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ABSTRACT

The complexity of mammalian transcriptomes is
compounded by alternative splicing which allows
one gene to produce multiple transcript isoforms.
However, transcriptome comparison has been
limited to differential analysis at the gene level
instead of the individual transcript isoform level.
High-throughput sequencing technologies and
high-resolution tiling arrays provide an unprece-
dented opportunity to compare transcriptomes at
the level of individual splice variants. However,
sequence read coverage or probe intensity at each
position may represent a family of splice variants
instead of one single isoform. Here we propose a
hierarchical Bayesian model, BASIS (Bayesian
Analysis of Splicing IsoformS), to infer the differen-
tial expression level of each transcript isoform in
response to two conditions. A latent variable was
introduced to perform direct statistical selection of
differentially expressed isoforms. Model parameters
were inferred based on an ergodic Markov chain
generated by our Gibbs sampler. BASIS has the abil-
ity to borrow information across different probes
(or positions) from the same genes and different
genes. BASIS can handle the heteroskedasticity of
probe intensity or sequence read coverage. We
applied BASIS to a human tiling-array data set and
a mouse RNA-seq data set. Some of the predictions
were validated by quantitative real-time RT–PCR
experiments.

INTRODUCTION

It has been estimated that more than 90% of human genes
are alternatively spliced (1,2). Multiple transcript isoforms
produced from a single gene can lead to protein isoforms

with distinct functions (3). Alternative splicing (AS) is
widely involved in different physiological and pathological
processes. Different tissues exhibit different AS patterns,
and malfunctions in AS regulatory factors result in
various developmental defects (4–8). Abnormal mRNA
splicing contributes to many human diseases (9–11).
Identifying differentially expressed distinct transcript iso-
forms is crucial to understanding transcriptional and post-
transcriptional regulation of various processes. Thus,
there is an urgent need to study the differences between
transcriptomes at the individual transcript isoform level.
Although full-length cDNA sequencing is a potential
approach, it is expensive and labor-intensive, making tran-
scriptome comparison an elusive goal.
High-resolution tiling arrays and high-throughput

sequencing technologies (e.g. RNA-seq) provide an
unprecedented opportunity to compare transcriptomes at
the individual splice variant level. Probes of tiling array
are fixed, whereas RNA-seq provides a collection of ran-
domly distributed reads. In the two platforms, each tran-
script is represented by many probes or covered by a
large number of sequence reads. However, a short probe
(�25-mer for Affymetrix chips or �60-mer for NimbleGen
chips) matches only a small portion of the transcript
sequence. Thus, the probe intensity may not represent
the expression level of a single transcript, but rather a
family of splice variants. RNA-seq faces the same chal-
lenges due to short sequence reads (�35-mer for Illumina
Solexa and Applied Biosystems SOLiD, �200-mer for
Roche 454 Life Sciences). Although junction reads are
useful for identifying AS events, the low coverage hampers
their statistical power, which is more obvious for low-
abundance transcripts. In addition, some junction reads
are not specific to one transcript isoform, but to a group
of transcript isoforms. Novel data analysis methods are
needed to fully utilize these high-throughput techniques
for inferring transcriptome differences at the individual
transcript isoform level, as AS is one of the major
means of expanding genome information.
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Transcriptome comparison at the individual transcript
isoform level must jointly consider probes or sequence
reads belonging to the same gene, because many genes
have multiple alternatively spliced regions and many tran-
script isoforms do not contain any sequence positions or
exon–exon junctions which exclusively appear in these
isoforms. Instead, the uniqueness of these transcript iso-
forms is reflected by the uniqueness of exon combinations.
If a nucleotide position (or exon junction) exclusively
appear in one isoform but not in others, we call this
position an isoform-specific position (or isoform-specific
exon junction). Through the analysis (see details in
Supplementary Data S1), we found that about 42% of
human transcripts exhibit no isoform-specific positions,
and about 57% have � 50 base pair (bp) of isoform-
specific positions. Approximately 66% of human multi-
exon transcripts have no isoform-specific exon junctions.
Among mouse transcripts, roughly 39% have no isoform-
specific sequence positions, and about 57% have � 50 bp
of isoform-specific positions. Approximately 70% of the
mouse multi-exon transcripts exhibit no isoform-specific
exon junctions. The distribution of the number of iso-
form-specific positions and isoform-specific exon junctions
in a transcript is shown in Supplementary Figure S1.
Another complication confronted during the analysis of
differential isoform expression is that contiguous splicing
choices cannot be directly obtained from either the high-
resolution microarray data or the high-throughput
sequencing data.
Here we introduce an approach to comparing transcrip-

tomes at the individual transcript isoform level. This
was achieved by developing a hierarchical Bayesian
model based on transcript splicing patterns assembled
from public databases and high-resolution tiling-array or
high-throughput sequencing data (specifically RNA-seq).
We call this model BASIS (Bayesian Analysis of Splicing
IsoformS). BASIS has the ability to borrow information
across different probes (or positions) from the same and
different genes when making statistical inferences.
Differentially expressed transcript isoforms can be directly
inferred from the model by introducing a latent variable
and accounting for the heteroskedasticity of probe inten-
sity or sequence read coverage. The usefulness of BASIS is
illustrated by its application to a human tiling-array data
set to compare HeLa and HepG2 cell lines (12) and to a
mouse RNA-seq data set to compare brain, liver and
muscle tissues (13).

MATERIALS AND METHODS

Hierarchical Bayesian model (BASIS)

For each probe i that appears in at least one transcript
isoform of gene g, consider the linear model:

�ygi ¼
X

��gjxgij þ�"gi,

where �ygi is the intensity difference between two condi-
tions for probe i of gene gð�ygi ¼ y1gi � y2giÞ, ��gj is the

expression difference between two conditions for the j-th
transcript isoform of gene g, xgij is the binary indicator of
whether probe i belongs to isoform j’s exon region, and
�"gi is the error term for probe i of gene g. Within one
data set, g ranges from 1 to G, where G is the total number
of genes. i ranges from 1 to ng where ng is the total number
of probes for gene g. And j ranges from 1 to sg where sg is
the total number of transcript isoforms for gene g. The
total �"gi’s (g=1, . . .,G and i=1, . . ., ng) are divided into
100 bins. Each bin contains thousands of probes with sim-
ilar y1gi þ y2gi values. Because probe intensity variance is
dependent on probe intensity mean (see Results), probes
in the same bin exhibit similar variances. The same model
can be specified for RNA-seq data with y representing the
read coverage over each position. Thus, �ygi is the cover-
age difference between two conditions for position i of
gene g, ��gj is the expression difference between two con-
ditions for the j-th transcript isoform of gene g, xgij is the
binary indicator of whether position i belongs to isoform
j’s exon region, and �"gi is the error term for position i of
gene g. And we only consider nucleotide positions that
appear in at least one transcript isoform.

A hierarchical Bayesian model is constructed as:

�Ygj"bg,Dg � Nng ðXg"bg,DgÞ, g ¼ 1, . . . ,G;

Dg � diag ð�g1,...,�gng Þ, �gi ¼

�m if probe ðor positionÞ i of gene g 2 bin m;

�m � IGð�=2,��=2Þ, m ¼ 1, . . . ,100;

"bgjcg � Nsgð0,RgÞ;

Rg � diag ð�g1, . . . ,�gsg Þ, �gj ¼ �gj if �gj ¼ 0 and �gj ¼

 gj if �gj ¼ 1;

fðcgÞ ¼
Ysg
j¼1

p�gj ð1� pÞ1��gj ;

where "Yg, "bg and Xg are matrixes with elements
described before, cg is a latent variable, Nng

and Nsg
stand for multivariate normal distributions, and IG
stands for the inverse gamma distribution. Given the iso-
form amount differences ("bg) and the probe arrange-
ments (Xg), the probe intensity (or read coverage)
differences ("Yg) follow a multivariate normal distribution
with mean Xg"bg and variance Dg. For the variance Dg,
specifically, if a probe (or position) is assigned to bin m,
the variance of the intensity (or coverage) difference is dm.
dm itself is a random variable following an inverse gamma
distribution. ggj is an indicator whether the j-th isoform is
differentially expressed. When ggj=0, the isoform differ-
ence ��gj � Nð0,�gjÞ and when ggj=1,��gj � Nð0, gjÞ.
Here N stands for normal distribution. �gj was set as a
small value so that when ggj=0,��gj is small enough to
be estimated as 0.  gj was set as a large value so that when
ggj=1, ��gj is large enough to be included in the final
model. Therefore, the latent variable g can perform vari-
able selection for the linear model. The errors for probes
belonging to the same gene can be heteroskedastic and
assigned to different bins. In our prior distributions for
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parameters (��, d, g), there are hyperparameters
ð�, ,�,�,pÞ. The hierarchical structure of BASIS can be
found in Figure 1. Through BASIS, we can identify tran-
script isoforms that are differentially expressed between
two conditions.

The Gibbs sampler was used to generate a Markov
chain and the posterior probabilities of ��, d and g were
estimated from the chain. The variance parameter �½0�m was
initialized to be the mean of intensity sum (y1+y2) for
probes or positions in bin m. g[0] was initialized as
(1, . . ., 1)T. The Gibbs sampler at the k-th iteration pro-
ceeds as follows:

(i) Sample the isoform amount differences "b½k�g
(g=1, . . .,G) from the conditional posterior
distribution:

"b½k�g � fð"b½k�g j�Yg,d
½k�1�,c½k�1�g Þ ¼

Nsg A� XT
g D

½k�1�
g

� ��1
�Yg,A

� �
,

where A ¼ XT
g D

½k�1�
g

� ��1
Xg þ R½k�1�g

� ��1� ��1
:

(ii) Sample �½k�m (m=1, . . ., 100), the variance for probes
(or positions) in bin m, from the conditional poste-
rior distribution:

�½k�m � fð�½k�m j�Ym,"b½k�m ,c½k�1�m Þ ¼

IG
�þqm
2

,
��þð"Ym�Xm"b½k�m Þ

T
ð�Ym�Xm"b½k�m Þ

2

� �

where "Ym, Xm,"bm are for probes (or positions)
falling in bin m, qm is the number of probes (or posi-
tions) in bin m. The probes (or positions) in bin m
may be from different genes.

(iii) Sample � ½k�gj (g=1, . . .,G and j=1, . . ., sg), the indic-
tor of whether the j-th isoform should be declared
as differentially expressed, from the conditional pos-
terior distribution:

� ½k�gj � fð� ½k�gj j�Y,"b½k�g ,d½k�,c½k�
ðgjÞÞ,

Prð� ½k�gj ¼ 1j�Y,"b½k�g ,d½k�,c½k�
ðgjÞÞ ¼

fð"b½k�g jc
½k�
ðgjÞ,c

½k�
gj ¼ 1Þp

fð"b½k�g jc
½k�
ðgjÞ,�

½k�
gj ¼ 1Þpþ fð"b½k�g jc

½k�
ðgjÞ,�

½k�
gj ¼ 0Þð1� pÞ

where c
½k�
ðgjÞ ¼ ð�

½k�
1 , . . . ,� ½k�j�1,�

½k�1�
jþ1 , . . . ,� ½k�1�sg

Þ
T:

For the choice of hyperparameters � and  , we adopt a
semi-automatic approach proposed by George et al. (14).
In this approach, �gj and  gj were selected by considering
the prior odds of excluding an isoform from the model
and a t-statistic threshold of including an isoform
in the model.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
 gj=�gj

p
is the ratio of the heights of

Nð0,�gjÞ and Nð0, gjÞ at 0. Therefore
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
 gj=�gj

p
can be

interpreted as the prior odds that transcript isoform j is
declared as a non-differentially expressed transcript when
��gj is very close to zero. We also consider the mar-
ginal densities ð��̂gjj	��gj ,�gj ¼ 0Þ � Nð0,	2��gj þ �gjÞ and
ð��̂gjj	��gj ,�gj ¼ 1Þ � Nð0,	2��gj þ  gjÞ, where ��̂gj is the
least squares estimator and 	2��gj is the variance of ��̂gj.
The intersection point of these two marginal densities

Figure 1. Hierarchical structure of BASIS. The observed data are denoted as rectangles. The random variables besides Yg are denoted as ovals. The
hyperparameters are listed in brackets. A solid arrow indicates a stochastic dependence while a dashed arrow indicates a logical function. The details
of BASIS can be found in Materials and Methods section.
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is denoted as tgj	��gj so that the density of Nð0,	2��gj þ  gjÞ

will be larger than the density of Nð0,	2��gj þ �gjÞ if
and only if ��̂gj=	��gj > tgj. Therefore tgj can be inter-
preted as a t-statistic threshold of whether transcript iso-
form j should be declared as a differentially expressed
transcript. Through simple calculation, it can be shown
that tgj is a function of 	��gj=

ffiffiffiffiffi
�gj
p

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
 gj=�gj

p
.

Specifically, we chose ð	̂��gj=
ffiffiffiffiffi
�gj
p

,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
 gj=�gj

p
Þ ¼ ð10; 100Þ

where 	̂��̂gj
is the standard error of the least squares

estimator ��̂gj. This setting was suggested by George
et al. (14). It indicates that the prior odds that transcript
isoform j is declared as a non-differentially expressed
transcript when ��gj is very close to zero is 100, and
the t-statistic threshold tgj for the marginal density
of ��̂gj is about 2.17. Hyperparameter v=0 (and any �)
and p=0.5 were used to represent ignorance as suggested
(14–16).
To study the robustness of BASIS to initial values

and bin size, in the real data analysis, four Markov
chains were generated according to four different
settings: (I) Hyperparameters were chosen as described
above. We divided the probes (or positions) into 100
bins and dm was initialized as the mean of intensity
sum (y1+y2) for probes or positions in bin m; (II) the
same as (I) except that we used 20 bins; (III) the same
as (I) except that we used 500 bins; (IV) the same as
(I) except that we used 100 as the initial value for
each dm. A total of 10 000 burn-in iterations followed by
40 000 iterations were generated to estimate the posterior
probabilities.
To identify differentially expressed transcript iso-

forms, we used the median model decision rule (17)
that includes variables with posterior probability
Prð� ¼ 1jdataÞ larger than 0.5. Thus, transcript isoforms
with posterior mean of g larger than 0.5 were declared as
differentially expressed. If the posterior mean of ��gj
for the differentially expressed transcript is positive, the
isoform was declared to be up-regulated in HeLa for
the comparison between HeLa and HepG2, or to be
up-regulated in brain for the comparison between brain
and liver or the comparison between brain and muscle.
Otherwise, the isoform was declared to be down-
regulated in HeLa or brain. The lists of genes and their
isoforms analyzed can be found in Supplementary
Tables S1–3. The differentially expressed isoforms can
be found in Supplementary Tables S4–6. BASIS can be
downloaded at http://www-rcf.usc.edu/�liangche/
software.html.

Simulations

A total of 100 genes were simulated. Nine of them were
simulated to have five transcript isoforms and some tran-
script isoforms were simulated to be differentially
expressed. The other 91 genes were created by randomly
drawn from the real data and simulated to have no differ-
entially expressed isoforms. The probe arrangements of

the five isoforms for the nine differentially expressed
genes were simulated as:

E ¼

0 1 1 1 1
..
. ..

. ..
.

1 0 1 1 1
..
. ..

. ..
.

1 1 1 1 0
..
. ..

. ..
.

1 1 0 0 1
..
. ..

. ..
.

1 1 1 0 1
..
. ..

. ..
.

1 1 1 1 1
..
. ..

. ..
.

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

300�5

ð
�
Þ

Probes 1–50 appear in isoforms 2–5; probes 51–100
appear in isoforms 1 and 3–5; and so on. The matrix
E={eij} was used as matrix Xg (g=1, . . ., 9) in BASIS
for the nine genes. �Ygi was simulated asP

��gjeij þ�"gi where �"gi follows a normal distribution
with mean 0 and variance dm which is determined by the
bin number for the probe. The choices "bg and dm are
discussed as follows.

(i) All five isoform annotations are known for genes
1–3. Isoform 1 and isoform 2 are differentially
expressed. The coefficients of the three genes are:
"b1 ¼ ð�1:8,1:8,0,0,0Þ

T;"b2 ¼ ð�1:8,2:4,0,0,0Þ
T and

"b3 ¼ ð�2:4,2:4,0,0,0Þ
T.

(ii) For genes 4–6, the annotations of isoform 5 are
missing, although it is differentially expressed
together with isoform 1 and isoform 2. The coeffi-
cients are:
"b4 ¼ ð�1:8,2:4,0,0,1:2Þ

T;"b5 ¼ ð�1:8,2:4,0,0,1:8Þ
T

and "b6 ¼ ð�1:8,2:4,0,0,2:4Þ
T. The correlations

between the probe arrangements of isoform 5 and
those of isoforms 1, 2, 3 and 4 are �0.2, �0.2, �0.2
and �0.32, respectively.

(iii) For genes 7–9, the annotations of isoform 4 are
missing, although it is differentially expressed
together with isoform 1 and isoform 2. The coeffi-
cients are:
"b7= (�1.8,2.4,0,1.2,0)T, "b8= (�1.8,2.4,0,1.8,0)T,
and "b9= (�1.8,2.4,0,2.4,0)T. The correlations
between isoform 4 and isoforms 1, 2, 3 and 5 are
�0.32, �0.32, 0.63 and �0.32, respectively.

For the other 91 genes, we randomly selected the
X matrix from the human data. They were simulated to
have no differentially expressed isoforms (i.e. �Ygi was
simulated as �"gi because "bg ¼ 0 for g=10, . . ., 100).
In total, there were 28 132 probes and 368 transcript
isoforms. These probes were randomly assigned to
100 bins. For the m-th bin, the variance dm was simulated
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as m. About 1000 simulations were performed. For each
simulation, we used a burn-in of 1000 iterations, followed
by 4000 iterations. Hyperparameters were chosen as
described before. Different thresholds for the posterior
mean of g were used to declare transcript isoforms as
differentially expressed. The power and the false-positive
rates were calculated as average values from those 1000
simulations.

Instead of using the purely simulated matrix E [shown
in (�)] for the nine differentially expressed genes, we also
randomly selected a probe arrangement matrix from genes
with five isoforms in the human data and used the matrix
as E to simulate "Y’s for the differentially expressed genes
as described. The other 91 genes without any differentially
expressed isoforms were the same as described above.
We performed 1000 simulations to calculate the average
power when the average false positive rate is 0.005. Then,
we repeated these procedures 100 times. Thus we tested
100 different matrix E’s for the nine genes with differen-
tially expressed isoforms.

Tiling array data preprocessing

Non-redundant transcript isoform information of human
genes was downloaded from the AS and Transcript
Diversity database (18) (http://www.ebi.ac.uk/astd/,
release 1.1, names begin with ‘TRAN’) and the Ensembl
Genome Browser (http://www.ensembl.org/index.html,
release 50, names begin with ‘ENST’). Expression levels
of these transcripts were from the whole-genome tiling
arrays in which the human genome is split into 91 chips
at 5-bp resolution (as measured from the central positions
of adjacent 25-mer oligonucleotides) (12). We considered
the expression data for HeLa and HepG2 cell lines in
the cytosol. For each cell line, there were about three
replicates. Those RNAs were polyadenylated and longer
than 200 nt. The probe coordinates were from the NCBI
version 35. The UCSC liftover tool (http://genome.ucsc.
edu/) was used to convert the coordinates between version
35 and version 36. The probes mapped to intergenic
regions were used as background probes to train the
sequence-specific model that considers the composition
of the nucleotides at each position of a 25-mer probe
(19,20). Thus:

log2 BkgðPMiÞ ¼


niT þ
X25
j¼1

X
k2fA,C,Gg

�jkIijk þ
X

k2fA,C,G,Tg

�kn
2
ik þ "i,

where PMi is the intensity of the perfect match probe i, nik
is the number of nucleotide k in probe i, Iijk is the indicator
of nucleotide k in position j of probe i, a, �jk, gk are effect
parameters and "i is the probe-specific error term. The
parameters of the model were estimated by using about
300 000 intergenic probes for each chip separately. For
eight chips with less than 300 000 intergenic probes, we
used all of the intergenic probes. Then the probe intensity
on each chip was background corrected according to

the estimated parameters and their nucleotide contents.
Thus:

Corrected ðPMiÞ ¼ max ðPMi � BkgðPMiÞ; 0Þ

The background-corrected probe intensities were further
quantile-normalized and averaged across replicates as the
final expression level. Note that those probe intensities
were not in the log-scale.
Probes with intensity level larger than 4 in at least one

cell line were counted as qualified probes. We removed
transcripts without any qualified probe. In other words,
if a column of X is equal to vector 0, the corresponding
transcript isoform was considered not expressed and
removed thereby. Recall that X is the probe arrangement
matrix and each row represents a qualified probe and
each column represents an isoform. Among the 35 351
annotated genes (141 295 transcripts), 29 085 genes have
at least two qualified probes. Among the 29 085 genes,
3197 do not have enough qualified probes to distinguish
different transcript isoforms. The case of not having
enough qualified probes results in identical columns
in matrix X (e.g. Xj=Xk where Xj is the j-th column
and Xk is the k-th column). For example, considering
gene A and gene B each of which have three isoforms,
their exon arrangements are:

A ¼

1 1 1
0 0 1
0 0 1
1 0 1

0
BB@

1
CCAor B ¼

1 1 0
0 0 1
0 0 1
1 0 1

0
BB@

1
CCA:

When the fourth exon (or the fourth row) has no designed
probe or qualified probe, the matrix X will become:

Xa ¼

1 1 1
0 0 1
0 0 1

0
@

1
Aor Xb ¼

1 1 0
0 0 1
0 0 1

0
@

1
A:

Then the first two isoforms have the same probe arrange-
ments and they cannot be distinguished (or they are undis-
tinguishable isoforms). There are two possible reasons
for undistinguishable isoforms: (I) The isoforms are not
expressed and the signal of qualified probes (e.g. the
non-zero elements in Xj or Xk) is from other expressed
transcript isoforms that share these probes. (II) The
designed probes are not dense enough to have unique
probe combinations to represent these isoforms. For
case (I), we removed isoform j and k and retained the
gene with other isoforms (1388 genes). For example, for
matrix Xa, the first two isoforms can be treated as un-
expressed isoforms and the signal of the first probe
(the non-zero element in X1 and X2) is from isoform 3.
We therefore retain this gene with isoform 3. On the other
hand, we removed genes with undistinguishable isoforms
that cannot be treated as unexpressed in case (II). For
example, for matrix Xb, the first two isoforms cannot
be treated as un-expressed because probe 1 is not shared
by isoform 3 and the signal of probe 1 must come
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from isoform 1 and (or) isoform 2. We have to remove the
whole gene. After the above procedures, we have 27276
genes left. Among them, 468 genes are un-identifiable
because the columns of X are perfectly collinear (i.e. Xj

is a linear combination of the other columns). The un-
identifiability is detected by considering the rank of X

which is determined by the singular value decomposition.
The prescreening procedures are summarized in Figure 2.
Finally, a total of 26 808 human genes (110 528 tran-
scripts) were considered in BASIS. The average probe
number for each gene is 323 and the median is 206.

RNA-seq data preprocessing

Non-redundant transcript isoform information of mouse
genes was downloaded from the ASTD and Ensembl data-
bases. Expression levels of these transcripts were from the
high-throughput RNA-seq data for adult mouse brain,
liver and muscle (13). For each tissue, there were two

replicates. Uniquely mapped sequence reads from two
replicates were pooled together and mapped to genes.
The number of reads mapped to a position was treated
as the read coverage over that position. The read coverage
was multiplied by a constant to make the total number
of reads equivalent for the three tissues (28 million). We
compared brain with liver and brain with muscle.

Positions with read coverage larger than 4 in at least one
tissue were counted as qualified positions. For the com-
parison between brain and liver, among the 28 129 anno-
tated genes (110 857 transcripts), 49% of them have less
than two qualified positions. About 10% of them do not
have enough qualified positions to distinguish different
transcript isoforms and this cannot be explained by the
lack of expression for these isoforms. In addition, 1% of
them are un-identifiable. For the comparison between
brain and muscle, 49% of them have less than two qual-
ified positions. About 11% of them were removed because
some isoforms cannot be distinguished and this cannot

Figure 2. Workflow of the prescreening steps and BASIS results.
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be explained by the fact that these isoforms are
not expressed. Another 1% of them are un-identifiable.
The details of the prescreening procedures can be found
in Figure 2. Finally, a total of 11 227 genes (54 003 tran-
scripts) and 11 014 genes (53 303 transcripts) were consid-
ered in BASIS for the comparison between mouse brain
and liver and the comparison between brain and muscle
respectively. For the brain versus liver comparison,
the average position number for each gene is 1652 and
the median is 1304. For the brain versus muscle compar-
ison, the average position number is 1640 and the median
is 1248.

RNA preparation and qRT–PCR

Adult C57BL mouse brain, liver and muscle tissues were
dissected and quickly submerged in Trizol (Invitrogen,
CA) followed by immediate tissue homogenization.
Total RNA samples were prepared according to manufac-
turer’s protocol (Invitrogen, CA). Cytosolic RNA of
HeLa and HepG2 cells were generous gifts from
Gingeras’s group, original authors of the tilling array
data (12). RNA were treated with RQ1 RNase-free
DNase I (Roche Applied Science) at 1U/mg RNA and
reverse transcription was done as described previously
(21). Real-time RT–PCR was performed as previously
described (22) using SYBR Green Supermix on a Bio-
Rad iQ5 thermocycler for 40 cycles at 608C annealing
temperature. Primers are listed in Supplementary
Table S7. Each primer pair amplifies only one amplicon
and the identity of RT–PCR product was confirmed by
direct sequencing. Relative mRNA levels between brain
and liver (brain/liver ratio) or between brain and muscle
(brain/muscle ratio) were first normalized by geometric
averaging of multiple internal control genes (including
Gapdh, Sdha and mRps18a) (23) and then quantified
using ��Ct method. Relative mRNA levels between
HeLa and HepG2 cells were first normalized by geometric
average of three internal control genes (HPRT1, RPLP0
and SDHA) and then quantified using ��Ct method.

RESULTS

In BASIS, for gene g, the probe intensity (or read coverage
over each position) is modeled as the sum of the intensity
of transcript isoforms containing this probe (or position):

ygi ¼
X

�gjxgij þ "gi

where ygi is the intensity value of probe i (or read coverage
at position i) of gene g, �gj is the abundance of the j-th
transcript isoform, xgij is the binary indicator of whether
probe i (or position i) belongs to isoform j’s exon region,
and "gi is the error term for probe i (or position i).
The difference in probe intensity (or read coverage)
under two conditions (�ygi) is modeled as the combina-
tion of transcript isoforms’ differences (��gj’s):

�ygi ¼
X

��gjxgij þ�"gi:

To infer the differentially expressed transcript isoforms
(��gj 6¼ 0), we introduced a latent variable
�g ¼ ð�g1, . . . ,�gsg Þ

T, where �gj ¼ 1 means that the j-th
isoform is differentially expressed and �gj ¼ 0 means that
it is not differentially expressed. A homogeneous ergodic
Markov chain was generated by our Gibbs sampler. The
empirical distribution of g based on the Markov chain will
converge to the actual posterior probability of g (14).
The hierarchical Bayesian model also accounts for the
heteroskedastic errors associated with different probes
(or positions), as discussed below. The hierarchical struc-
ture of BASIS is represented in Figure 1 as we mentioned
in Materials and Methods.

Heteroskedasticity of probe intensity and sequence
read coverage

Microarray noise has been shown to be scale dependent
(24). Similarly for RNA-seq data, the noise associated
with read coverage over each position is proportional to
the mean. Figure 3A and B illustrates the relationship
between the mean and the standard deviation across
replicates. Because of the scale-dependent noise, log-
transformed intensity was always used in the microarray
study to minimize the effect of such heteroskedastic
errors with different variances. However, the log-trans-
formed intensity cannot be modeled simply as the
sum of the intensity of individual transcript isoforms
(i.e. logðygiÞ 6¼

P
logð�gjÞxgij þ "gi). In addition, the log

ratio of probe intensity under two conditions cannot be
modeled as the sum of isoform differences at the log scale
(i.e. logð�ygiÞ 6¼

P
logð��gjÞxgij þ�"gi). To handle the

heteroskedasticity and concomitantly maintain the valid
linear isoform combination assumption, we divided all
of the probes (or positions) across the whole genome
into bins according to their intensity values (or read cover-
age) under two conditions. Probes (or positions) with sim-
ilar intensity values have similar variances. And different
variance parameters were specified for different bins.
Thus, �"gi � Nð0,�mÞ if probe i (or position i) falls into
bin m. Large number of probes (or positions) in each bin
provided a more stable variance estimate for �"gi than
that estimated from very few experimental replicates
(e.g. two or three replicates) of single probe. We therefore
borrowed strength across probes from different genes.
Figure 3C and D shows the histograms of the number
of different bins for a gene in the tiling array data
or the RNA-seq data. For most genes, probes (or posi-
tions) fall into multiple bins, further showing their
heteroskedasticity.

Power analysis

We studied the statistical power of BASIS, particularly
when the isoform information was incomplete. A total
of 100 genes were simulated each time. Nine genes were
simulated to have five potential transcript isoforms, and
some transcript isoforms were differentially expressed.
The other 91 genes were simulated to have no differentially
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expressed transcript isoforms. Different scenarios in
terms of ��gj and the completeness of the transcript
isoform information were examined. The details of
the simulation settings can be found in ‘Materials and
Methods’ section.
Table 1 compares the power of BASIS and the least

squares fit when the total false-positive rate was controlled
at 0.005. A particular probe arrangement matrix E [shown
in (�)] was used for this study. The power of BASIS is
0.76 when the false positive rate is 0.005. It demonstrates
that BASIS can correctly identify most of the differentially
expressed isoforms (13.68 out of 18) and also correctly
declare non-differentially expressed isoforms (348.25 out
of 350). Note that we have additional 91 genes with
no differentially expressed isoforms and there are a total
of 350 non-differentially expressed isoforms. BASIS has a
much larger statistical power than the least squares fit
(0.76 versus 0.31). This is due to the fact that errors for

probes of the same genes are heteroskedastic, and BASIS
takes this into account. We also separately calculated
the power and the false-positive rate for genes 1–9.
For example, gene 1 has five transcripts isoforms, two of
which are differentially expressed. Thus, the total num-
ber of positive instances is 2 and the total number of neg-
ative instances is 3 when we calculate the power and false-
positive rate for gene 1. The settings for genes 2 and 3 are
similar to those for gene 1, except for the differential
signals. When the differential signal increases (��gj from
1.8 to 2.4), the performance of the model improves
(power from 0.74 to 0.96). When the information for
one differentially expressed isoform is lacking (i.e. there
is no annotation about the transcript isoforms, but it
exists in cells and is differentially expressed), the inferences
for other isoforms are still reliable (genes 4–6). The worst
situation is when the differential signal for the missing
isoform is very high (��gj=2.4 for isoform 4 of gene 9)

Figure 3. Heteroskedasticity of probe intensity and sequence read coverage. (A and B) Multiplicative error of probe intensity (A) and sequence read
coverage (B). The x-axis represents the mean probe intensity across three replicates (A) or the mean sequence read coverage across two replicates (B).
The y-axis represents the corresponding standard deviation of probe intensity or sequence read coverage. In (A), 500 000 normalized probe intensity
data obtained from the human HeLa tiling array were used. In (B), normalized sequence read coverage at 500 000 nucleotide positions from the
mouse liver RNA-seq data were used. x and y are plotted in a log2 scale for visual convenience. (C and D) Histograms demonstrating the number of
different bins in a given gene for the tiling array data (C) and the RNA-seq data (D). Probes or positions were divided into 100 bins according to
their intensity or sequence read coverage. For each gene, we counted the number of different bins that its probes or positions belong to. The number
of genes with a specific number of bins was shown in the histograms.
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and this isoform demonstrates a high correlation with
other known isoforms (the correlation between isoforms
4 and 3 is about 0.63). The false-positive rate can be
as high as 0.4. The results demonstrate that when the
AS information is incomplete and the missing transcript
isoform that has not been annotated is actually differen-
tially expressed, the model still performs well if the missing
transcript isoform has a reasonably low correlation with
other known transcripts or the differential signal is low.

Besides the purely simulated probe arrangement matrix
E [shown in (�)] for genes with differentially expressed
isoforms, we also tested another 100 different probe
arrangement matrix E’s randomly drawn from the real
data (genes in the human data and with five isoforms).
For each matrix E, the same simulation settings as men-
tioned in ‘Materials and Methods’ section were pre-
formed: nine genes with differentially expressed isoform
were simulated and there were another 91 non-differen-
tially expressed genes. The overall power of BASIS and
the least squares fit for the 100 genes were calculated based
on 1000 simulations for each E. As shown in Figure 4,
BASIS consistently performs better than the least squares
fit. There is about 2-fold increase in the power of BASIS
most of time. The results also indicate that the gene anno-
tation structure (E) will affect the power of BASIS.
Specifically, if a gene has more probes (or positions),
thus the number of rows of E(n) is larger; the power of
BASIS is larger. The Pearson correlation between n and
the power is 0.34 which is significant with a P-value
of 0.0005. The correlation was calculated based on the

100 different E’s. In addition, if the difference among iso-
forms is larger, the power of BASIS is larger. Here the
difference among isoforms was measured as the average
Manhattan distances among isoforms (i.e. among columns
of E) divided by n. The Pearson correlation between the
difference measure and the power of BASIS is 0.38 with a
P-value of 0.0001. Finally, BASIS does not rely on the
percentage of isoform-specific positions of a gene. For
each E, we calculated the percentage of positions which
appear in only one isoform. The power of BASIS is not
related to the percentage of isoform-specific positions with
a P-value of 0.29. This is because BASIS considers the
joint behavior of probes targeting on the same gene.

HeLa and HepG2 tiling-array data analysis

The array data was obtained from Kapranov et al. (12),
who profiled the cytosolic polyadenylated [poly(A)+]
RNAs in HeLa and HepG2 cell lines using whole-
genome 5-bp resolution tiling arrays. The known or pre-
dicted human transcript isoform splicing patterns were
obtained from the ASTD and Ensembl databases. After
the preprocessing to remove unexpressed genes etc., a total
of 110 528 transcripts (26 808 genes) were considered in
BASIS. Overall, 11 854 transcripts were differentially
expressed between HeLa and HepG2 cells. About 8851
transcripts were up-regulated in HeLa cells, and the
remaining 3003 transcripts were up-regulated in HepG2
cells. These differentially expressed transcripts belong
to 9191 genes, indicating that some genes have more
than one differentially expressed transcript isoform.
Specifically, 1892 genes have more than one differentially

Table 1. Performance of BASIS and the least squares fit

BASIS Least squares fit

Power False-positive rate Power False-positive rate

Total 0.76 0.005 0.31 0.005
Gene 1 0.74 0.002 0.16 0.002
Gene 2 0.88 0.002 0.29 0.005
Gene 3 0.96 0.0003 0.43 0.004
Gene 4 0.65 0.001 0.33 0.006
Gene 5 0.56 0.001 0.35 0.007
Gene 6 0.59 0.001 0.38 0.008
Gene 7 0.83 0.1 0.27 0.02
Gene 8 0.89 0.3 0.28 0.08
Gene 9 0.72 0.4 0.29 0.2

The total false-positive rate was controlled at 0.005. The power and
the false–positive rate were the average values across 1000 simulations.
They were also calculated for genes 1–9 separately. For genes 1–3, the
annotations for all five isoforms are known and ��1= (�1.8,1.8,
0,0,0)T, ��2= (�1.8,2.4,0,0,0)T, and ��3= (�2.4,2.4,0,0,0)T. For
genes 4–6, the annotations of isoform 5 are missing but isoform
5 is differentially expressed together with isoform 1 and
isoform 2:��4= (�1.8,2.4,0,0,1.2)T, ��5= (�1.8,2.4,0,0,1.8)T, and
��6= (�1.8,2.4,0,0,2.4)T The correlations between the exon arrange-
ments of isoform 5 and those of isoforms 1, 2, 3 and 4 are �0.2, �0.2,
�0.2 and �0.32. For genes 7–9, the annotations of isoform 4 are
missing. But isoform 4 is differentially expressed together with isoform
1 and isoform 2: ��7= (�1.8,2.4,0,1.2,0)T, ��8= (�1.8,2.4,0,1.8,0)T,
and ��9= (�1.8,2.4,0,2.4,0)T. The correlations between isoform 4 and
isoforms 1, 2, 3 and 5 are �0.32, �0.32, 0.63 and �0.32.

Figure 4. Power of BASIS and the least squares fit for 100 different
matrix Es. The powers were calculated based on 1000 simulations on
100 genes. The total false-positive rate was controlled at 0.005.
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expressed transcript isoform. More interestingly,
789 exhibited at least one up-regulated isoform and at
least one down-regulated isoform in HeLa compared
to HepG2 cells. These have been summarized in the work-
flow Figure 2. The list of differentially expressed tran-
scripts can be found in Supplementary Table S4.
The convergence of the chain was evaluated by tracing

the variance estimate dm for each bin m. All of the variance
estimate dm passed the Geweke’s diagnostic, the Raftery
and Lewis’s diagnostic, and the Heidelberger and Welch’s
convergence diagnostic implemented in the R package
‘coda’ (25). Using the posterior mean of ��, we calculated
the residual of each probe (�"). Residuals falling in the
same bin should be approximately normally distributed,
with a mean of 0 and variance equal to the estimated
variance dm for this bin. The residual Q–Q plots
(Supplementary Figure S2) show that the distributions
of residuals were similar to those expected.

Mouse brain, liver and muscle RNA-seq data analysis

The RNA-seq data was obtained from Mortazavi et al.
(13), who used Solexa high-throughput sequencing to
quantify the poly(A)+ RNA in adult mouse brain, liver
and muscle. The sequence read coverage at nucleotide
resolution was normalized across different tissues such
that the total number of reads was equivalent. Similarly,
the known or predicted mouse transcript isoform splicing
patterns were obtained from the ASTD and Ensembl
databases. For the comparison between brain and liver,
35 715 transcripts were differentially expressed. About
21 188 transcripts were up-regulated in brain, and the
others were up-regulated in liver. These transcripts corre-
spond to 10 771 genes. About 7699 genes have more than
one differentially expressed transcript isoform. Among
them, 5711 exhibited at least one up-regulated isoform
and at least one down-regulated isoform in brain com-
pared to liver. For the comparison between brain and
muscle, 34 126 transcripts belonging to 10 554 genes were
differentially expressed. About 19 851 of the transcripts
were up-regulated in brain and the others were up-regu-
lated in muscle. Among these differentially expressed
genes, 7392 have more than one differentially expressed
transcript isoforms and 5498 of them exhibited at least
one up-regulated isoform and at least one down-
regulated isoform in brain compared to muscle. The
above results have also been summarized in the workflow
Figure 2.
The convergence of the chain was further evaluated by

tracing the variance estimate dm for each bin. All of the
variance estimate dm passed the Geweke’s diagnostic, the
Raftery and Lewis’s diagnostic, and the Heidelberger
and Welch’s convergence diagnostic. The residual Q-Q
plots (Supplementary Figures S3 and S4) show that the
residuals in the same bin were approximately normally
distributed, with a mean of 0 and variance equal to the
variance estimated for this bin.
Using the junction reads as an independent data

resource, we evaluated the performance of BASIS.

We mapped the splice-spanning reads to the transcript
isoforms considered in BASIS. About 3732 transcript
isoforms have at least one sequence read over their iso-
form-specific splice junctions in brain and (or) liver. For
the comparison between brain and muscle, the number is
3679. Isoform-specific splice junction means that no other
transcript isoforms contain the same junction. Such tran-
scripts were designated as ‘present’ in tissues. This is a
stringent criterion, as many of the truly present transcripts
may not have any isoform-specific splice junctions
(Supplementary Figure S1) or may not have any reads
over their isoform-specific splice junctions owing to the
low abundance. We declared the transcripts with junction
read difference larger than four as differentially expressed.
As shown in Figure 5, for the comparison between brain
and liver, among the differentially expressed transcripts
declared by junction read difference, about 83% or 81%
of them were also predicted as up-regulated in brain or
liver by BASIS. For the comparison between brain and
muscle, about 80% or 83% of them were also predicted as
up-regulated in brain or muscle by BASIS. The results
indicate that BASIS has a statistical power of 80–83%.

Robustness of BASIS to bin size and initial value
specifications

The hyperparameters of BASIS were chosen by a semi-
automatic approach or chosen as non-informative values
to represent ignorance as described in Materials and
Methods section. We also studied the robustness of
BASIS for different bin sizes and initial values. Four
Markov chains were generated according to different bin
sizes or different initial values (see details in Materials and
Methods section). For the tiling-array data, among the
declared differentially expressed transcripts, 95% of
them can be detected by all of the chains. For the RNA-
seq data, 91% and 88% of them can be detected by all of
the chains for the brain-liver comparison and the brain-
muscle comparison respectively. Specifically, for different
bin sizes, the overlap among the three scenarios (20, 100,
500 bins) is about 89–95%. The results are not exactly the
same because of the different strength borrowed from
probes (or positions) due to different bin sizes. For
different initial values, the overlap among results is
about 98–99%. The above results suggest the robustness
of the inference results for different bin sizes and initial
values.

Experimental validation

To further examine the prediction power of BASIS, we
subsequently performed real time RT–PCR experiments
to assay transcript isoforms’ relative expression levels
between adult mouse brain and liver, between adult
mouse brain and muscle, and between HeLa and HepG2
cells. We were particularly interested in genes whose
isoforms show distinct differential expression patterns
between the two conditions. For example, one transcript
isoform is up-regulated in brain than in liver, whereas
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anther transcript isoform of the same gene is down-
regulated or is not differentially expressed. For each
tested transcript isoform, we designed one of the two
PCR primers from the isoform-specific exonic region or
exon junction that exclusively represents the isoform.
For the RNA-seq data, we randomly tested the relative
expression levels of 14 transcript isoforms between mouse
brain and liver (Figure 6A), but the transcript isoforms
were required to have an isoform-specific exonic region
or exon junction and the selection was biased toward
genes with isoforms showing distinct expression patterns.
Transcripts TRAN00000157032 (Slc25a25), ENSMUST
00000115599 (Pcdh1), TRAN00000139600 (Mrps12),
TRAN00000123912 (M6prbp1) and TRAN00000143381
(Clu) were predicted to be up-regulated in brain than in
liver by BASIS (black bars in Figure 6A). Transcripts
TRAN00000157033 (Slc25a25), ENSMUST00000057185
(Pcdh1), ENSMUST00000019726 (M6prbp1),
TRAN00000161590 (Esd), TRAN00000143382 (Clu) and
ENSMUST00000000335 (Comt) were predicted to be
down-regulated in brain than in liver (white bars).
Transcripts TRAN00000139599 (Mrps12), TRAN
00000161592 (Esd) and ENSMUST00000115609 (Comt)
were predicted not to be differentially expressed between
the two tissues (grey bars). As shown in Figure 6A, all
of the transcripts except TRAN00000143381 (Clu) and
ENSMUST00000115609 (Comt) show the predicted
differential expression patterns. We also tested these

transcripts’ relative expression ratios between mouse
brain and muscle (Figure 6B). All transcripts except
Transcripts TRAN00000157033 (Slc25a25), TRAN00000
161592 (Esd), ENSMUST00000115609 (Comt) and
ENSMUST00000000335 (Comt) show the predicted dif-
ferential expression patterns. More importantly, most of
genes (except Clu in Figure 6A and B; Pcdh1 and Esd in
Figure 6B) have their two transcript isoforms showing
significantly different relative expression ratios (P-values
based on Student’s t-test � 0.05). It shows that transcript
isoforms of the same gene can have distinct expression
patterns. However, the standard differentially expressed
gene analysis cannot detect such subtle differences.
For the tilling array data, we randomly tested 12 tran-

script isoforms in HeLa and HepG2 cells (Figure 6C), but
the transcript isoforms were required to have an isoform-
specific exonic region or exon junction and the selection
was biased toward genes with isoforms showing distinct
expression patterns. Transcripts ENST00000226225
(TNFAIP1), TRAN00000076466 (PTDSS2), TRAN0000
0076464 (PTDSS2) and ENST00000368680 (NPR1)
show the predicted patterns of being up-regulated in
HeLa cells compared to HepG2 cells. Transcripts
TRAN00000094700 (TNFAIP1), TRAN00000112564
(WDR39), ENST00000394196 (CHD2) and
ENST00000361900 (SCAMP5) show the predicted pat-
terns of being down-regulated in HeLa cells compared
to HepG2 cells. Although the other four transcripts

Figure 5. Differentially expressed transcript isoforms predicted by isoform-specific junction reads and BASIS. For each comparison (A versus B), we
declared a transcript isoform as up-regulated in A or B if the junction read difference A – B> 4 or B – A> 4. The junction read has to be isoform-
specific to the transcript. Grey areas represent the proportions of transcripts declared as differentially expressed by both junction read difference and
BASIS. White areas represent the proportions of transcripts predicted as differentially expressed by junction read difference but not by BASIS.
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Figure 6. Experimental validation of BASIS prediction. Real time RT–PCR barplots of tested transcripts’ relative expression levels between mouse
brain and liver (A), between mouse brain and muscle (B), and between HeLa and HepG2 cells (C). Relative expression ratio (condition 1/condition
2)=1 means no differential expression between two conditions. Relative expression ratio >1 means higher expression in condition 1. Relative
expression ratio <1 means higher expression in condition 2. Black bars are transcripts predicted to have higher expression levels in condition 1 by
BASIS and white bars are transcripts predicted to have higher expression levels in condition 2. Gray bars are those predicted not to be differentially
expressed between two conditions. Value represents mean � SEM, N=3.
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show opposite differential expression patterns compared
to the BASIS predictions, their differential ratios are sig-
nificantly smaller than their counterpart transcript iso-
form of the same gene. Note that all of the genes except
PTDSS2 have their two transcript isoforms showing sig-
nificantly different relative expression ratios (P-values
based on Student’s t-test �0.05). The above results suggest
that BASIS has a better power when the differential signal
is stronger. In addition, BASIS can distinguish the differ-
ent expression patterns among transcript isoforms of the
same genes.

The RT–PCR products of the tested transcripts in
different tissues/cells were examined by agarose gel elec-
trophoresis (Figure 7). It shows that the RT–PCR experi-
ments generated the correct amplicons for each transcript
under different conditions. In summary, BASIS correctly
predicts 22 out of 28 times for the RNA-Seq data and 8
out of 12 times for the tilling array data. BASIS has a

relatively better prediction power for RNA-Seq data
than tilling array data.

DISCUSSION

Because AS dramatically increases the complexity of
eukaryotic transcriptomes, two transcriptomes can be
precisely compared only through the expression level of
each isoform, but not individual probes or exons, to more
accurately deduce gene expression regulation. In this arti-
cle, we proposed a hierarchical Bayesian model (BASIS)
to identify splicing isoforms that are differentially
expressed between two conditions. BASIS integrates
known splicing information to fully utilize high-density
tiling-array or high-throughput RNA-Seq data.
BASIS jointly considers all probes (or positions) target-

ing the same gene to infer the differential expression
level. Sequence read coverage or probe intensity at each

Comt:

Esd:
M6prbp1:

Mrps12:
Pcdh1:

Slc25a25:

TRAN00000161590 TRAN00000161592
TRAN00000123912 ENSMUST00000019726

ENSMUST00000115599 ENSMUST00000057185
TRAN00000139599 TRAN00000139600

TRAN00000157032 TRAN00000157033

ENSMUST00000115609ENSMUST00000000335

Clu: TRAN00000143381 TRAN00000143382

CHD2:

WDR39:
PTDSS2:
NPR1:

TNFAIP1:
SCAMP5:

ENST00000368677 ENST00000368680

ENST00000361900 TRAN00000038837

TRAN00000076464 TRAN00000076466

ENST00000394196 TRAN00000089026

ENST00000272402 TRAN00000112564

TRAN00000094700 ENST00000226225

Transcript 1 Transcript 2Gene

Slc25a25 Clu

B L M - B L M - B L M - B L M -
1 11 1 2 22 2 1 11 1 2 22 2

Mrps12 Pcdh1
B L M - B L M - B L M - B L M -
1 11 1 2 22 2 1 11 1 2 22 2

Esd M6prbp1

B L M - B L M - B L M - B L M -
1 11 1 2 22 2 1 11 1 2 22 2

B L M - B L M -
Comt

1 11 1 2 22 2

Gapdh mRps18a Sdha

B L M - B L M - B L M -

TNFAIP1 SCAMP5 CHD2

H He - H He - H He - H He - H He - H He -
1 11 22 2 1 11 22 2 1 11 22 2

NPR1 PTDSS2

H He - H He - H He - H He -
1 11 22 2 1 11 22 2

WDR39 HRPT1 RPLP0 SDHA

H He - H He - H He - H He - H He -
1 11 22 2

A B

C

Figure 7. Agarose gel electrophoresis of RT–PCR products. (A). Tested transcripts were separated on agarose gels in lanes denoted by B (brain),
L (liver), M (muscle) and �(RT negative control). One and two are two different isoforms whose transcript IDs can be referred in (C). Gapdh,
mRps18a and Sdha are internal control genes. (B) Tested transcripts were separated on agarose gels in lanes denoted by H (HeLa cell), He (HepG2
cell) or �(RT negative control). HRPT1, RPLP0 and SDHA are internal control genes. The length of each product is identical to the PCR target
region. Arrow points to the brightest DNA size marker 300 bp. Below it, they are 200 bp, 100 bp and 50 bp. Above it, they are 400 bp, 500 bp, 600 bp,
700 bp, 800 bp and 1 kb.
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position may represent a family of splice variants instead
of one single isoform. As shown in Supplementary
Figure S1, many transcript isoforms do not contain any
isoform-specific sequence positions or isoform-specific
exon–exon junctions. Individual probe intensities or
sequence reads may not provide direct evidence to distin-
guish differentially expressed transcript isoforms. BASIS
tackles this problem by allocating the intensity of each
probe (or sequence read coverage) to multiple transcript
isoforms and integrating multiple probe intensities
(or sequence read coverage values) for the same gene.
Another advantage of jointly considering probes is that
a superior signal-to-noise estimate can be achieved by
utilizing information from every probe (or sequence
read). If the expression intensity is compared probe by
probe between two conditions, the high noise level of an
individual probe would make the comparison less reliable.
However, if we consider the joint behavior of all probes
targeting the same gene, the results become much more
reliable. In addition, inferences at the transcript isoform
level instead of the probe level deliver a more biologically
interpretable result.
Second, BASIS accounts for the heteroskedasticity of

probe intensity or sequence read coverage and has much
higher statistical power than the least squares fit. We gath-
ered together all of the probes (or read coverage over
positions) from different genes and divided them into
100 bins. Probes (or positions) within the same bin share
the same variance. Therefore, strength could be borrowed
across genes in estimating the variance in probe intensity
(or the variance in read coverage). This is particularly cru-
cial when there are only a few replicates for each tiling-
array or RNA-seq experiment. The approach to binning
probes to calculate stable estimates of variances has also
been used by Johnson et al. (19). In addition, BASIS can
be extended to handle the ‘large p and small n’ issue.
When the number of potential transcript isoforms is
larger than the number of data points available, BASIS
maintains the flexibility in statistical inference, whereas the
traditional least squares fit requires the number of poten-
tial transcript isoforms to be smaller than the number of
probes (or positions). Empirical and hierarchical Bayesian
approaches have been applied to gene-level microarray
analyses in which each gene is represented by one probe
and information across different genes are borrowed from
each other (26,27).
Third, the latent variable g was introduced into BASIS

in order to perform variable selection. In many biological
conditions, only a portion of the transcript isoforms
is expressed. The latent variable can directly identify the
transcript isoforms of interest and leads to an interpreta-
ble model.
Simulation studies show that BASIS has a about 2-fold

increase in power compared to the least squares fit
(Table 1 and Figure 4). And the power of BASIS is related
to gene structure. Specifically, if a gene has more probes
(or positions), the power of BASIS is larger (P-value for
the correlation is 0.0005). If the difference among isoforms

is larger, the power of BASIS is larger (P=0.0001).
BASIS does not rely on the percentage of isoform-specific
positions (P=0.29), and it considers the joint behavior
of positions. The model also depends on the completeness
of the known splicing patterns of each gene. However the
incompleteness does not jeopardize the legitimacy of our
model as shown in simulation studies (Table 1). In the real
data analysis, using the junction reads as an independent
data source, we showed that BASIS has a statistical power
of 80–83%. The real time RT–PCR experiments validated
22 out of 28 predictions by BASIS for the RNA-Seq data,
and 8 out of 12 predictions for the tilling array data. As
information accumulates and novel transcript isoforms
are discovered through experiments or isoform recon-
struction algorithms (28), a more accurate and complete
AS annotation database will further improve results
derived from our model. In addition, junction reads
from RNA-seq experiments can provide prior information
on AS patterns and further improve the signal-to-noise
ratio. In the post-genomic era, there is an increasing
demand for the complete identification of alternative tran-
scripts and thorough genome annotations. cDNA cloning
and/or longer read sequencing (e.g. pair-end sequencing)
remain necessary experimental tools for identifying long-
range contiguous splice choices.

The predicted tissue-specific transcript isoforms have
functional significance. For example, Slc25a25 is a type
of calcium binding mitochondrial ATP-Mg/Pi transporter
(29,30). Interestingly, its rat ortholog was found to be
expressed much more highly in liver than in brain (31),
whereas its human homolog was shown to be expressed
much more highly in brain than in liver (29). Such a dis-
crepancy may not be due to species variation. It is likely
due to the tissue-specific expression of alternatively spliced
variants, as Mashima et al. (31) used a probe specific to
the liver isoform (TRAN00000157033), consistent with
our real time RT–PCR results (Figure 6A). The difference
between Slc25a25 transcripts TRAN00000157032 and
TRAN00000157033 occurs at their N-termini, which
encode calcium-sensitive EF-hand binding motifs. This
indicates that the tissue-specific expression of these two
transcripts may be related to their differential physiologi-
cal functions responding to Ca2+ signals in different tis-
sues. Another example is represented by the two isoforms
of Mrps12. Although the Mrps12 50-UTRs are not well
conserved between human and mouse in terms of sequence
identity, their AS patterns are conserved, indicating the
functional importance of such splicing regulation.
Indeed, the two human ortholog transcripts of Mrps12
TRAN00000139599 and TRAN00000139600 are subject
to different translational regulation (32), and this could
be functionally related to their tissue-specific expression.

BASIS focuses on the direct detection of differentially
expressed transcript isoforms between two conditions.
Several groups have developed algorithms to estimate
transcript abundance, but not difference. The difference
in isoform abundances can be conveniently modeled as a
normal distributed variable. This is based on the fact that
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the difference between two normal distributions remains
normal (for tiling-array data) and the difference between
two Poisson distributions is approximately normal (for
sequencing data). The Q–Q plots in Supplementary
Figures S2–S4 confirm that the normal distribution is a
valid assumption. Shai et al. (33) developed the GenASAP
algorithm to infer the expression levels of transcript
isoforms including or excluding a cassette exon. This
was designed specifically for a custom microarray in
which an exon-skipping event are represented by three
exon body probes and three junction probes (33). If a
gene has more than one alternative exon and more than
two transcript isoforms consequently, GenASAP cannot
distinguish isoforms which all include the tested cassette
exon, neither can it further distinguish isoforms which all
exclude the tested cassette exon. On the contrary, BASIS
can deal with genes with more than two transcript iso-
forms. Shai et al. (33) used a truncated normal distribu-
tion (�	 0) to satisfy the non-negative constraint on
isoform abundance and maximized the lower bound of
the log likelihood instead of the log likelihood itself
during their variational EM learning because the exact
posterior cannot be computed. Such normal distribution
approximation may be inappropriate for RNA-seq data.
BASIS focuses on the difference of isoform abundances
and the normal approximation for the difference is valid
for both the tiling-array data and the RNA-seq data. In
GenASAP, the calculation based on the lower bound of
the log likelihood may introduce bias in the estimation of
isoform abundance. In addition, there was no direct sta-
tistical inference for the differential expression patterns
and genes are tested separately. However, BASIS per-
forms direct inference on the differentially expressed iso-
forms and it borrows information from different genes.
Anton et al. (34) proposed the SPACE algorithm to pre-
dict the structures and the abundances of transcript iso-
forms from microarray data (34). A ‘non-negative matrix
factorization’ method was applied to handle the non-
negative constraints. The numerical approximation invol-
ving non-negative constraints is a computation-intensive
task, especially when thousands of genes are considered in
a single study. In addition, SPACE has no direct statistical
inference for the comparison of two transcriptomes.
Anton et al. (34) provided the MATLAB code for
SPACE. We therefore used SPACE to predict transcript
isoform abundances and carried out differential studies
by comparing the isoform abundances between two con-
ditions. We performed simulation studies to compare
BASIS and SPACE. BASIS has a much higher statistical
power than SPACE given the same false positive rate
(e.g. 0.87 versus 0.04 when false positive rate is 0.06. See
details in Supplementary Data S1 and Supplementary
Table S8). The low power of SPACE may be due to the
fact that SPACE assumes that the gene structure is
un-known and only two experiments (or conditions)
were considered. Anton et al. (34) reported that the esti-
mation of isoform structure and abundance depends on
the number of experiments (34). When there are only a few

experiments, the estimation error tends to be high. On the
contrary, BASIS utilizes the known isoform structure and
borrows information across different genes. It works well
even there are only two experiments (or conditions).
BASIS focuses on the direct inference of differentially
expressed transcript isoforms. The Markov chains gener-
ated by the Gibbs sampler converged very quickly and, in
theory, the empirical distributions of the hidden variables
based on those homogeneous ergodic Markov chains will
converge to the actual posterior probabilities (14). BASIS
can handle both microarray data and RNA-seq data.
For the RNA-seq data, we used the uniquely mapped

reads for each gene and ignored the multireads that can
be mapped to multiple positions in the mouse genome.
Inclusion and proportionate allocation of multireads
have been reported to impact RNA quantification (13).
In the present study, we focused on the differential expres-
sion patterns of transcript isoforms. Either exclusion or
inclusion of the multireads under both conditions has
only a small effect on the final results.
An isoform-specific exonic region is needed to accu-

rately assay the expression level of a transcript isoform
by real time RT–PCR. Because many transcripts are
unique in their exon combinations rather than in iso-
form-specific exon positions (Supplementary Figure S1),
the number of transcripts one can directly test is signifi-
cantly reduced. Novel experimental techniques are needed
in the future to solve this problem. However, through
simulation studies, we found that the power of BASIS is
not related to the percentage of isoform-specific positions
(P-value for the correlation=0.29). Therefore, the
real time RT–PCR validation results on transcripts with
isoform-specific positions can still be treated as a fair
evaluation of BASIS. We also noted that about 1%
genes in our data are un-identifiable because the columns
of X are perfectly collinear (i.e. Xj is a linear combination
of the other columns). For those genes, additional infor-
mation from other types of experiments is required to infer
the differentially expressed isoforms.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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