro-
vided to it as inputs. As a signal-based feature, weighted
log-likelihood ratios considerably improve the specifi-
city of TIS prediction (e.g., contrast WLLKR and LLKR in
Tables 1 and 2, likely because our weighting function,
w(x) = x3 for induced protein length to maximal ORF
coverage x, appears to empirically approximate the epis-
temology of eukaryotic translation initiation fairly well:
according to the (leaky) ribosomal scanning hypothesis
[3], one would expect that more upstream AUG sites –
especially those occurring in a favorable signaling con-
text – in a maximal reading frame would be more likely
to function as bona fide translation initiation sites. Also,
it is unusual for a long, uninterrupted reading frame to
be maintained, yet not expressed as part of a functional
protein product. Our weighting scheme has been explic-
itly designed to reflect these biologically-informed
biases.

During the post-scanning phase of translation initiation,
the small ribosomal subunit stalls at a TIS to recruit the
large subunit, thereby forming the 80S ribosomal particle.
The scanning process, as conducted by the small ribos-
omal subunit in concert with various eukaryotic initiation
factors, does not appear to take more global nucleotide
compositional features of the mRNA molecule into
account, notwithstanding the possibility of secondary
structures causing steric interference with scanning itself.
That we might utilize contrast in coding potential of
sequences flanking a TIS for modeling purposes is a con-
sequence of the fact that sequences upstream of a TIS are
non-coding, and those downstream, coding, though this
plays no known role in the recognition of TISs in vivo. The
use of Markov chains in a classification setting was shown
to distinguish exons from introns with good accuracy in
plant systems [32], and our expectation that these con-
tent-sensing tools could be gainfully transferred to the TIS
prediction domain was born out by the performance
results shown. Similar inclusion of coding potential con-
trast has also been employed to increase splice site predic-
tion accuracy [31,45].

Our data set was developed from gene models flagged as
curated in the current Arabidopsis annotations, though it
should not be overlooked that potential errors in these
structures might have distorted our results. Manual
inspection of several genes whose TISs were predicted
incorrectly by the PFCWLLKR routine indicate possible
problems with existing annotations. For example, in gene
model At4g34080.1 http://www.plantgdb.org/AtGDB-cgi/
getRegion.pl?dbid=2&chr=4&l_pos=16326388&r_pos=
16328548, our system predicted the TIS as that from the
TAIR version 6 gene annotation, rather than that of ver-
sion 7, which occurs downstream. Similarly, we predict
the version 6 TIS of gene model At5g35580.1 http://
www.plantgdb.org/AtGDB-cgi/getRegion.pl?dbid=2&chr
=5&l_pos= 13778674&r_pos=13781581 as correct, rather
than the revised TIS from the version 7 model. Partial pro-
tein sequencing using Edman degradation could poten-
tially resolve such ambiguities in the annotations (e.g.,
[7]), as might consideration of homologous proteins with
matching N-termini whose translation initiations sites
had previously been determined; such efforts are beyond
the scope of this work, however.

Although we were unable to achieve the performance lev-
els of a priori-known cluster-specific parameter deploy-
ment with our parameter set indexing schemes, stratified
parameter deployment can nevertheless be used effec-
tively in practice, pending certain characteristics of the test
data: if these are expected to be moderately enriched for
5'-complete sequences, then static WAM-based indexing
should recover a larger fraction of true TISs than would
homogeneous deployment. However, if complete 5'-cov-

Cluster-specific TIS mononucleotide distributionsFigure 4
Cluster-specific TIS mononucleotide distributions. 
Sequence logo plots [63], depicting site-specific nucleotide 
abundances, were generated for TIS sequences obtained 
from clusters 1 through 3 using the WebLogo utility [64]. 
The medoids computed by the k-medoids algorithm for clus-
ters 1 through 3 are TAAAAATGGAT, AAAAAATGGCG, 
and CAACAATGGCT, respectively.
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erage is expected to be quite sparse, homogeneous param-
eter deployment should be utilized instead. This affords a
complete prescription of how to most effectively identify
TISs in transcript data: 1st-ATG would be the best method
for use in data sets with a high degree of 5'-completeness,
static WAM-based PFCWLLKR in moderately enriched
data sets, and homogeneous deployment of PFCWLLKR
in data sets likely to contain few 5'-complete sequences.

We have replicated our experiments using a data set based
on the most recent GenBank annotations for the nema-
tode Caenorhabditis elegans (dated 16 February 2006), the
results of which are similar to those presented here for
Arabidopsis (available as supplementary material at [29]),
suggesting that our method is not specific to plant taxa,
and can be used for eukaryotic TIS prediction in general.
Also available as supplementary material are homogene-
ous parameter deployment-based results for a small set of
TIS-containing human genes culled from the Consensus
CDS project [46]; these results imply that the system can
be utilized for vertebrate taxa, as well.

As a demonstration of MetWAMer's applicability for post-
processing gene structures predicted by separate tools, we
refined maize gene annotations generated by the GeneSe-
qer spliced alignment program [47]. 11,742 full length
maize cDNA sequences were obtained from the Maize Full
Length cDNA project [48] and aligned via GeneSeqer to a
set of 17,163 BAC sequences downloaded from PlantGDB
[49]. These results were post-processed with MetWAMer's
PFCWLLKR routine under homogeneous parameter
deployment, using parameters trained with Arabidopsis
data. We considered only predicted protein sequences
such that at least one full length cDNA supporting its
annotation exhibited an overall GeneSeqer alignment
score of at least 0.9 and the predicted TIS occurred in or
upstream from the first exon identified by spliced align-
ment. The resulting set of 6,926 proteins was aligned
against a collection of 36,338 annotated sorghum pro-
teins downloaded from the Phytozome project [50] using
BLASTP. BLASTP output was inspected using the MuSe-
qBox program [51] in order to select only those inferred
maize proteins of at least 150 amino acids in length
whose best hit in the sorghum data, also at least 150
amino acids long, shared high-scoring segment pairs
(HSPs) of at least 20% identity apiece such that the sum
of these non-overlapping HSPs was not less than 90% of
the length of either sequence. Furthermore, at most five
amino acids at both the N-and C-termini, for both
sequences, were allowed to be disjoint from an HSP.
These 2,315 proteins were then made non-redundant
using BLASTClust with default settings. In summary, the
resultant set of 1,665 maize proteins on 1,463 distinct
BACs identifed by GeneSeqer in concert with MetWAMer
represents a reliable collection of high-quality, non-
redundant full length maize proteins that could not have

been identified by GeneSeqer alone, thereby demonstrat-
ing the practical utility of this approach to modern
genome annotation projects. Our results are available as
supplementary data at [29].

We compared annotation results of our pipeline with those
achieved by a current state-of-the-art ab initio gene predic-
tion tool, AUGUSTUS [52]. The BAC sequences containing
our annotated maize genes were fed to the program and
processed using its maize-specific parameters. We note that
a fair comparison between the two approaches is basically
impossible, since the search space probed by pure ab initio
gene finders is quite distinct from that explored by spliced
alignment annotation systems such as GeneSeqer+Met-
WAMer, so we disregard false positive predictions gener-
ated by AUGUSTUS. In summary, of the 1,665 maize
proteins we identified, AUGUSTUS correctly predicted
1,232 (≈74%) TISs and 581 (≈35%) complete gene struc-
tures. These results underscore the necessity that a complete
and robust gene annotation pipeline should integrate evi-
dence from multiple data sources, gene prediction software
and even manual gene curation results, as is achieved by
various higher-order systems including AUGUSTUS+ [53],
the Ensembl pipeline [54], EuGéne [55], and JigSaw
[56,57]. Our efforts to integrate a variety of retrained, state-
of-the-art gene finding tools using such systems in the con-
text of various plant genomes will be presented in a forth-
coming report.

Conclusion
MetWAMer performance results, particularly for PFCWL-
LKR, suggest that the method can be used with good suc-
cess for the task of annotating TISs in eukaryotes.
However, our data are not precisely comparable with
those provided by a number of previous studies, e.g., [10-
13,15,19,33], just as results between those papers are
essentially incomparable, as well. This is due to differing
experimental designs (some studies focus on the number
of ATG codons correctly classified as true or false TISs, and
others on the number of genes for which the TIS was cor-
rectly identified) and different data sets (some studies
used human genes, some cyanobacterial, etc., and these
corpora were often of very different sizes).

Comparing these published methods with our own, using
our data and experimental design, was often not practical:
the availability of software implementing methods devel-
oped for eukaryotic TIS prediction per se is very limited at
present. Among the papers addressing intrinsic TIS detec-
tion methods, only the ATGpr [12], StartScan [33],
DIANA-TIS [11], TISHunter [17], NetStart [10], and TIS
Miner [43] systems are described as "available" software.
We were only able to utilize the NetStart, TIS Miner, TIS-
Hunter and ATGpr systems to compare against our soft-
ware system, though we note that it is impossible to re-
train any of these programs. StartScan is available via a
Page 13 of 16
(page number not for citation purposes)
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web interface (currently trained only for human), but an
important distinction from our tool is that StartScan is for
TIS recognition in genomic sequences, a much different
task than that addressed by MetWAMer. Although not
mentioned in its reference paper, [11], we were able to
locate a web interface to the DIANA-TIS system at the
author's web page http://diana.pcbi.upenn.edu. However,
documentation for the interface is unavailable, and most
prohibitive is that it only allows a pictorial representation
of its predictions, which is unrealistic for processing data
sets of the scale used in this study. GeneHackerTL is men-
tioned in [19], but it is not described as being publicly
available, nor were we able to locate it in any web-accessi-
ble forum.

The paucity of freely available, functioning programs for
TIS prediction comprises an important gap in the software
infrastructure for computational biology. Our MetWAMer
package represents a well-documented, extensible, and
open source software system that can be modified for dif-
fering applications and extended with existing and novel
TIS prediction methods to support further research in this
area; this is, to our knowledge, the first such contribution
made to the eukaryotic TIS prediction community at-
large. There are certain limitations to the existing scope of
MetWAMer, however, which may present opportunities
for future work. We have explicitly ignored the possibility
of non-AUG start codons, although these are known to
occur in various eukaryotic organisms [7,8]. Also, the sys-
tem does not explicitly integrate extrinsic information,
such as homologous proteins, which is reportedly success-
ful [58]; however, due to evolutionary forces operating on
homologous genes, it is possible that translation initia-
tion sites differ, and the use of such information for pre-
diction could be misleading. We have explicitly ignored
the possibility of translation initiation proceeding by a re-
initiation mechanism, whereby a short ORF upstream of
the more significant ORF is translated, and the ribosome
resumes translation at a downstream AUG [59]. For Met-
WAMer, however, this is not a potentially obfuscating
phenomena: because the system scans for TISs in a maxi-
mal reading frame, there is no possibility to predict a start
codon upstream of the significant ORF that is succeeded
by a stop codon a short distance thereafter. Another open
problem is the prediction of alternative TISs in various
gene structures [60].

The ability to train TIS models in a species-specific man-
ner is an important strength of MetWAMer, because differ-
ences in translation initiation processes among distinct
taxa are known to occur [61]. To the extent that cross-spe-
cific TISs are representative of some target species, these
could in principle be used as a proxy if species-specific
data are not available; the performance of our system in
such a scenario will be reported in a forthcoming study in

which we refine gene structure annotations of a variety of
cereal crop genomes. Results presented here also indicate
that improvements in TIS prediction accuracy are possible
when taking the class of potential start-methionines into
account. Our software readily accommodates these needs,
and can be integrated into other gene annotation pro-
grams and/or pipelines with straightforward modifica-
tions.

Availability and requirements
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• License: ISC license

• Restrictions to use by non-academics: None

Authors' contributions
VB suggested the project and advised on the models,
experimental design, and manuscript. MES co-designed
the models with VB, implemented the software, con-
ducted experiments, and wrote the manuscript.

Additional material

Acknowledgements
This work was supported in part by NSF Grant DBI-0606909. We thank 
three anonymous reviewers whose comments improved this manuscript.

References
1. Kozak M: How do eucaryotic ribosomes select initiation

regions in messenger RNA?  Cell 1978, 15:1109-1123.
2. Preiss T, Hentze M: Starting the protein synthesis machine:

eukaryotic translation initiation.  BioEssays 2003, 25:1201-1211.
3. Kozak M: An analysis of 5'-noncoding sequences from 699 ver-

tebrate messenger RNAs.  Nucleic Acids Research 1987,
15:8125-8148.

Additional file 1
MetWAMer.v1.3. Source code for the MetWAMer package. This version 
was used to generate data reported in this study.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-381-S1.bz2]
Page 14 of 16
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-9-381-S1.bz2
http://diana.pcbi.upenn.edu
http://brendelgroup.org/SB08B/
http://www.xmlsoft.org
http://sourceforge.net/projects/immpractical/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=215319
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=215319
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14635255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14635255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3313277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3313277


BMC Bioinformatics 2008, 9:381 http://www.biomedcentral.com/1471-2105/9/381
4. Sachs A, Sarnow P, Hentze M: Starting at the beginning, middle,
and end: translation initiation in eukaryotes.  Cell 1997,
89:831-838.

5. Rakotondrafara A, Polacek C, Harris E, Miller W: Oscillating kiss-
ing stem-loop interactions mediate 5' scanning-dependent
translation by a viral 3'-cap-independent translation ele-
ment.  RNA 2006, 12:1893-1906.

6. Balvay L, Lastra M, Sargueil B, Darlix JL, Ohlmann T: Translational
control of retroviruses.  Nature Reviews Microbiology 2007,
5:128-140.

7. Abramczyk D, Tchórzewski M, Grankowski N: Non-AUG transla-
tion initiation of mRNA encoding acidic ribosomal P2A pro-
tein in Candida albicans.  Yeast 2003, 20:1045-1052.

8. Medveczky M, Németh A, Gráf L, Szilágyi L: Methionine-Independ-
ent Translation Initiation from Naturally Occurring Non-
AUG Codons.  Current Chemical Biology 2007, 1:129-139.

9. Stormo G, Schneider T, Gold L, Ehrenfeucht A: Use of the 'Percep-
tron' algorithm to distinguish translational initiation sites in
E. coli.  Nucleic Acids Research 1982, 10:2997-3011.

10. Pedersen A, Nielsen H: Neural network prediction of transla-
tion initiation sites in eukaryotes: perspectives for EST and
genome analysis.  Proceedings of the International Conference on Intel-
ligent Systems in Molecular Biology 1997, 5:226-233.

11. Hatzigeorgiou A: Translation initiation start prediction in
human cDNAs with high accuracy.  Bioinformatics 2002,
18:343-350.

12. Salamov A, Nishikawa T, Swindells M: Assessing protein coding
region integrity in cDNA sequencing projects.  Bioinformatics
1998, 14:384-390.

13. Li G, Leong T, Zhang L: Translation initiation sites prediction
with mixture Gaussian models in human cDNA sequences.
IEEE Transactions on Knowledge and Data Engineering 2005,
17:1152-1160.

14. Tech M, Meinicke P: An unsupervised classification scheme for
improving predictions of prokaryotic TIS.  BMC Bioinformatics
2006, 7:121.

15. Zien A, Rätsch G, Mika S, Schölkopf B, Lengauer T, Müller KR: Engi-
neering support vector machine kernels that recognize
translation initiation sites.  Bioinformatics 2000, 9:799-807.

16. Liu H, Han H, Li J, Wong L: Using amino acid patterns to accu-
rately predict translation initiation sites.  In silico Biology 2004,
4:255-269.

17. Li H, Jiang T: A class of edit kernels for SVMs to predict trans-
lation initiation sites in eukaryotic mRNAs.  Journal of Computa-
tional Biology 2005, 12:702-718.

18. Wang Y, Ou H, Guo F: Recognition of translation initiation sites
of eukaryotic genes based on an EM algorithm.  Journal of Com-
putational Biology 2003, 10:699-708.

19. Hirosawa M, Sazuka T, Yada T: Prediction of translation initia-
tion sites on the genome of Synechocystis sp. strain PCC6803
by hidden Markov model.  DNA Research 1997, 4:179-184.

20. Iseli C, Jongeneel C, Bucher P: ESTScan: a program for detect-
ing, evaluating, and reconstructing potential coding regions
in EST sequences.  Proceedings of the International Conference on
Intelligent Systems in Molecular Biology 1999:138-148.

21. Lottaz C, Iseli C, Jongeneel C, Bucher P: Modeling sequencing
errors by combining Hidden Markov models.  Bioinformatics
2003, 19:103-112.

22. Crow J, Retzel E: Diogenes: reliable ORF-finding in short
genomic sequences.  . 2001, unpublished

23. Nadershahi A, Fahrenkrug S, Ellis L: Comparison of computa-
tional methods for identifying translation initiation sites in
EST data.  BMC Bioinformatics 2004, 5:14.

24. Tech M, Morgenstern B, Meinicke P: TICO: a tool for post-
processing the predictions of prokaryotic translation initia-
tion sites.  Nucleic Acids Research 2006, 34:W588-W590.

25. Salzberg S, Delchur A, Kasif S, White O: Microbial gene identifica-
tion using interpolated Markov models.  Nucleic Acids Research
1998, 26:544-548.

26. Delcher A, Harmon D, Kasif S, White O, Salzberg S: Improved
microbial gene identification with GLIMMER.  Nucleic Acids
Research 1999, 27:4636-4641.

27. Kozak M: Initiation of translation in prokaryotes and eukary-
otes.  Gene 1999, 234:187-208.

28. gthXML-tools   [http://brendelgroup.org/mespar1/gthxml/]
29. MetWAMer   [http://brendelgroup.org/SB08B/]

30. Gremme G, Brendel V, Sparks M, Kurtz S: Engineering a software
tool for gene structure prediction in higher organisms.  Infor-
mation and Software Technology 2005, 47:965-978.

31. Brendel V, Xing L, Zhu W: Gene structure prediction from con-
sensus spliced alignment of multiple ESTs matching the
same genomic locus.  Bioinformatics 2004, 20:1157-1169.

32. Sparks M, Brendel V, Dorman K: Markov model variants for
appraisal of coding potential in plant DNA.  Lecture Notes in Bio-
informatics 2007, 4463:394-405.

33. Saeys Y, Abeel T, Degroeve S, Peer Y Van de: Translation initia-
tion site prediction on a genomic scale: beauty in simplicity.
Bioinformatics 2007, 23:i418-i423.

34. Bishop C: Pattern Recognition and Machine Learning New York, NY:
Springer; 2006. 

35. Mitchell T: Machine Learning Boston, MA: McGraw Hill; 1997. 
36. Russell S, Norvig P: Artificial Intelligence: A Modern Approach 2nd edi-

tion. Englewood Cliffs, NJ: Prentice-Hall; 2003. 
37. TAIR: The Arabidopsis Information Resource   [http://www.ara

bidopsis.org/]
38. TIGR XML Specification   [ftp://ftp.tigr.org/pub/data/DTDs/

tigrxml.dtd]
39. TIGR: The Institute for Genomic Research   [http://

www.tigr.org/]
40. Altschul S, Gish W, Miller W, Myers E, Lipman D: Basic local align-

ment search tool.  Journal of Molecular Biology 1990, 215:403-410.
41. de Hoon M, Imoto S, Nolan J, Miyano S: Open source clustering

software.  Bioinformatics 2004, 20:1453-1454.
42. Mathé C, Sagot MF, Schiex T, Rouzé P: Current methods of gene

prediction, their strengths and weaknesses.  Nucleic Acids
Research 2002, 30:4103-4117.

43. Liu H, Han H, Li J, Wong L: DNAFSMiner: a web-based software
toolbox to recognize two types of functional sites in DNA
sequences.  Bioinformatics 2005, 21:671-673.

44. Berardini T, et al.: Functional annotation of the Arabidopsis
genome using controlled vocabularies.  Plant Physiology 2004,
135:745-755.

45. Hebsgaard S, Korning P, Tolstrup N, Engelbrecht J, Rouzé P, Brunak
S: Splice site prediction in Arabidopsis thaliana pre-mRNA by
combining local and global sequence information.  Nucleic
Acids Research 1996, 24:3439-3452.

46. CCDS project at NCBI   [http://www.ncbi.nlm.nih.gov/CCDS/]
47. Sparks M, Brendel V: Incorporation of splice site probability

models for non-canonical introns improves gene structure
prediction in plants.  Bioinformatics 2005, 21:iii20-iii30.

48. The Maize Full Length cDNA Project   [http://www.maiz
ecdna.org]

49. Dong Q, Schlueter S, Brendel V: PlantGDB, plant genome data-
base and analysis tools.  Nucleic Acids Research 2004,
32:D354-D359.

50. Phytozome   [http://www.phytozome.net]
51. Xing L, Brendel V: Multi-query sequence BLAST output exam-

ination with MuSeqBox.  Bioinformatics 2001, 17:744-745.
52. Stanke M, Diekhans M, Baertsch R, Haussler D: Using native and

syntenically mapped cDNA alignments to improve de novo
gene finding.  Bioinformatics 2008, 24:637-644.

53. Stanke M, Schöffmann O, Morgenstern B, Waack S: Gene predic-
tion in eukaryotes with a generalized hidden Markov model
that uses hints from external sources.  BMC Bioinformatics 2006,
7:62.

54. Birney E, et al.: Ensembl 2006.  Nucleic Acids Research 2006,
34:D556-D561.

55. Schiex T, Moisan A, Rouzé P: EuGéne: an eukaryotic gene finder
that combines several sources of evidence.  Lecture Notes in
Computer Science 2001, 2066:111-125.

56. Allen J, Salzberg S: JIGSAW: integration of multiple sources of
evidence for gene prediction.  Bioinformatics 2005, 21:3596-3603.

57. Allen J, Pertea M, Salzberg S: Computational gene prediction
using multiple sources of evidence.  Genome Research 2004,
14:142-148.

58. Nishikawa T, Ota T, Isogai T: Prediction whether a human
cDNA sequence contains initiation codon by combining sta-
tistical information and similarity with protein sequences.
Bioinformatics 2000, 16:960-967.

59. Kozak M: Interpreting cDNA sequences: some insights from
studies on translation.  Mammalian Genome 1996, 7:563-574.
Page 15 of 16
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9200601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9200601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16921068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16921068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16921068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17224922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17224922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12961752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7048259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11847092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11847092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9682051
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9682051
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16526950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16526950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15724279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15724279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16108712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16108712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14633394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14633394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9330905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9330905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15053846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15053846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15053846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16845076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16845076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16845076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9421513
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9421513
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10556321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10556321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10395892
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10395892
http://brendelgroup.org/mespar1/gthxml/
http://brendelgroup.org/SB08B/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14764557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14764557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14764557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17646326
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17646326
http://www.arabidopsis.org/
http://www.arabidopsis.org/
ftp://ftp.tigr.org/pub/data/DTDs/tigrxml.dtd
ftp://ftp.tigr.org/pub/data/DTDs/tigrxml.dtd
http://www.tigr.org/
http://www.tigr.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14871861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14871861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15284102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15284102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15284102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15173566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15173566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8811101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8811101
http://www.ncbi.nlm.nih.gov/CCDS/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16306388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16306388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16306388
http://www.maizecdna.org
http://www.maizecdna.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681433
http://www.phytozome.net
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18218656
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18218656
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16469098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16469098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16469098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381931
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16076884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16076884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14707176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14707176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11159307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11159307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8679005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8679005


BMC Bioinformatics 2008, 9:381 http://www.biomedcentral.com/1471-2105/9/381
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

60. Prats A, Vagner S, Prats H, Amalric F: cis-acting elements involved
in the alternative translation initiation process of human
basic fibroblast growth factor mRNA.  Molecular and Cellular Biol-
ogy 1992, 12:4796-4805.

61. Cavener D: Comparison of the consensus sequence flanking
translational start sites in Drosophila and vertebrates.  Nucleic
Acids Research 1987, 15:1353-1361.

62. Sing T, Sander O, Beerenwinkel N, Lengauer T: ROCR: visualizing
classifier performance in R.  Bioinformatics 2005, 21:3940-3941.

63. Schneider T, Stephens R: Sequence Logos: a New Way to Dis-
play Consensus Sequences.  Nucleic Acids Research 1990,
18:6097-6100.

64. Crooks G, Hon G, Chandonia J, Brenner S: WebLogo: A sequence
logo generator.  Genome Research 2004, 14:1188-1190.
Page 16 of 16
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3822832
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16096348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16096348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2172928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2172928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15173120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15173120
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	The MetWAMer system
	Methionine log-likelihood ratios
	Weighted methionine log-likelihood ratios
	Multiplicative-based flank-contrasting with weighted methionine log- likelihood ratios
	Perceptron-based flank-contrasting with weighted methionine log- likelihood ratios
	Bayesian TIS prediction

	Data sets
	Stratified training and testing
	Test design

	Results
	Computational TIS identification in TIS-containing ORFs
	Computational TIS identification in transcripts undergoing leaky scanning
	Method performace on non-TIS-containing transcript fragments
	Comparison with other TIS prediction tools
	Performance gains by parameter set indexing
	MetWAMer as a TIS classifier
	Biological interpretation of TIS classes

	Discussion
	Conclusion
	Availability and requirements
	Authors' contributions
	Additional material
	Acknowledgements
	References

