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Multiple Sclerosis (MS) is a debilitating autoimmune disease often accompanied by

severe chronic pain. The most common type of pain in MS, called neuropathic pain,

arises from disease processes affecting the peripheral and central nervous systems. It

is incredibly difficult to study these processes in patients, so animal models such as

experimental autoimmune encephalomyelitis (EAE) mice are used to dissect the complex

mechanisms of neuropathic pain in MS. The pleiotropic cytokine tumor necrosis factor α

(TNFα) is a critical factor mediating neuropathic pain identified by these animal studies.

The TNF signaling pathway is complex, and can lead to cell death, inflammation, or

survival. In complex diseases such as MS, signaling through the TNFR1 receptor tends

to be pro-inflammation and death, whereas signaling through the TNFR2 receptor is

pro-homeostatic. However, most TNFα-targeted therapies indiscriminately block both

arms of the pathway, and thus are not therapeutic in MS. This review explores pain in

MS, inflammatory TNF signaling, the link between the two, and how it could be exploited

to develop more effective TNFα-targeting pain therapies.

Keywords: pain, cytokine, TNF-α, EAE (experimental autoimmune encephalomyelitis), NFkapapB, MAP kinase

(MAPK), autoimmune disease

MS AND ITS MOUSE MODELS

MS Background
Multiple Sclerosis (MS) is an autoimmune disease characterized by aberrant immune cell activity
leading to inflammation and demyelinating lesions of central nervous system (CNS) (1–3).
It’s causes, while not fully understood, are likely a combination of genetic and environmental
factors (4). The MS disease course can follow multiple trajectories. Primary progressive disease
worsens steadily from onset. Progressive relapsing disease increasingly worsens but with some
relapsing and remitting characteristics, meaning there are periods where symptoms worsen, then
improve again. Most patients have a biphasic disease course, wherein they initially present with
a relapsing-remitting phenotype, but as the disease progresses there is a switch to the secondary
progressive phenotype and disability continually worsens (2, 5). There are numerous symptoms
and comorbidities associated with MS, which can affect sensory, motor, and cognitive modalities.
One of the most debilitating ailments experienced by MS patients is chronic pain (6, 7).

Pain in MS
Pain is a common feature for many patients diagnosed with MS (6, 8). The pain MS patients
may encounter includes chronic headache, sudden neck pain called Lhermitte’s sign, trigeminal
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neuralgia, extremity pain and hypersensitivity due to neuropathy
(central or peripheral) (9). Pain is one of the most devastating
comorbidities of MS, significantly interfering with daily life and
yet, there are few treatments available (9–11). This is likely
because neuropathic pain (NP), chronic pain that is caused
by injury or disease of the nervous system, underlies most
pain in MS (12). Neuropathic pain cannot be treated with
typical painkillers such as opioids or anti-inflammatory drugs
but instead, is often treated with more non-specific drugs like
anti-depressants or anti-convulsants which have severe side
effects (9, 11, 13, 14). Treating neuropathic pain in autoimmune
diseases is further complicated by a process called sensitization,
which occurs in both the peripheral and central nervous system
(PNS and CNS). Sensitization can involve both intra and inter-
cellular changes that increase pain sensations and allow for
the maintenance of pain regardless of disease progression or
treatment (15). Studies in similar autoimmune diseases (namely
Rheumatoid Arthritis) have demonstrated that pain is often not
resolved by disease-modifying treatment, and must be studied
and treated separately (16). To study the mechanisms of pain
in MS, researchers have turned to animal models which exhibit
comparable disease phenotypes in the PNS and CNS, and most
importantly, pain.

Mouse Models of MS
There are several paradigms used to induce MS-like symptoms in
laboratory animals. Although MS models have been developed
in rats, non-human primates, and even zebrafish, the greatest
diversity exists in mouse models (17). MS models are categorized
into three main groups, though viral infection, self-antigens
that become recognized by the immune system, or toxins that
cause demyelination. Theiler’s murine encephalomyelitis virus
(TMEV) induced disease is the best example of a viral induced
model ofMS, while experimental autoimmune encephalomyelitis
(EAE) represents the prototypical antigen induced diseasemodel,
and demyelination is induced by cuprizone or lysophosphatidyl
choline (LPC) administration (Table 1).

Due to its induction method, mice infected with TMEV
develop a biphasic disease phenotype that is useful for
studying the viral contribution to MS (18, 19). EAE on the
other hand, refers to a variety of ways to induce immune

TABLE 1 | Mouse models of Multiple Sclerosis.

Name Induction method Disease phenotype Does it cause

Pain?

References

TMEV Viral infection Biphasic Yes (18–20)

SJL/J EAE Immunization with PLP139−151 Relapsing-remitting Yes (21, 22)

Transgenic EAE Mice with genetically manipulated T and/or B cells Primary progressive or relapsing-remitting Yes (23–26)

Pertussis/CFA EAE Immunization with MOG emulsified in CFA, then pertussis Primary progressive or relapsing-remitting Yes (27, 28)

Pertussis/QuilA EAE Immunization with MOG emulsified in QuilA, then pertussis Relapsing-remitting Yes (29–33)

Non-pertussis EAE Immunization with MOG in CFA, no pertussis Primary progressive Yes (34)

Cuprizone Administered in diet for 5+ weeks Demyelinating Yes (35)

LPC Peripheral or central injection Demyelinating Yes (36–38)

activation and demyelination that mimic MS pathophysiology.
This is most often achieved by immunization with a myelin
antigen. For example, EAE induced in Swiss Jim Lambert
(SJL) mice with a fragment of proteolipid protein (PLP139−151)
causes a relapsing-remitting disease phenotype (21). A primary
progressive phenotype can be induced by immunization with
myelin oligodendrocyte glycoprotein (MOG35−55) emulsified in
an adjuvant such as CFA to trigger an immune response tomyelin
(27, 28, 39, 40). By modifying the concentration of MOG35−55

and the adjuvants used to induce EAE, a relapsing-remitting
phenotype in C57Bl/6 mice can also be generated (29, 30, 41).
MOG EAE immunization protocols are normally followed by
injections with pertussis toxin to facilitate blood brain barrier
breakdown (39), but this step can also be omitted (34). QuilA
can also be used in place of Complete Freund’s Adjuvant (CFA),
the most used adjuvant in EAE models, to generate a relapsing-
remitting phenotype (31).

Transgenic EAE is yet another method of mimicking MS in
mice. T and/or B cells in these mice are genetically manipulated
to react to MOG, and different strains have been developed
to produce either a primary progressive or relapsing-remitting
phenotype (23–26). Lastly, demyelination can be caused by
either consumption of the copper chelator cuprizone which
preferentially causes oligodendrocyte cell death (42, 43), or
injection of LPC which integrates into membranes and disrupts
myelin (44, 45). These models are useful to study demyelination
separately from other MS disease processes. Although there are
many ways to induce MS-like symptoms in mice, and each have
their own strengths and weaknesses in modeling CNS lesions,
demyelination, axonal damage, immune cell activation, they all
produce pain (20, 22, 35).

Pain in MS Models
Animal models of MS have enabled researchers to study the
mechanisms of chronic pain associated with the disease as
the animals develop similar pain phenotypes to people with
MS (46). Like MS patients, mice with EAE also exhibit cold
and mechanical hypersensitivity, trigeminal neuralgia, and even
sex differences in pain (9, 47, 48). Animals with TMEV and
EAE exhibit hypersensitivity to painful and non-painful stimuli
called, called hyperalgesia and allodynia, respectively (20, 46,
49). Interestingly, TMEV animals present with sex differences
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FIGURE 1 | TNFα signaling is mediated by two isoforms of the cytokine and two receptor subtypes. sTNFα can interact with TNFR1 to mediate either

pro-inflammatory or pro-death signaling. Pro-death signaling occurs through recruitment of FADD and RIPK1, which can either lead to necroptosis trough RIPK3 and

MLKL activation, or apoptosis through caspase8 and caspase 3 activation. Pro-inflammatory signaling occurs through TRAF2 activation of P38, JNK, or ERK MAPKs,

or NFκB. Alternatively, tmTNFα can interact with TNFR2 to mediate pro-homeostatic or pro-inflammatory signaling through TRAF1, cIAPs 1 and 2, and TRAF2. This

pathway can be mediated by activation of MAPKs, NFκB, or Akt. This figure was made using BioRender.

in pain, with females developing hypersensitivity more quickly
than males (20). This sex difference is important as it allows
researchers to better understand sex differences in human MS.
In a foundational study of pain in EAE, animals exhibited heat-
induced hyperalgesia not only when the disease was induced by
immunization with a myelin peptide emulsified in CFA, but also
when T cells from EAE mice were transferred to naïve mice (50).
The cuprizone model has historically been studied less in the
context of pain, but a recent study using electrical stimulation-
induced paw withdrawal suggests there is a pain phenotype in
cuprizone mice (35). LPC injection has also been associated with
pain, but more commonly in the context of nerve or spinal cord
injury (36–38).

One mechanism that may be responsible for some aspects
of pain in MS animal models is immune cell activation and
cytokine release, generating peripheral and central sensitization.
Tumor necrosis factor alpha (TNFα) is of the most prominent
pro-inflammatory cytokines present in MS and EAE, and it

also has strong associations with many other chronic pain
conditions (51–53).

TNFα STRUCTURE AND FUNCTION

TNFα Signaling
TNFα is a pleiotropic cytokine with a multifaceted signaling
pathway which can lead to cell death via either apoptosis or
necrosis, or conversely, to survival and inflammation (Figure 1).
TNFα originates in its transmembrane form (tmTNFα),
produced by immune cells such as macrophages, monocytes,
and lymphocytes (54, 55). Then it may be cleaved by TNFα
converting enzyme (TACE) and released into its soluble form
(sTNFα) (55). As the main determinant of TNFα isoform
availability, TACE overactivity has been linked to inflammatory
diseases (56). However, it is not currently a viable treatment
target due to its similarity to other matrix metalloproteinases
(57). There are two main subtypes of TNF receptors, TNFR1 and
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TNFR2. TNFR1 is expressed on most cell types and primarily
mediates pro-inflammatory and pro-death signaling (58). It can
bind both sTNFα and tmTNFα, but is preferentially activated by
sTNFα (59, 60). TNFR2 is expressed mostly on immune cells and
only associates with tmTNFα (61, 62). This receptor lacks a death
domain and is associated with pro-survival and pro-homeostatic
signaling (62). Interestingly, during this interaction, tmTNFα
also transmits signals back into its host cell (55).

sTNFα molecules act in a trimer and associate with three
TNFR1 receptor subunits to activate the signaling complex by
endocytosis into the cytoplasm (63). Next, Tumor necrosis factor
receptor type 1-associated death domain protein (TRADD)
associates with the receptor-ligand trimer. Further complex
recruitment by TRADD then determines whether death or
inflammation and survival will occur (63). Death signaling
ensues if TRADD recruits fas-associated protein with death
domain (FADD), and receptor-interacting serine/threonine-
protein kinase (RIPK) 1 (64). Cell death occurs by apoptosis if
initiator caspases 8 or 10 are recruited, or by necroptosis if RIPK3
and mixed lineage kinase domain-like pseudokinase (MLKL) are
recruited (64). The pro-survival factor, TNF receptor-associated
factor 2 (TRAF2) can prevent cell death by acting as an E3
ubiquitin ligase to target RIPK1 for degradation (65, 66). TRAF2
then initiates activation of the mitogen-activated protein kinases
(MAPKs) P38, c-Jun-N-terminal kinase (JNK), and extracellular
signal-regulate kinase (ERK), or the transcription factor nuclear
factor kappa B (NFκB) (65). Pro-inflammatory signaling by these
factors is a beneficial response to insults such as infection, but it
can also be maladaptive, leading to pain (67, 68).

TNFR2 signaling also occurs in a trimeric fashion but rather
interacts with tmTNFα, then recruits TRAF2 upon complex
endocytosis. In addition, TNFR2 recruits TRAF1 and cellular
inhibitors of apoptosis (cIAP1/2). This complex activates pro-
survival signals through phosphatidylinositol 3-kinase (PI3K)
and protein kinase B (Akt), and activates NFκB and JNK (69,
70). Although TNFR2 lacks a death domain, prolonged JNK
activation by TNFR2 can lead to intrinsic apoptosis (65). Despite
this ability to cause cell death, TNFR2 signaling is primarily
pro-homeostatic and promotes many pro-survival activities
including, cell proliferation, migration, and adhesion (71, 72).

TNFα and Pain
TNFα is involved in both central and peripheral mechanisms
of chronic pain (73–75) (Figure 2). This has been demonstrated
on a pre-clinical level in animal experiments which show that
TNFα administration alone is sufficient to cause pain (76–
78), and exogenous TNFα administered in animal models of
inflammatory pain such as spinal nerve ligation (SNL) can
exacerbate pain intensity and duration (79). In more complex
animal models of neuropathic pain such as peripheral nerve
injury (PNI), TNFα is elevated both centrally and peripherally,
and TNF antagonists can be effective in relieving pain (80–84).

Various mechanisms for how TNFα causes pain have been
investigated. TNFα produced in response to inflammation can
increase excitatory synapse strength and decrease inhibitory
synapse strength by altering AMPA and GABAA receptor
surface expression on neurons (85). In the hippocampus this
hyperexcitation leads to excitotoxicity and neuronal death (85,

86), but in the dorsal horn of the spinal cord it can cause either
excitotoxic cell death or sensory sensitization and pain (87, 88).
TNFα is also a well-characterized activator of microglia, leading
to further secretion of inflammatory mediators (89, 90). This
process has been implicated in spinal mechanisms of neuropathic
pain (84, 91).

Whether TNFα leads to inflammation or cell death depends
on its downstream signaling. For example, in male rats, SNL
injury increased TNFα and P38 MAPK expression in the DRG
and spinal cord, and inhibition of either TNFα or P38 was
sufficient to reduce mechanical allodynia (92). While P38 and
JNKMAPK signaling can be pro-inflammatory and pro-survival,
they can also lead to intrinsic apoptosis through mitochondria
(93). TNFα can also be involved in pain in a secondary manner.
In an animal model of intervertebral disc degeneration, TNFα
signaling contributed to disc degeneration by inducing apoptosis
through caspase 3, and that subsequent disc degeneration
caused pain (94).

The detrimental effects of TNF signaling in pain conditions
are mediated primarily by TNFR1. Several anti-TNFR1
antibodies have been developed, as have inhibitors of sTNFα
used to block TNFR1 signaling. An example of an sTNFα
blocker, XPro1595, inhibited hyperalgesia in a CFA model of
inflammatory pain (95) and in EAE (96). Additionally, after
spinal cord injury, XPro1595 treatment increased TNFR2
expression (97). TNFR2 is considered pro-homeostatic, as
evidenced by studies in which TNFR2 agonism has relieved pain
after PNI (58, 98). Current evidence thus indicates that sTNFα
signaling through TNFR1 is pathological in pain conditions,
whereas tmTMFα signaling through TNFR2 is protective.

While animalmodels have the benefits of being well controlled
for age, sex, environment, and the nature of illness or injury, the
inherent variability in human populations complicates the study
of pain and its treatment. However, TNFα is elevated is a number
of painful conditions in humans including chemotherapy-
induced neuropathic pain (CIPN) and rheumatoid arthritis
(RA) (51). Non-specific TNFα antagonists have shown some
effectiveness in relieving pain in RA, but not in all inflammatory
pain conditions in which the cytokine might be involved, such as
MS (99, 100).

TNFα in MS and EAE
TNF signaling may be involved in MS pathogenesis through
several points of action. TNFα is elevated centrally in MS
patients, and this is correlated with disease severity (101).
However, it is incredibly difficult to study the precise mechanisms
underlying TNF signaling in MS in humans. Much of the
proposed actions of TNFα in MS have been discovered through
study of animal models such as EAE. In both MS and its animal
counterparts, the major pathological landmarks are immune cell
infiltration into the CNS, and the development of demyelinating
lesions which eventually lead to neuronal death. In EAE, TNFα
transport is upregulated at the blood-brain barrier (BBB), as
is TNFα expression by mast cells, which are involved in BBB
breakdown (102). TNFα also promotes activation of T cells
(103, 104), and is upregulated in demyelinating lesions in EAE
where it is hypothesized to promote neuronal excitotoxicity
and oligodendrocyte death (103, 105). Therefore, TNFα appears
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FIGURE 2 | TNFα is involved in pathological pain processing in MS. In normal physiological pain processing, pain signals are sent from the periphery to the DRG,

which relays information to the spinal cord then brain (1A,B). In neuropathic pain in MS, inflammation activates immune cells which secrete the pro-inflammatory

cytokine, TNFα both peripherally and centrally (2A). It can then act back on the cells which produced it creating a positive feedback loop. TNFα contributes to

sensitization of peripheral nociceptors and spinal dorsal horn neurons through mechanisms such as altered excitatory and inhibitory receptor expression (2B,C). These

conditions lead to long term central pain sensitization of the brain and spinal cord (2D). This figure was made using BioRender.

to be involved in immune cell activation and infiltration
into the CNS, as well as demyelination and axonal injury.
The receptor subtype employed in TNF signaling also shapes
disease progression in MS and EAE. TNFR1 expression is
correlated with disease progression, whereas TNFR2 promotes
repair and remyelination through oligodendrocyte survival and
differentiation (106–108) (Figure 3).

While central TNF signaling is involved in disease progression

in MS and EAE, peripheral TNFα elevation is a likely culprit

for the development of chronic pain (52). Infiltration of

TNFα-producing immune cells is evident peripherally in EAE
(109). Macrophages, for example, both produce TNFα and are
strongly affected by it (110). In a pro-inflammatory environment
where sTNFα is the dominant isoform, TNFR1 signaling
in macrophages can enhance their activation, resulting in a
positive feedback loop (111). Primary pain sensing neurons,
called nociceptors, express TNFR1 (112), and signaling through
this receptor can cause nociceptors to become hyperexcitable,
meaning they may be more likely to fire action potentials, and
do so more intensely in response to painful stimuli (113, 114).
These hyperexcitable nociceptors then signal to the spinal cord

and brain, leading to central sensitization, which maintains pain
chronically (115). This mechanism for pain has been proposed
in other painful conditions like PNI and RA, where treating the
peripheral causes of pain is ineffective once central sensitization
has been established (115–117). It may also explain why in EAE,
pain sensitivity to stimuli occurs early in the disease course,
before full disease onset (118). While pain mechanisms in EAE
have not been fully elucidated, understanding this model of
peripheral and central sensitization will help inform future areas
of study and potential treatments.

TARGETING TNFα AS AN ANALGESIC
STRATEGY

Anti-TNF Therapies
There are five non-specific TNFα inhibitors currently in
clinical use (Table 2). Infliximab, Adalimimab, Golimumab, and
Certolizumab are antibodies that target TNFα, and Etanercept
is a soluble recombinant TNF receptor (119, 120). All of these
drugs work by binding to and sequestering both the soluble and
transmembrane forms of TNFα so they cannot interact with
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FIGURE 3 | The two TNFα isoforms and their receptors have opposing actions on MS disease progression. sTNFα interacts with TNFR1 in the peripheral nervous

system to enhance BBB permeability (1A), as well as increase immune cell activation and migration (1B). TNFα can migrate across the weakened BBB, but it is also

produced in the central nervous system where it again promotes immune cell activation (1C,D). Immune cells secrete antibodies and cytokines which mediate

oligodendrocyte death, demyelination, and neuronal damage (1E,F). tmTNFα interacts with TNFR2 to promote oligodendrocyte survival and differentiation. This helps

to promote remyelination and repair (2C). This figure was made using BioRender.

their receptors and initiate signaling cascades (55). Anti-TNF
drugs can be beneficial in various types of arthritis, ankylosing
sponditis, plaque psoriasis, Crohn’s disease, and ulcerative
colitis (121). However, there are severe side effects associated
with TNF inhibition. TNFα is an important immune-mediator,
and blocking its actions can be immunosuppressive, thereby
increasing the risk of new infections as well as re-activation
of dormant infections (122, 123). There is also evidence these
drugs cause demyelination and liver damage (124, 125). The
severe side effects of TNF inhibition may be due to blockade of
the homeostatic functions TNFα, particularly through TNFR2
signaling. This indiscriminate blockade of TNFα may also help
to explain why pain management is lacking with anti-TNF
treatment (126–128).

Anti-TNF therapies have mixed effectiveness in treating pain
depending on the condition for which they are used. In a
rat chronic constriction injury model of PNI, TNF inhibition
reduced mechanical and thermal pain (99, 145). Pain reduction
by anti-TNF drugs in PNI has been suggested to occur through
an alteration of TNF receptor expression in the spinal cord

(146). Anti-TNF treatment with either etanercept or infliximab
decreased the TNFR1/TNFR2 ratio, and this correlated with
better recovery (145). This finding conforms with the view
of TNF receptors which considers TNFR1 to be involved in
pathology/damage, and TNFR2 to be involved in repair and
homeostasis (147, 148). Although it is unclear how exactly these
anti-TNF drugs modulate receptor expression, these findings
provide a strong rationale to further investigate TNF receptor
modulation in neuropathic pain treatment, and there are
currently drugs in development for this purpose (Table 2).

In another peripherally-driven chronic pain disorder,
diabetic peripheral neuropathy (DPN), TNF inhibition
blocked mechanical but not thermal pain in a rat model
(99, 149). Anti-TNF treatment in this model has also improved
signs of nerve degeneration associated with advancing DPN,
restoring conduction velocity, myelination, myelin basic protein
expression, as well as lamellar and axonal organization (150).
Based on the findings in these two models, TNF inhibition can
affect sensory neuron inflammation and degeneration, as well as
spinal TNF receptor expression. It will be important for future
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TABLE 2 | TNFα-targeted therapies.

Drug Clinical

approval?

Type Target Could treat

MS pain?

References

Infliximab Yes Monoclonal TNFα antibody Soluble and transmembrane TNFα No (124, 129, 130)

Adalimumab Yes Monoclonal TNFα antibody Soluble and transmembrane TNFα No (124, 131–133)

Golimumab Yes Monoclonal TNFα antibody Soluble and transmembrane TNFα No (124, 134–136)

Certolizumab Yes PEGylated antigen-binding fragment TNFα antibody Soluble and transmembrane TNFα No (124, 137, 138)

Etanercept Yes Soluble TNFα receptor Soluble and transmembrane TNFα No (124, 139, 140)

Xpro1595 No Protein biologic Soluble TNFα Yes (96, 97)

R2agoTNF No TNFα mutant TNFR2 (agonist) Yes (141, 142)

Nabiximols Yes Cannabinoid Soluble TNFα Yes (143, 144)

studies in PNI and DPN models to address both peripheral and
central mechanisms. This may provide a better understanding of
how targeting TNF can prevent and/or relieve neuropathic pain.

Anti-TNF in MS: The Double-Edged Sword
Anti-TNF therapies are generally not only ineffective in treating
MS, but they can also worsen disease severity. They are also
known to increase the risk of developing MS in patients
receiving anti-TNF treatment for other conditions (124, 151,
152). Studies using EAE have provided insight into why
universal blockade of TNF signaling can be detrimental in
the disease. Anti-TNF molecules sequester both soluble and
transmembrane TNFα and block signaling through both TNFR1
and TNFR2 (55). In EAE, inhibition of soluble TNFα signaling
through TNFR1 promotes remyelination and axon survival (96).
However, transmembrane TNFα signaling through TNFR2 may
be neuroprotective (153). TNFR2 signaling supports regulatory
T cells (Tregs) (98, 154), and promotes remyelination through
oligodendrocyte differentiation (106). Ultimately, while blocking
all TNF signaling in MS and EAE can reduce its detrimental
effects, it also reduces the beneficial aspects of TNFR2 signaling,
leading to a net negative result for anti-TNF therapies in MS
and EAE.

Drugs that are more specifically targeted to cell type,
TNFα isoform, and TNF receptor type will be necessary to
further explore TNF therapies for disease modification and pain
treatment in MS (Table 2). For example, in EAE, treatment with
a selective TNFR2 agonist reduced motor symptom and pain
severity and improved various other hallmarks of the disease
(155). Cannabinoids are another potential treatment forMS pain,
as they are linked to a preferential reduction sTNFα production
by both peripheral and central immune cells (156–158), and
have shown promising analgesia in clinical trials (159, 160).

Further investigation into similar receptor and/or isoform

targeted drugs may make TNF therapy a viable option in MS
pain treatment.

GAPS IN KNOWLEDGE AND FUTURE
DIRECTIONS

TNFα mediates the development of neuropathic pain in many
conditions. While indiscriminate TNF inhibition is effective in
some human pain conditions and animal models, it is ineffective
and can have deleterious consequences in MS. To develop
therapies that effectively target TNF signaling to treat pain in
MS we must first focus on developing a better understanding
of the cell types, receptors, and downstream pathways involved
both peripherally and centrally. Research in the EAE model has
already led to the development of promising TNFR1 antagonists
and TNFR2 agonists. Other components of the TNF pathway
such MAPKs and NFκB may also provide points of intervention.
These targeted therapies are the future of pain management in
MS and other neuropathic pain conditions.
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