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Essential fatty acids cannot be synthesized de novo by mammals and need to be ingested
either with the diet or through the use of supplements/functional foods to ameliorate car-
diovascular prognosis.This review focus on the molecular targets of omega 3 fatty acids and
conjugated linoleic acid, as paradigmatic molecules that can be exploited both as nutrients
and as pharmacological agents, especially as related to cardioprotection. In addition, we
indicate novel molecular targets, namely microRNAs that might contribute to the observed
biological activities of such essential fatty acids.
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INTRODUCTION
Essential fatty acids cannot be synthesized de novo by mammals
and need to be ingested either with the diet or through the
use of supplements/functional foods to ameliorate cardiovascu-
lar prognosis (Richard et al., 2009a). Indeed, most scientific and
medical societies, namely those operating in the cardiovascular
area, recommend intakes of long chain omega 3 fatty acids of
≥500 mg/day1. In addition, a quite recent FDA’s peer-reviewed
draft report on the net effect of eating fish on brain development
and heart health2 concluded that every 20 g of fish consumed per
day beyond the current average levels reduces the risk of CHD by
7%, on average. Based on its calculations, the report states that the
current level of fish consumption is responsible for averting more
than 30,000 deaths per year from CHD (Danaei et al., 2009).

While most of the cardioprotective activities of omega 3 fatty
acids have been attributed to their triglyceride-lowering effects,
the biological actions of these essential fatty acids are manifold
and produce a variety of effects that have been linked to better
cardiovascular and neurological prognosis (Richard et al., 2009a;
Lamaziere et al., 2011).

One other essential fatty acid that is receiving much attention
is conjugated linoleic acid (CLA). The term CLA refers to a group
of positional and geometric isomers of the omega 6 essential fatty
acid linoleic acid, which are mostly found in the meat of ruminants
and dairy products. This fatty acid is characterized by conjugated
double bonds that are not separated by a methylene group as in
linoleic acid. Such double bonds are usually located at positions
8 and 10, 9 and 11, 10 and 12, 11 and 13, and can occur both in
cis or trans configurations (Banni, 2002). CLA c9,t11 comprises
approximately 90% of CLA found in food, while the t10,c12 isomer
is present in trace amount and its main source are supplements
(Belury, 2002). Out the 28 known isomers of CLA, the c9,t11 and

1www.issfal.org
2http://www.xmarks.com/site/www.cfsan.fda.gov/∼frf/sea-mehg.html

t10,c12 isomers appear to be the most biologically active ones
(Kennedy et al., 2010). In animal studies, CLA has been shown
to protect against cancer and atherosclerosis, stimulate immune
functions, normalize impaired glucose tolerance in type-2 diabetes
and induce changes in body mass composition (Bhattacharya et al.,
2006). It is noteworthy that there is considerable variation among
studies and that the beneficial effects observed in some animal
models have not been fully reproduced in humans. Adverse effects
of CLA intake, such as liver steatosis in mice (Clement et al., 2002)
and insulin resistance in animal models and humans (Riserus et al.,
2002), have also been reported.

In this review, we will focus on the molecular targets of omega
3 fatty acids and CLA, as paradigmatic molecules that can be
explored both as nutrients and as pharmacological agents, espe-
cially as related to cardioprotection. In addition, we indicate novel
molecular targets, namely microRNAs that might contribute to
the observed biological activities of such essential fatty acids.

OMEGA 3 FATTY ACIDS
DIRECT MODULATORY ACTIVITIES OF OMEGA 3 FATTY ACIDS
Due to their physicochemical characteristics, omega 3 fatty acids
alter the fluidity of cell membranes, in addition to altering specific
areas such as lipid rafts and caveolae (Raza, 2010). In terms of car-
dioprotection, omega 3 fatty acids reduce platelet aggregability by
both lowering the amount of substrate available to cyclooxygenase
(COX), namely arachidonic acid, and by directly inhibiting COX
itself. This latter action has been hypothesized to be dependent
of cellular peroxide tone (Smith, 2005). The net result is a lower
production of pro-thrombotic thromboxanes (TxA2 and TxB2)
generated by platelets and of pro-inflammatory leukotrienes (LTB4

and LTC4), generated by leukocytes (Richard et al., 2009a).

DIRECT ANTI-INFLAMMATORY ACTIONS
In addition to reducing the production of pro-inflammatory lipid
mediators, omega 3 (and some omega 6) fatty acids reduce the pro-
duction of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α;
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Kang and Weylandt, 2008), with important consequences on, e.g.,
the immune system and its inflammatory sequelae. It is worth reit-
erating that dietary or pharmacological provision of essential fatty
acids alters membranes’ composition and, consequently, the gen-
eration of lipid mediators and second messengers. In turn, these
diet-driven alterations lead to modified expression of inflamma-
tory genes, via activation of transcription factors (Leaf et al., 2008).
In terms of direct cellular actions, omega 3 fatty acids, namely
DHA, inhibit COX-2 in endothelial cells, resulting in lower pro-
duction of prostaglandins at inflammatory sites (Massaro et al.,
2006). Given the relevant role that inflammation and COX-2
play in atherogenesis (Burleigh et al., 2002), these activities are
suggestive of an athero-protective role of omega 3 fatty acids,
even though, as mentioned above, this is still an unresolved issue
(Burleigh et al., 2002). These anti-inflammatory effects translate
into clinical outcomes that are, indeed, mediated by the regula-
tion of the expression of signal transduction genes and genes of
pro-inflammatory cytokines (Richard et al., 2009a). It should be
underscored that most of the anti-inflammatory effects of omega
3 fatty acids have been hypothesized following in vitro observa-
tions. In vivo data are accumulating (Ferrucci et al., 2006; Serhan,
2009; Spite et al., 2009), but they are likely too scant to prove
anti-inflammation beyond doubt.

High intakes of saturated fatty acids (SFAs) have been associ-
ated with increased inflammation and obesity-associated insulin
resistance, via activation of different pathways including Toll-like
receptor 4 (TLR4; Shi et al., 2006) and activation of the Jun
N-terminal kinase (JNK) through altering c-Src membrane dis-
tribution (Holzer et al., 2011). SFAs, but not unsaturated fatty
acids, induce c-Src partitioning and activation, leading to JNK
activation. It is noteworthy that JNK activation impairs insulin
signaling and mediate obesity-associated insulin resistance (Hiro-
sumi et al., 2002). Some recent investigations addressed the issue of
why unsaturated fatty acids do not exert these detrimental effects
and several mechanisms have been proposed. For example, Holzer
et al. (2011) recently described that, unlike SFAs, unsaturated fatty
acids prevent c-Src membrane partitioning and activation, block-
ing JNK activation. Moreover, Oh et al. (2010) recently discovered
an omega 3 fatty acid receptor/sensor, i.e., the G protein-coupled
receptor 120 (GPR120). Stimulation of GPR120 by DHA inhibited
either the TLR4 ligand LPS or TNF-α to stimulate inflamma-
tory response in macrophage and adipocytes. This effect was
mediated through β-arrestin2, causing its association to TAK1
binding protein (TAB1) and, therefore, blocking the association
of TAK1/TAB1, in turn resulting in inhibition of TAK1 phospho-
rylation and downstream activation through nuclear factor-κB
(NFκB) and JNK (Oh et al., 2010). In brief, activation of GPR120
by DHA inhibits multiple inflammation cascades in macrophages
and reverses insulin resistance in obese mice (Saltiel, 2010).

MOLECULAR TARGETS OF ANTI-ARRHYTHMIC ACTIVITY
The Billman et al. (1999) group first demonstrated that omega
3 fatty acids exert anti-arrhythmic activities in vivo. Subsequent
molecular studies investigated the cellular mechanisms underlying
such effects. Apparently, the anti-arrhythmic activities of omega
3 fatty acids are mediated by the inhibition of the fast, voltage-
dependent sodium current and the L-type calcium currents (Leaf

et al., 2008). This eventually translates into a reduction of sud-
den death, as reported in human studies. Notwithstanding the
widespread notion that long chain omega 3 fatty acids have anti-
arrhythmic activities, it must be noted that, in a recent meta-
analysis of three randomized clinical trials (RCTs) in patients
with implantable cardioverter defibrillator, Brouwer et al. (2009),
reached the conclusion that omega 3 fatty acids do not confer pro-
tection against recurrent life-threatening ventricular arrhythmia.
One of the potential explanations has been provided by Jenkins
et al. (2008), who reviewed the heterogeneity of omega 3 trials,
including those on arrhythmia. Similar conclusions were reached
by Leon et al. (2008), who also included sudden cardiac death.
In addition, some people might actually need to avoid omega 3
supplementation, namely those with angina and those with estab-
lished arrhythmia (Jenkins et al., 2008). This apparent conundrum
is yet to be resolved and might be largely due to heterogeneity of
the doses, of sample sizes, and of trials’ duration.

PRO- OR ANTI-OXIDANTS?
A rather new area of investigation in the field of omega 3 fatty acids
is their direct actions on reactive oxygen species (ROS)-producing
enzymes. Indeed, omega 3 fatty acids are prone to oxidation due
to their high degree of unsaturation. Therefore, there is concern
that the intake of highly unsaturated fatty acids might promote
systemic oxidative stress. Within this context, it is noteworthy that
localized increased lipid peroxidation, such as that observed in
hepatocytes, may have beneficial effects on lipid metabolism (Pan
et al., 2004) as better described below. Indeed, omega 3 fatty acids
are easily oxidizable when in bulk; accordingly, manufacturers
add considerable amounts of antioxidants (usually tocopherols)
to their pharmaceutical preparations and to food items.

Recent research has addressed this issue, both in vivo (to assess
the potential pro-oxidant activities of omega 3 fatty acids) and
in vitro (to clarify the mechanisms of action). Human studies
reported by three separate groups clearly showed that supplemen-
tation with fish oil leads to a decrease in the urinary excretion of
isoprostanes, i.e., the current gold standard of systemic oxidative
stress (Higdon et al., 2000, 2001; Mori, 2004; Mori and Beilin, 2004;
Mas et al., 2010). While these antioxidant activities of omega 3 fatty
acids appear to be counter-intuitive, some molecular studies per-
formed in vascular cell cultures are clarifying the mechanisms by
which EPA and DHA actually decrease oxidative stress (Richard
et al., 2008). In particular, much attention has been paid to the
major contributors to free radical and ROS generators, i.e., the
group of NADPH oxidases, collectively referred to as NOX (Guzik
and Harrison, 2006). Indeed, accumulating evidence points to the
fact that – under normal physiological conditions – living cells
contain several layers of antioxidants, ranging from enzymatic
systems, e.g., superoxide dismutase and catalase to medium- and
small-molecular size molecules such as vitamins E and C and glu-
tathione (Visioli and Hagen, 2011). Therefore, rather than adding
further antioxidants to this array, one strategy would be that of
preventing the production of ROS and free radicals in excess
of the innate antioxidant defense. In this regard, modulation of
NOX might prove useful in counteracting oxidative damage to
macromolecules, especially at the mitochondrial level, where the
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majority of oxidative species are produced (Visioli and Hagen,
2011).

Already, six (to the best of our knowledge; Higdon et al., 2000,
2001; Mori, 2004; Mori and Beilin, 2004; Guillot et al., 2009; Mas
et al., 2010) human studies have shown that the ingestion of omega
3 fatty acids results in a lower excretion of markers of oxidation,
namely F2-isoprostanes. These in vivo data stimulated research on
the mechanisms of action of omega 3 fatty acids and lead to a
series of investigations that revealed direct inhibitory activities of
DHA on NOX, namely NOX2 and NOX4 (Richard et al., 2009b). In
addition, the down-modulation of cellular peroxide tone by DHA
associates with inhibition of secreted phospholipase A2 (sPLA2)
activity (Richard et al., 2009b). Notably, sPLA2 is an independent
risk factor of cardiovascular disease (Boekholdt et al., 2005) and
its modulation by DHA adds to the elucidation of the mechanisms
and pathways through which DHA and omega 3 fatty acids exert
cardioprotective activities.

Still linked to anti-oxidation, DHA is used therapeutically to
treat hypertriglyceridemia because it reduces VLDL levels. The
molecular mechanism proposed for this effects is that DHA (and
EPA) increase the degradation of ApoB in hepatocytes (Wang et al.,
1993). This effect is mediated by the stimulation of a post-ER,
pre-secretory proteolysis of newly synthesized ApoB 100 induced
by either the ability of DHA to increase cellular content of lipid
peroxides in hepatocytes (Pan et al., 2004) – where superoxide
may play an important role (Andreo et al., 2011) – or by induc-
tion of autophagy (Caviglia et al., 2011). Therefore, the peroxide
level has a tight relationship to the level of degradation and the
regulation of VLDL production and increasing autophagy, e.g.,
following ER stress might reduce VLDL secretion (Andreo et al.,
2011; Caviglia et al., 2011). The role of DHA and EPA in modu-
lating intracellular peroxide tone is as yet to be fully elucidated,
but might remarkably contribute to their lipid-lowering activities
(Figure 1).

MOLECULAR TARGETS OF CONJUGATED LINOLEIC ACID
As mentioned, among the polyunsaturated fatty acids that are
currently receiving much attention for their putative healthful
activities, CLA has also been investigated at the molecular level.

Conjugated linoleic acid isomers are dietary fatty acids that
modulate gene expression in many cells type (Black et al., 2002;
Churruca et al., 2009). At a molecular level, the actions of CLA
lie predominantly on the now established CLA-mediated activa-
tion of peroxisome proliferator activated receptors (PPARs, see
below) α, γ, and δ and subsequent “switching on and/or off” of
target genes to elicit multiple biochemical pathways (Benjamin and
Spener, 2009). During gene regulation, PPARs bind to the peroxi-
some proliferator responsive element (PPRE) on the nuclear DNA
as heterodimers with one of the α, β, or γ subtypes of the retinoid
X receptor (RXR) which needs to be activated by cis-9-retinoic
acid in order to affect gene transcription (Benjamin and Spener,
2009).

In addition to the PPAR-mediated actions, various inter-
connected downstream molecular mechanisms exist in vivo and
account for many of the reported biological functions of CLA.
Moreover, PUFAs such as CLA and their various metabolites can
act in the nucleus, in conjunction with other nuclear receptors

and transcription factors, to affect the transcription of a variety of
genes (Kennedy et al., 2010). These include hepatocyte nuclear
factor (HNF)-4α, and liver X receptor (LXR), NFκB and the
transcription factors sterol-regulatory element binding protein
(SREBP; Sampath and Ntambi, 2005). Mitogen-activated protein
kinase/extracellular signal-related kinase (MEK/ERK) signaling
through the autocrine/paracrine actions of interleukins-6 and 8
opens up another important route for adipocyte delipidation by
CLA (Brown et al., 2004). It has been shown that specific isomers
of CLA have distinct biological activities and different effects on
gene expression (Pariza et al., 2001; Ochoa et al., 2004; Herrmann
et al., 2009). Herrmann et al. (2009) investigated isomer-specific
effects of CLA on gene expression in human adipose tissue. Differ-
ent genes involved in lipid and glucose metabolism were analyzed
with microarray technology.

FATTY ACID TRANSPORT AND METABOLISM
ABCA1 belongs to the large ATP-binding cassette (ABC) trans-
porter family. This transmembrane protein transports cholesterol
and phospholipids to lipid-free or lipid-poor apolipoprotein A-I
(Salehipour et al., 2010). A study on human THP-1 macrophage-
derived foam cells showed that a CLA mixture did not induce any
statistically significant change of neither ABCA1 expression nor
of LXRα (LXR) expression, a major regulator of macrophage lipid
metabolism. In contrast, an interesting study by Ecker et al. (2009)
demonstrated, for the first time, that a specific CLA isomer, i.e., t9,
t11 CLA is an agonist of LXRα in human macrophages and leads to
a significant modulation of ABCA1 and ABCG1 transcription, thus
causing enhanced cholesterol efflux to apolipoprotein A1 and high
density lipoproteins. Another ABC transporter is ABCA9, which
is regulated by cholesterol in an opposite direction to ABCA1
(Wenzel et al., 2007). It has been shown that a CLA mixture and
t10,c12 CLA significantly downregulate ABCA9 expression in adi-
pose tissue, maybe due to high influx of cholesterol in adipocytes
(Herrmann et al., 2009).

CD36 is a lipid transporter and a scavenger receptor for oxidized
LDL (Schwenk et al., 2010). It’s known that CLA can modulate
expression of CD36 on the macrophage surface (Stachowska et al.,
2010). Specifically, only c9,t11 CLA, but not t10,c12 CLA slightly
upregulated CD36 expression (Stachowska et al., 2010). Con-
versely, in human adipose tissue, both isomers induced decreased
expression of this gene. It is noteworthy that plasma glucose levels
play an important role in the regulation of CD36 expression in
adipose tissue (Chen et al., 2006). CA3 (carbonic anhydrase 3) is a
key enzyme in fatty acid synthesis that is downregulated by t10,c12
CLA in adipose tissue (Herrmann et al., 2009). This result might
partly explain the fat mass reduction observed in other studies
(Whigham et al., 2007).

The LDLR (LDL receptor) regulates plasma LDL cholesterol
levels. A study from Degrace et al. (2003) showed that LDLR
expression was strongly induced in mouse liver upon t10,c12
CLA administration and no effect upon c9,t11 CLA was noticed.
Whereas another study on adipose tissue demonstrated that LDLR
was highly expressed after both CLA mixture and t10,c12 CLA
treatment (Herrmann et al., 2009). These data suggest that CLA
may upregulate LDLR expression to promote the clearance of LDL
cholesterol from the circulation.
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FIGURE 1 | Selected essential fatty acids molecular mechanisms. In the
liver, apolipoprotein B100 (ApoB 100) is synthesized and translocated into the
endoplasmic reticulum (ER) for appropriate folding and stabilization. After
proper lipidation, primordial VLDL (pre-VLDL) particles are formed and
transported to the Golgi for further maturation. VLDL are further lipidated and
mature VLDL are secreted to the circulation as a triglyceride rich lipoprotein
(mature VLDL). DHA produces a post-ER, pre-secretory proteolysis of apoB
100 which lowers VLDL secretion and reduce hypertriglyceridemia.
DHA-induced lipid peroxides have been suggested to induce ApoB 100
aggregation and further degradation by autophagy. Superoxide radicals (SO)
might be a major player in DHA-induced ApoB 100 degradation. In
macrophages and fat cells, saturated fatty acids induce inflammation and
insulin resistance. The G protein-coupled receptor 120 (GPR120) is the
receptor through which DHA inhibits multiple inflammation cascades in
macrophages and reverse insulin resistance. Long chain ω-3 fatty acids,

including DHA, activate GPR120 which through the β-arrestin pathway finally
inhibit the NFκB and JNK-induced pro-inflammatory cytokines secretion. The
specific isomer trans-9, trans-11 of conjugated linoleic acid (t9, t11 CLA) is
proposed to activate the nuclear receptor liver X receptor (LXR) and induce
cellular cholesterol efflux by increasing the expression of the ATP-binding
cassette transporters ABCA1 and ABCG1. Certain unsaturated fatty acids
degrade ABCA1 protein through the phospholipase D2 and protein kinase C
delta (PKCδ) pathway. The isomer cis-9, trans-11-CLA induce the scavenger
receptor CD36 expression in macrophages and repress its expression in
adipocytes. In adipocytes different CLA isomers have been proposed to induce
the expression of the low density lipoprotein receptor (LDLR) or the glucose
transporter type 4 (GLUT4) and repress the expression of CD36, cAMP
responsive element binding protein 5 (CREB5) or ABCA9. CLA effects through
the transcription factor peroxisome proliferator activated receptors (PPARs)
which trigger multiple biochemical pathways have also been described.

Other target genes involved in lipid metabolism and upreg-
ulated in adipose tissue by CLA (CLA mixture and t10,c12 CLA
treatment) are hormone sensitive lipase (LIPE), fatty acid synthase
(FASN), steraoyl-CoA desaturase (SCD), and fatty acid desaturase
1 (FADS1; Herrmann et al., 2009).

The transcription factor PPARγ is a key regulator in adipose
tissue and controls several genes in lipid and glucose metabo-
lism. It is also involved in the regulation of genes modulated
by CLA treatment. In rodents, t10,c12 CLA supplementation
decreased the expression of PPARγ and its target genes (LaRosa
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et al., 2006; Poirier et al., 2006; Liu et al., 2007). In mature
in vitro-differentiated primary human adipocytes or in mature
3T3-L1 adipocytes, t10,c12 CLA treatment led to a substantial
decrease in the expression and activity of PPARγ (Kennedy et al.,
2008), a decrease in PPARγ target genes, and a decrease in lipid
content (Brown et al., 2004). Interestingly, Herrmann et al. (2009)
showed that there is a genotype specific effect of CLA isomers on
PPAR gene expression in human adipose tissue. This might explain
some of the different results obtained in different human studies
investigating the influence of CLA.

cAMP responsive element binding protein 5 (CREB5) is a tran-
scription factor involved in tumorigenesis of endocrine tissues
and in different forms of leukemia (Mayr and Montminy, 2001).
A study on obese women showed that CREB5 expression was
higher in omental adipose tissue of women with metabolic syn-
drome compared to that of healthy women (Bouchard et al., 2007).
Upon t10,c12 CLA intervention expression levels of this gene were
repressed (Herrmann et al., 2009).

One current field of study is that of insulin signaling as affected
by CLA. As an example, insulin-like growth factor-1 (IGF1) reg-
ulates adipogenesis, stimulates lipid oxidation, reduces protein
oxidation, and enhances insulin sensitivity in humans (Hussain
et al., 1993). Upon treatment with t10,c12 CLA, IGF1 is less
expressed than in controls (Herrmann et al., 2009). These results
are in line with findings in human colon cancer cells incubated
with a CLA mixture (Kim et al., 2003), in which a downregulation
of the IGF system was seen.

Glucose transporter type 4 (SLC2A4; solute carrier family 2,
member 4) has also been shown to be modulated by CLA. In
mice fed with a c9,t11 CLA diet the expression in adipose tissue
of plasma membrane GLUT4 and of insulin receptor is increased
(Moloney et al., 2007). However, it has been shown that c9,t11
CLA had no effects on GLUT4 expression in human preadipocytes
(Brown et al., 2003) and t10,c12 CLA repressed GLUT4 in 3T3-L1
cells (Granlund et al., 2005).

In summary, a number of studies demonstrated that CLA exerts
its effects by modulating the expression of several genes, such as
those involved in fatty acid transport and metabolism, insulin sig-
naling and glucose uptake pathways, inflammation, and energy
expenditure. The mechanisms of action of CLA on its molec-
ular targets are, therefore, manifold and clearly require further
investigation, especially in humans.

EFFECTS OF ESSENTIAL FATTY ACIDS ON LIPID PROFILE:
MOLECULAR MECHANISMS
PUFAs AND MOLECULAR MODULATION OF CHOLESTEROL
METABOLISM: FOCUS ON HDL
HDL is formed by the lipidation of apoAI, mediated by several
ABC transporters. ABCA1 binds to apoAI and effluxes cholesterol
and phospholipids to apoAI; then, this partially lipidated apoAI
particle is further lipidated by ABCG1 and/or ABCG4. Abca1 and
Abcg1 transcription is regulated by nuclear LXR and RXR, which
form heterodimers and are activated by oxysterols and retinoic
acid, respectively. Abca1 transcription is also regulated by cAMP
by different mechanisms than the LXR/RXR system. ABC trans-
porters are molecular targets of interest since modulating their
expression can alter HDL biogenesis.

The effect of fatty acids, saturated, or unsaturated, on ABCAI
has been studied in vitro in different cell lines, macrophages, liver
cells, and intestinal cells. Oleic acid, a monounsaturated fatty acid,
decreased cholesterol efflux from macrophages to apoA1 when
ABCA1 was induced by cAMP or LXR/RXR agonists (Wang and
Oram, 2002). The effects of CLA have been discussed above. In
cAMP-treated macrophages unsaturated fatty acids palmitoleate,
oleate, linoleate, and arachidonate decreased apoAI mediated cho-
lesterol and phospholipid efflux, but SFAs octanoate, palmitate,
and stearate had no effect on lipid efflux (Wang and Oram, 2002).
This reduced efflux of cholesterol and phospholipids was due to
an increased degradation of ABCA1 through a signaling pathway
involving the activation of phospholipase D2 (Wang and Oram,
2005) and protein kinase C delta (Wang and Oram, 2007). In
concordance, in hepatic HepG2cells, unsaturated fatty acids such
as palmitoleate, oleate, and linoleate decreased apoA1 mediated
cholesterol efflux and decreased ABCA1 mass, and SFAs such as
palmitate and stearate had no effect on apoAI mediated cholesterol
efflux and ABCA1 mass (Yang et al., 2010). Murthy et al. (2004)
investigated cholesterol efflux from Caco-2 monolayers treated
with a potent LXR agonist T0901317 and found that unsaturated
fatty acids oleate, linoleate, arachidonate, and docosahexaenoate
also decreased cholesterol efflux to HDL. These decreases in cho-
lesterol efflux were also associated to a decrease in ABCA1 protein
except for oleic acid, where ABCA1 was not affected. Oleic acid
decreased cholesterol efflux by diverting cholesterol away from
ABCA1 to acyl-CoA:cholesterol acyltransferase (ACAT) resulting
in an increase in cholesterol esterification (Murthy et al., 2004).
However, in LXR activated Caco-2 monolayers the SFA stearate
decreased cholesterol efflux (Murthy et al., 2004), contrary to
what was seen in macrophages in which SFAs had no effect on
cholesterol efflux (Wang and Oram, 2002). This effect can be
explained by the findings of Wang et al. (2004b), who showed
that the SFAs palmitate and stearate also destabilize ABCA1 when
Abca1 is induced by LXR/RXR ligands instead of cAMP. This was
associated with increased palmitate and stearate desaturation by
SCD, another gene product induced by LXR/RXR ligands. Taken
together these results indicate that ABCA1 protein degradation
is regulated by SFAs. The mechanism by which this occurs was
shown to be due to the activation of phospholipase D2 which
serves to generate diacylglycerol subspecies enriched in unsatu-
rated fatty acids that function as signaling molecules to activate
protein kinase C delta, thus increasing serine phosphorylation and
the degradation of ABCA1 (Wang and Oram, 2005, 2007).

Little is known on the effects of fatty acids on other ABC
transporters involved in HDL biogenesis. Human macrophages
treated with the unsaturated fatty acid palmitate increased Abca1
and Abcg1 transcription as well as ABCA1 and ABCG1 protein,
but linoleic acid showed a decrease in expression and mass of
the same proteins (Mauerer et al., 2009). These results suggest
that ABCA1 and ABCG1 are regulated by unsaturated fatty acids
through different mechanisms. However, the molecular targets of
fatty acids in ABCG1 and ABCG4 regulation still need to be deter-
mined. Indeed, it is thought that ABCG1 forms a homodimer
with itself or a heterodimer with ABCG4 in the plasma mem-
brane to facilitate lipid efflux from cells to HDL (Wang et al.,
2004a).
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Moreover, ABCA1 and ABCG1 or ABCG4 were shown to
act sequentially to remove cellular cholesterol and generate
cholesterol-rich HDL (Vaughan and Oram, 2006).

NOVEL MOLECULAR TARGETS OF ESSENTIAL FATTY ACIDS:
microRNA
miRNAs
First described as regulators of developmental processes in worms
(Lee et al., 1993; Wightman et al., 1993), miRNAs have now
emerged as important regulators of different cell function and
processes, both in health and disease. miRNAs are endogenous
small (∼22 nt long) non-coding regulatory RNAs that – post-
transcriptionally – regulate gene expression of different pro-
teins through sequence-specific complementary binding to the 3′
untranslated regions (UTR) of the target messenger RNA (mRNA)
(Bartel, 2009), inhibiting the translation and/or inducing the
degradation of specific target mRNAs. However, the up-regulation
of mRNAs or their binding to other regions within the target
mRNAs have also been described (Vasudevan et al., 2007). Even
though several abundant miRNAs are ubiquitously expressed,
certain miRNAs are expressed and function in a cell/tissue-type
specific manner, depending on developmental stage, or even asso-
ciated to a particular physiological process (Landgraf et al., 2007).
Far from being “evolutionary junk,” miRNAs and other non-
coding RNAs form the primary control of phenotypic diversity
between species during human evolution (Mattick, 2011).

During the past decade, much has been learned about the basic
mechanisms of miRNA biogenesis, function, and decay (for details
see a review by Krol et al., 2010). Briefly, in most mammals, miR-
NAs are transcribed by RNA polymerase II from transcript from
independent miRNAs genes or from introns of protein-coding
genes, generating a primary precursor long miRNA (pri-miRNA).
The pri-miRNA is then processed by the sequential action of two
members of the RNase III family of enzymes, Drosha (in the
nucleus) and Dicer (in the cytoplasm). The Drosha product, a
∼70 nt pre-miRNA, is exported to the cytoplasm by Exportin 5
where Dicer cleave and yield an ∼20 nt long miRNA/miRNA∗
duplex. The mature miRNA is then incorporated into the cyto-
plasmic RNA-induced silencing complex (RISC) associated to the
argonaute (AGO) protein guiding the complex to the complemen-
tary target sites in mRNA usually in their 3′UTRs and induce their
translational repression or deadenylation and degradation (Bartel,
2009; Krol et al., 2010). Non-canonical pathways of miRNA bio-
genesis have also been described (Cheloufi et al., 2010; Yang and
Lai, 2011).

“MICRO-MANAGEMENT” OF CELLULAR RESPONSE BY
miRNAs
As mentioned, miRNAs regulate a variety of developmental and
physiological processes. Therefore, reports of changes in their
expression due to diets or their specific components opened an
exciting new area of investigation. In the context of this review,
there is increasing evidence that different fatty acids can exert cer-
tain biological effects through the direct modulation of miRNA
expression. As an example, it was reported that unsaturated fatty
acids may increase the expression of miR-21 in hepatocytes and,
thus, inhibit the expression of the miR-21 target phosphatase

and tensin homolog (PTEN; Vinciguerra et al., 2009). PTEN is
a well recognized tumor suppressor gene (Li et al., 1997) and
changes in its liver expression may lead to metabolic disorders,
including insulin resistance, inflammation, steatosis, and cancer
(Vinciguerra and Foti, 2008; Peyrou et al., 2010). In the same direc-
tion, ingestion of long chain omega 3 fatty acids protects the rat
colon from carcinogen-induced miRNA dysregulation (Davidson
et al., 2009). In synthesis, different miRNAs seems to be differ-
entially expressed by effect of fish oil supplementation. However,
further studies need to be performed in order to elucidate the
effects of essential fatty acids on miRNAs.

In cancers such as gliomas, there is some evidence that certain
PUFAs, including EPA and DHA, have tumoricidal action (Leaver
et al., 2002). The involvement of miRNAs in these effects was sug-
gested by the observation that in vitro treatment of glioma cells
with DHA and other polyunsaturated fatty acids led to an overex-
pression of certain apoptotic genes, which may results from their
reduced expression of miRNAs that target these genes (Farago
et al., 2011). Some of the miRNAs differentially expressed by
PUFA in these cell types include: miR-34, -25, -17, -26a, -29c, -
31, -200a, -206, -140, and miR-323. Many of the predicted and
validated targets of these miRNAs are genes involved in apoptosis
(Farago et al., 2011). To date, we do not know whether the effects of
omega 3 fatty acids on miRNAs expression are the result of a direct
effect or are mediated by other metabolites arising from essen-
tial fatty acids. Examples of the latter are lipid mediators such as
resolvins, lipoxins, protectins, and maresins, which are synthesized
endogenously from essential fatty acids precursors during inflam-
mation (Serhan, 2009). Interestingly, some of these proresolving
lipid mediators can regulate genes involved in inflammation res-
olution by modulating specific miRNAs (Fredman and Serhan,
2011; Recchiuti et al., 2011).

As far as CLA is concerned, it was recently described that mice
receiving CLA and standard- or high-fat diets selectively modified
the expression of certain miRNAs in their white adipose tissue
(Parra et al., 2010). miR-143, miR-107, miR-221, and miR-222
were suggested to be directly modulated by CLA supplementa-
tion. Validated target of these miRNAs related to different adipose
tissue function include caveolin, which is targeted by miR-103/107
(Trajkovski et al., 2011) and regulate insulin sensitivity; ERK5
and other proteins involved in adipocyte differentiation which
are targets of miR-143 (Esau et al., 2004; Li et al., 2011); the
cyclin-dependent inhibitor CDKN1B and the key transcription
factor involved in adipocyte differentiation CCAAT/enhancer-
binding protein beta CEBPB which are targeted by miR-221/222
in adipocyte differentiation (Skarn et al., 2011).

Finally, it is also important to note that miRNAs can be detected
circulating in blood, serum, plasma, or different biological fluids
as a result of cellular injury or secretion (Kosaka et al., 2010).
Whether essential fatty acids can induce the secretion of a specific
miRNAs that circulates and exert their effects in other tissue tar-
gets has not been reported as yet, but will be eventually assessed in
the future.

FUTURE PERSPECTIVES ON miRNAs AS TARGETS OF FATTY ACIDS
The ability of individual miRNA to modulate postranscriptionally
the expression of several proteins within a specific disease pathway
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FIGURE 2 | Proposed role of essential fatty acids in “micromanaging”

molecular actions. miRNAs are transcribed from specific transcripts
generating a primary precursor (Pri-miR). In the canonical pathway, the pri-miR
is processed by the family of RNase III enzyme Drosha, generating the
precursor hairpin (pre-miR) which is exported to the cytoplasm by Exportin 5
protein. In the cytoplasm, the second RNase III enzyme (Dicer) further
cleaves the Pre-miR, generating the double strand ∼20-bp miRNA/miRNA∗
duplex. One strand of the miRNA/miRNA∗ duplex is preferentially
incorporated into the miRNA-induced silencing complex (miRISC), whereas
the other strand (passenger or miRNA∗) is degraded. Argonaute 2 (Ago2)
containing miRISC bind by base-pair to their target mRNAs and induce their
translational repression or deadenylation and degradation. Conjugated linoleic
acid (CLA) supplementation has been proposed to modulate the expression

of different miRNAs in adipocytes, including miRNA-107, -143, -221, and
miRNA-222 and postranscriptionally regulate the expression of different
proteins involved in insulin signaling and adipocyte differentiation.
DHA – through the resolving D1 (RvD1) pathway – may also modulate the
resolution of acute inflammation. Resolvins are enzymatically synthesized
from essential fatty acids, including DHA, during inflammation. Binding of
RvD1 to its receptors ALX and/or GPR32 modulates the expression of
different miRNAs that may be involved in this process. Different other studies
propose that DHA and other polyunsaturated fatty acids modulate the
expression of different miRNA in hepatocytes, glioblastoma or colon cancer
cells related to different biological processes. miRNA-21 postranscriptionally
regulates the tumor suppressor phosphatase and tensin homolog (PTEN)
involved in different pathological processes.

enable non-coding RNAs to modulate cellular response in a way
that is different from that of classical pharmacological therapies.
Pharmacological therapies based on the modulation of miRNAs
levels – for example by using miRNAs inhibitors or mimics – are
now being developed (Lanford et al., 2010; Rayner et al., 2011).
The exciting possibility exists to use specific dietary components,
e.g., fatty acids to modulate miRNAs.

Despite recent advances in the identification of new regulatory
non-coding RNAs, RNA sequencing of the human transcriptome
(Mercer et al., 2011) revealed a very complex biological regula-
tion of the human genome that need to be further character-
ized. Current projects such as the encyclopedia of DNA elements
(ENCODE) project – to decipher all functional elements in our
genome (Birney et al., 2007) – will make important contributions
to the understanding of the functions of our genome, particularly
in the area of non-coding RNAs. Thereafter, understanding the
modulation by essential fatty acids of the expression of spe-
cific miRNAs and other non-coding RNAs will require further
investigation both at coding and non-coding levels. The effects

of essential fatty acids on miRNAs and other ncRNAs expression
are just beginning to being explored, but we can envisage future
exciting studies that will elucidate the precise role of essential fatty
acids in ncRNA modulation (Figure 2).

CONCLUSION
The molecular activities of essential fatty acids are manifold and go
beyond their mere modulation of membrane composition. Thanks
to the development of molecular biology techniques and a bet-
ter understanding of the human genome, we shall foresee great
advancements in our understanding of how fatty acids modulate
human biochemistry and physiology. Future discoveries will allow
tailoring dietary and pharmacological advice to individuals, which
will translate into better preventive and therapeutic actions.
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