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Abstract: Computational hemodynamics models are becoming increasingly useful in the 

management and prognosis of complex, multiscale pathologies, including those attributed to the 

development of pulmonary vascular disease. However, diseases like pulmonary hypertension 

are heterogeneous, and affect both the proximal arteries and veins as well as the 

microcirculation. Simulation tools and the data used for model calibration are also inherently 

uncertain, requiring a full analysis of the sensitivity and uncertainty attributed to model inputs 

and outputs. Thus, this study quantifies model sensitivity and output uncertainty in a multiscale, 

pulse-wave propagation model of pulmonary hemodynamics. Our pulmonary circuit model 

consists of fifteen proximal arteries and twelve proximal veins, connected by a two-sided, 

structured tree model of the distal vasculature. We use polynomial chaos expansions to 

expedite the sensitivity and uncertainty quantification analyses and provide results for both the 

proximal and distal vasculature. Our analyses provide uncertainty in blood pressure, flow, and 

wave propagation phenomenon, as well as wall shear stress and cyclic stretch, both of which 

are important stimuli for endothelial cell mechanotransduction. We conclude that, while nearly 

all the parameters in our system have some influence on model predictions, the parameters 

describing the density of the microvascular beds have the largest effects on all simulated 

quantities in both the proximal and distal circulation.  

 

1. Introduction 

The pulmonary arteries, capillaries, and veins support the same cardiac output as the systemic 

circulation but with substantially lower pressure magnitudes between 5 and 20 mmHg [1]. 

Elevated pulmonary blood pressures constitute pulmonary hypertension (PH), a debilitating, 

often fatal disease that is attributed to vascular remodeling and right ventricular dysfunction if 

left unmanaged. The disease is defined by a resting mean pulmonary arterial blood pressure ≥ 

20 mmHg measured by right heart catheterization and is a comorbidity in roughly 36-83% of all 

adults with left-sided heart failure [2]. While PH secondary to left-sided heart failure (world 

health organization (WHO) group II PH) is prevalent, there is still an unmet need in 

understanding the drivers and consequences of PH with respect to pulmonary biomechanics 

and hemodynamics [2]. 

 A majority of PH research has focused on the proximal and distal pulmonary arteries, as 

right ventricle (RV) dysfunction can be correlated with elevated proximal arterial pressures [3]. 

Disease subclasses, such as pulmonary arterial hypertension (PAH), are directly linked to 



increased distal pulmonary arterial wall thickness, lower proximal arterial compliance, and 

eventual un-coupling of the RV and proximal arteries [4]. In contrast, less is known about the 

role of the pulmonary microvasculature surrounding the alveoli in the lung or the pulmonary 

venous circulation. Pulmonary hypertension due to lung-disease, classified WHO group III PH, 

is the second most common subtype and is hypothesized to initiate with remodeling and 

dysfunction of the pulmonary capillaries [1]. Patients with PH as a comorbidity of chronic 

obstructive pulmonary disease (COPD) often exhibit a reduced density of distal pulmonary 

arteries and proximal pulmonary arterial enlargement [5]. This suggests a multiscale mechanism 

of disease progression, occurring at both the proximal and distal vasculature. Heart failure with 

reduced and preserved ejection fraction (HFrEF and HFpEF, respectively) can both lead to 

isolated post-capillary group II PH and are suspected to cause left atrial dysfunction and venous 

injury [2], [6]. In severe cases, these patients can transition to combined pre- and post-capillary 

PH, which results in capillary remodeling, distal arterial stiffening, and RV deterioration [2]. 

These various forms of PH are heterogenous and cause both cardiac and vascular dysfunction 

at multiple spatial scales. Disease diagnosis and prognosis rely on multiple data modalities 

(e.g., catheterization, imaging, echocardiography) that cannot be integrated easily.  

 To-date, computational fluid dynamics models have provided significant insight into 

systemic hemodynamics by integrating multimodal clinical data [7]–[10]. More recently, these 

models have been applied to the pulmonary circuit, including fully explicit three-dimensional 

(3D) [11], [12] and reduced order [13]–[16] hemodynamics models. These mechanistic models 

can be solved in patient-specific geometries based on imaging data and have potential as a 

non-invasive tool for disease monitoring [17], [18]. In particular, one-dimensional (1D) 

hemodynamic models provide network-level insight into pressure-flow dynamics [13], [14], as 

well as simulations of wave travel and wave reflections, which correlate with PH severity [19]–

[21]. Several simulation studies focusing on the pulmonary circulation have quantified multiscale 

phenomenon, including distal arterial [15] and venous [13], [14], [16] hemodynamics. In light of 

this, few studies have quantified the uncertainties in these models [9], [22], [23], and, to the 

authors’ knowledge, none have investigated the sensitivity and uncertainty of multiscale 

hemodynamics models. These latter analyses are imperative, as modeling and simulation 

undergo heavy scrutiny before advancing to medical device or clinical applications [17], [24]. 

 We address this gap in the field by conducting a formal sensitivity and uncertainty 

analysis on a multiscale, two-sided model of the pulmonary circulation. We use the 1D 

hemodynamics model developed by Qureshi et al. [14] and recently studied by Bartolo et al. 



[13], and investigate how model parameters affect both proximal and distal vascular 

hemodynamics. We employ polynomial chaos expansions (PCEs) to circumvent high 

computational cost and provide Sobol’ indices to measure parameter influence on pressure, 

flow, wall shear stress (WSS) and cyclic stretch (CS) in both the proximal and distal arteries and 

veins. We subsequently provide insight into the uncertainties in forward and backward wave 

propagation in the arterial and venous systems. Through this analysis, we provide uncertainty 

bounds for both hemodynamic and biomechanical stimuli from the model at different scales, 

presenting new details for future studies that seek to calibrate this model to patient data, as well 

as in-vitro analyses related to pulmonary vascular mechanotransduction. 

 

2. Materials and Methods 

2.1 Vascular Geometry 

The multiscale model operates on two vascular domains, as shown in Figure 1. The first domain 

includes pulmonary arteries (n=15) up to the segmental level, as well as the first two 

generations of pulmonary veins (n=12). This constitutes the proximal vasculature where the 

non-linear 1D hemodynamic equations are solved. Each arterial and venous vessel includes a 

radius and length, as documented in Table 1, based on the findings in Mynard et al. [7]. The 

arteries and veins at the end of the proximal vasculature are deemed terminal branches herein. 

The axial domain for each vessel is 0 ≤ 𝑥 ≤ 𝐿, with 𝐿 (cm) being the length of the vessel.  

 The distal vasculature is constructed using the structured tree model [8], [13], [14]. The 

arterial and venous beds are assumed to follow a self-similar, bifurcating structure, 

parameterized by five geometric parameters: 𝛼 and 𝛽 (dimensionless), the major and minor radii 

scaling factors in the structured tree; ℓ𝑟𝑟
𝐴  and ℓ𝑟𝑟

𝑉  (dimensionless), the length-to-radius ratio of 

the arterial and venous trees; and 𝑟𝑚𝑖𝑛 (cm), the minimum radius cutoff for where the arterial 

and venous beds meet. Each vessel in the structured tree is described by 

𝑟𝑖𝑗 = 𝛼𝑖𝛽𝑗𝑟𝑡𝑒𝑟𝑚, 𝐿𝑖𝑗
𝑘 = 𝑟𝑖𝑗ℓ𝑟𝑟

𝑘 , 𝑘 = 𝐴, 𝑉 (1) 

where 𝑟𝑖𝑗 and 𝐿𝑖𝑗
𝑘  are the radius (cm) and length (cm) in the arterial (𝑘 = 𝐴) or venous (𝑘 = 𝑉) 

bed. Details regarding the self-similarity principles can be found in the original work by Olufsen 

et al. [8]. 

 



Figure 1: Schematic of computational model geometry. (a) A pulmonary artery inflow profile is 

provided as a boundary condition to the MPA and drives flow through the fifteen proximal 

arteries. A left atrial pressure waveform is provided as a pressure boundary condition for four 

proximal pulmonary veins, which are connected to an additional generation of veins. The 

proximal arteries and veins are connected by the structured tree model, which includes the 

distal vasculature. (b) A pictorial representation of the structured tree model and how the 

parameters 𝛼 and 𝛽 are used to determine vessel radii. Note that there are both arterial and 

venous structured trees, which have the same geometry. MPA: main pulmonary artery; LSV: left 

superior vein; LIV: left inferior vein; RSV: right superior vein; RIV: right inferior vein. 

2.2 Proximal Vessel Fluid Mechanics 

We simulate proximal pulmonary hemodynamics using a 1D model of the large arteries and 

veins, as developed by Qureshi et al. [14] and Bartolo et al. [13]. In short, we assume that the 

blood is Newtonian and homogenous, and that flow is predominantly inertial, axially dominant, 

laminar, and axisymmetric, with no-swirl, resulting in only axial 𝑥 (cm) and temporal 𝑡 (s) 

dynamics. Each blood vessel is assumed to be cylindrical and impermeable with a circular cross 

section. The resulting mass conservation and momentum balance equations are 

𝜕𝐴

𝜕𝑡
+

𝜕𝑞

𝜕𝑥
= 0 (2) 

and 

𝜕𝑞

𝜕𝑡
+

(𝛾 + 2)

(𝛾 + 1)

𝜕

𝜕𝑥
(

𝑞2

𝐴
) +

𝐴

𝜌

𝜕𝑝

𝜕𝑥
 = −2𝜋𝜈(𝛾 + 2)

𝑞

𝐴
 (3) 

where 𝐴(𝑥, 𝑡) (cm2) is the dynamic vessel area, 𝑞(𝑥, 𝑡) (cm3/s) is the flow, and 𝑝(𝑥, 𝑡) (g cm/s2) is 

the transmural pressure. The blood density and kinematic viscosity are assumed constant in the 

large vessels, with 𝜌 = 1.055 (g/cm3) and 𝜈 = 3.03 × 10−2 (cm2/s), respectively. We assume a 

power-law velocity profile with 𝛾 = 9, providing a blunt velocity profile in the center of each 

vessel that decreases to zero to satisfy the no-slip condition at the vessel wall [25]. For the 

proximal wall mechanics, we assume that vessels are thin-walled, homogenous, and 

orthotropic, and follow a linearly elastic pressure-area relationship [13]. This is modeled by 

𝑝(𝑥, 𝑡) =
4

3
(

𝐸ℎ

𝑟0
) (√𝐴/𝐴0 − 1) (4) 

where 𝐴0 = 𝜋𝑟0
2 is the reference area (cm2), 𝐸 (g cm2/s) is the Young’s modulus in the 

circumferential direction, and ℎ (cm) is the wall thickness. We assume that the proximal arteries 



have the same, constant material properties, 𝐾𝐴 = 𝐸𝐴ℎ𝐴/𝑟0,𝐴 (g cm2/s), while all the proximal 

veins have their own constant, venous-specific material properties, 𝐾𝑉 = 𝐸𝑉ℎ𝑉/𝑟0,𝑉 (g cm2/s) 

[14]. The proximal vessel equations are discretized and solved using the two-step Lax-Wendroff 

scheme [8]. Numerical simulations are run through a combination of FORTRAN90 and C++ 

using a MATLAB (Natick, MA) wrapper file. It should be noted that pressure is calculated in 

CGS units and then converted to mmHg (1 mmHg = 1333.22 g cm2/s) to make results clearer. 

 

2.3 Distal Vessel Fluid Mechanics 

Whereas the proximal vascular fluid mechanics include both inertial and viscous forces, 

hemodynamics in the distal vasculature are assumed to be viscous dominant. We assume that 

pressure and flow in the structured tree branches are periodic with each heartbeat and 

subsequently use the frequency domain representation of pressure, 𝑃(𝑥, 𝜔𝑘), and flow, 

𝑄(𝑥, 𝜔𝑘), respectively, for each frequency 𝜔𝑘 = 2𝜋𝑘/𝑇. This leads to a linear mass conservation 

and momentum balance system given by the expressions 

𝑖𝜔𝑘𝐶𝑃(𝑥, 𝜔𝑘) +
𝜕𝑄(𝑥, 𝜔𝑘)

𝜕𝑥
= 0, 𝐶 =

3

2

(𝜋𝑟0,𝑖𝑗
2 )

𝐾𝑆𝑇
 (5) 

and 

𝑖𝜔𝑘𝑄(𝑥, 𝜔𝑘) +
(𝜋𝑟0,𝑖𝑗

2 )

𝜌
(1 −

2𝐽1(𝑤0)

𝑤0𝐽0(𝑤0)
)

𝜕𝑃(𝑥, 𝜔𝑘)

𝜕𝑥
= 0,     𝑤0 = 𝑖3𝑟0,𝑖𝑗

2 𝜔𝑘/𝜇𝑆𝑇 . (6) 

The above equations depend on 𝐾𝑆𝑇 = 𝐸ℎ/𝑟0,𝑖𝑗 (g cm2/s), the material properties of the vascular 

wall for both the arterial and venous structured trees, the imaginary unit 𝑖 = √−1, and the first 

and zeroth order Bessel functions, 𝐽1 and 𝐽0, respectively. The structured tree viscosity, 𝜇𝑆𝑇 =

𝜇(𝑟0,𝑖𝑗), is radius dependent, as described previously [13], [26], where 𝑟0,𝑖𝑗 is the radius value for 

the 𝑖𝑗-th branch of the structured tree. Equation (5) can be differentiated with respect to 𝑥 and 

used in equation (6) to give a system of wave equations in 𝑃(𝑥, 𝜔𝑘) and 𝑄(𝑥, 𝜔𝑘). Their solution 

can be computed analytically in terms of sine and cosine functions, as described in elsewhere 

[13], [14]. 

 The numerical solutions for 𝑃(𝑥, 𝜔𝑘) and 𝑄(𝑥, 𝜔𝑘) require a pressure-flow relationship. 

As originally discussed by Qureshi et al. [14], the arterial and venous structured trees are linked 

using admittance, which is the inverse of impedance and generally expressed as 𝑌 = 𝑄/𝑃. 

Using the analytical solutions for hemodynamics and the structured tree geometry, the pressure 



and flow at the inlet (𝑥 = 0) and outlet (𝑥 = 𝐿) of any vessel can be determined by the 

admittance relationship 

[
𝑄(0, 𝜔𝑘)

 
𝑄(𝐿, 𝜔𝑘)

] = 𝒀(𝜔𝑘) [
𝑃(0, 𝜔𝑘)

 
𝑃(𝐿, 𝜔𝑘)

] (7) 

 

where 𝒀(𝜔𝑘) is the 2x2 admittance matrix 

𝒀(𝜔𝑘) =
𝑖𝑔𝜔𝑘

sin(𝜔𝑘𝐿/𝑐)
[
− cos(𝜔𝑘𝐿/𝑐) 1

1 − cos(𝜔𝑘𝐿/𝑐)
], (8) 

𝑔𝜔𝑘
= √

𝐶(𝜋𝑟0,𝑖𝑗
2 )

𝜌
(1 −

2𝐽1(𝑤0)

𝑤0𝐽0(𝑤0)
). (9) 

Note that at 𝜔𝑘 = 0, we obtain a Poiseuille-like admittance matrix 

𝒀(𝜔𝑘 = 0) =
𝜋𝑟0,𝑖𝑗

4

8𝜇𝑆𝑇𝐿𝑖𝑗
[

1 −1
−1 1

] (10) 

where 𝑟0𝑖𝑗
 and 𝐿𝑖𝑗 denote the reference radius and length of the vessel in the structured tree 

and 𝜇𝑆𝑇 is the radius dependent viscosity [13]. The admittance throughout the structured tree is 

dependent on the structured tree parameters 𝜃𝑆𝑇 = {𝐾𝑆𝑇 , 𝛼, 𝛽, ℓ𝑟𝑟
𝐴 , ℓ𝑟𝑟

𝑉 , 𝑟𝑚𝑖𝑛}. 

 

2.4 Multiscale Coupling 

The proximal arteries and veins are coupled to the distal structured tree beds using the “grand 

admittance” of the structured tree [13]. To link the two models, the grand admittance matrix is 

used as a frequency-domain boundary condition to the proximal arteries and veins via a 

convolution integral. The proximal artery pressure and flow on the arterial and venous sides are 

calculated (respectively) using the relationship 

𝑞𝐴(𝐿, 𝑡) = ∫(𝑦11(𝑡)𝑝𝐴(𝐿, 𝑡 − 𝜏) +  𝑦12(𝑡)𝑝𝑉(0, 𝑡 − 𝜏))

𝑇

0

𝑑𝜏 (11) 

𝑞𝑉(0, 𝑡) = ∫(𝑦21(𝑡)𝑝𝐴(𝐿, 𝑡 − 𝜏) +  𝑦22(𝑡)𝑝𝑉(0, 𝑡 − 𝜏))

𝑇

0

𝑑𝜏. (12) 

The above expressions depend on the components of the admittance matrix, 𝑦𝑖𝑗(𝑡), which are 

the inverse Fourier transformed version of 𝑌𝑖𝑗(𝜔𝑘).  



 Once the large artery equations have been solved, the frequency domain variables 

𝑃(𝑥, 𝜔𝑘), 𝑄(𝑥, 𝜔𝑘), and other hemodynamic quantities derived from these, can be calculated in 

the structured tree. The Fourier transformed pressure solutions at the connecting terminal 

proximal arteries, 𝑃𝑟𝑜𝑜𝑡
𝐴 (𝜔𝑘),  and veins, 𝑃𝑟𝑜𝑜𝑡

𝑉 (𝜔𝑘),  are used to in equation (7) to obtain the 

arterial and venous flows at the root of the structured trees. From there, the pressure-flow 

solutions at 𝑥 = 𝐿 are computed from 

𝑃(𝐿, 𝜔𝑘) =
1

𝑌12(𝜔𝑘)
(𝑄(0, 𝜔𝑘) − 𝑌11𝑃(0, 𝜔𝑘)) (13) 

𝑄(𝐿, 𝜔𝑘) = 𝑌21𝑃(0, 𝜔𝑘) − 𝑌22𝑃(𝐿, 𝜔𝑘). (14) 

Distal vessel hemodynamics are calculated down the 𝛼-sides and 𝛽-sides of each arterial and 

venous tree. This reflects the largest and smallest pathways in the structured tree, respectively; 

i.e., the 𝛼-side will include the greatest number of branches while the 𝛽-side will include the 

fewest number of branches [13]. 

 

2.5 Inlet and Outlet Boundary Conditions 

The mass conservation and momentum balance equations (2-3) constitute a coupled hyperbolic 

partial differential equation (PDE) system. We require boundary conditions at each proximal 

vessel inlet (𝑥 = 0) and outlet (𝑥 = 𝐿). At the inlet of the main pulmonary artery (MPA, the first 

vessel in the network), we enforce a period flow boundary condition, 𝑞𝑀𝑃𝐴(𝑡), using magnetic 

resonance imaging data obtained from the Simvascular webpage1 [15]. At the proximal vessel 

junctions we assume a conservation of flow and a continuity of total pressure 

𝑞𝑝(𝐿, 𝑡) = 𝑞𝑑1
(0, 𝑡) + 𝑞𝑑2

(0, 𝑡)     and     𝑝𝑝(𝐿, 𝑡) = 𝑝𝑑1
(0, 𝑡) = 𝑝𝑑2

(0, 𝑡) (15) 

where the subscripts 𝑝, 𝑑1, and 𝑑2 denote the parent and child branches, respectively. As 

mentioned above, the proximal arterial and venous branches are linked together using the 

grand admittance matrix from the structured tree and the convolution interval defined in 

equations (11) and (12). Lastly, we prescribe a simulated left-atrial pressure waveform, 𝑝𝐿𝐴(𝑡), 

at the distal end of each of the four terminal pulmonary veins: the left and right superior 

pulmonary veins (LSV, RSV) and the left and right inferior pulmonary veins (LIV, RIV). The left-

atrial pressure waveform is extracted from a previously published lumped parameter model of 

the circulation [27]. 

 
1 https://simvascular.github.io/clinical/pulmonary.html  

https://simvascular.github.io/clinical/pulmonary.html


 

2.6 Global Sensitivity Analysis 

We use variance-based sensitivity analysis to investigate parameter effects on different model 

outputs. Let 𝒁 = ℳ(𝜽), represent a quantity of interest from the model ℳ which depends on the 

parameters 𝜽. Throughout, we assume that the parameters can be mapped to a uniformly 

distributed random variable on the interval [0,1]. Under the assumption of 𝑁 independent input 

parameters, the model response can be decomposed as 

ℳ(𝜽) ≈ 𝑓0 + ∑ 𝑓𝑖(𝜃𝑖)

𝑁

𝑖=1

+ ∑  

𝑁

𝑖=1

∑ 𝑓𝑖𝑗(𝜃𝑖 , 𝜃𝑗)

𝑁

𝑗=𝑖+1

+ ⋯ (16) 

where 

𝑓0 = ∫ ℳ(𝜃)𝑑𝜃
1

0

= E[𝑍] (17) 

𝑓𝑖 = E[𝒁|𝜃𝑖] − 𝑓0 (18) 

𝑓𝑖𝑗 = E[𝒁|𝜃𝑖 , 𝜃𝑗] − 𝑓𝑖 − 𝑓𝑗 − 𝑓0 (19) 

and so on. The terms 𝑓0 represents the average response, the term 𝑓𝑖 is the response attributed 

to only parameter 𝜃𝑖, and the term 𝑓𝑖𝑗 is the response associated with the interaction between 𝜃𝑖 

and 𝜃𝑗. We assume that the terms of the decomposition are orthogonal [22], allowing us to write 

the total variance as  

𝐷(𝒁) = Var[𝒁] = ∫ (ℳ(𝜃))
2

𝑑𝜃
1

0

− 𝑓0
2. (20) 

The partial variances, 𝐷𝑖(𝒁) and 𝐷𝑖𝑗(𝒁), are 

𝐷𝑖(𝒁) = ∫ 𝑓𝑖
2(𝜃𝑖)𝑑𝜃𝑖

1

0

,     𝐷𝑖𝑗(𝒁) = ∫ ∫ 𝑓𝑖𝑗
2(𝜃𝑖 , 𝜃𝑗)𝑑𝜃𝑖𝑑𝜃𝑗

1

0

1

0

 (21) 

Using these definitions, the first-order Sobol’ index, 𝑆𝑖, for the parameter 𝜃𝑖 is defined as 

𝑆𝑖 =
𝐷𝑖

𝐷
=

Var[E[𝒁|𝜃𝑖]]

Var[𝒁]
 (22) 

which represents the variance attributed to the parameter 𝜃𝑖 alone. The total-order index, 𝑆𝑇𝑖
 is 

defined by the ratio 

𝑆𝑇𝑖
= 1 −

Var[E[𝒁|𝜃~𝑖]]

Var[𝒁]
 (23) 



where the notation E[𝒁|𝜃~𝑖] represents the expected value of the response when all parameter 

except 𝜃𝑖 are allowed to vary. The total index, 𝑆𝑇𝑖
, is the sum of all the partial variances 

attributed to the parameter 𝜃𝑖, including first-order, second-order, and higher-order Sobol’ 

indices. 

 

2.7 Polynomial Chaos Expansions 

Variance based sensitivity indices require numerous parameter samples and model evaluations 

to achieve accurate metrics. For lower-fidelity models, this is feasible; however, the expensive 

computation time of running a multiscale PDE, such as the one here, limits the number of 

evaluations feasible. To circumvent this, we use PCEs to speed up the calculation of output 

uncertainty and Sobol’ indices. 

 Briefly, the PCE of a model 𝑀(𝜃) can be approximated by the finite truncation 

𝑀(𝜽) ≈ ∑ 𝑐𝑗Ψ𝑗(𝜽)

𝒥−1

𝑗=0

,   Ψ𝑗(𝜽) = ∏ 𝜓𝑖(𝜃𝑖)

𝒦

𝑖=1

 (24) 

where 𝑐𝑗 are the polynomial coefficients, Ψ𝑗(𝜽) are the multivariate polynomials defined by the 

product of multiple, single variate polynomials 𝜓𝑖(𝜃𝑖), and 𝒥 = (𝑛+𝒦
𝑛

) is the number of 

polynomial basis functions, with 𝑛 being the number of parameters in the system and 𝒦 

denoting the polynomial order. The polynomials are chosen to be orthogonal, i.e. 

∫ 𝜓𝑖(𝜃𝑖)𝜓𝑗(𝜃𝑖)𝑑𝜃𝑖 = { 
0, 𝑖 ≠ 𝑗
𝛾𝑖 , 𝑖 = 𝑗

 (25) 

where the term 𝛾𝑖 = E[𝜓𝑖
2] is the normalization factor for the given polynomial family [22]. 

The coefficients, 𝒄𝒋, for each polynomial can be determined using either projection or 

regression techniques [22]. Here, we employ the regression approach by computing the 

coefficients using ordinary least squares. Using a set of training data, 𝒁𝒊 = 𝑀(𝜽𝑖), we can solve 

the minimization problem for the matrix of polynomial coefficients 

𝑱 = argmin
𝑪

∑ (𝒁𝑖 − ∑ 𝒄𝑗Ψ𝑗(𝜽)

𝒥−1

𝑗=0

)

2
𝑁

𝑖=1

 (26) 

which gives rise to the vector matrix solution 



𝑪 = (𝚿⊤𝚿)−1𝚿⊤𝒁. (27) 

Once the coefficients have been determined, the mean of the output, E[𝒁], and the variance, 

Var[𝒁], can be calculated as 

E[𝒁] = 𝒄0,      Var[𝒁] = ∑ 𝒄𝑗
𝟐𝛾𝑗

𝒥−1

𝑗=1

. (28) 

The Sobol’ indices can be defined in terms of the polynomial coefficients and the polynomial 

normalization factors. Let 𝒜𝑖 denote the set of all polynomial coefficients that only depend on 𝜃𝑖 

(i.e., without any interactions with other parameters up to the polynomial order 𝒦) and let 𝒜𝑇𝑖
 

denote the set of all polynomials that have any dependence on 𝜃𝑖. The first-order and total-order 

Sobol’ indices are then defined as 

𝑆𝑖 = [ ∑ 𝒄𝑗
𝟐𝛾𝑗

 

𝑗∈𝒜𝑖

] /Var[𝒁], 𝑆𝑇𝑖
= [ ∑ 𝒄𝑗

𝟐𝛾𝑗

 

𝑗∈𝒜𝑇𝑖

] /Var[𝒁]. (29) 

It should be noted that time-dependent outputs (e.g., dynamic pressure) correspond to a matrix 

of coefficients, 𝑪, for the PCE. Since both 𝑆𝑖 and 𝑆𝑇𝑖
 are time-dependent, we use the 

generalized Sobol’ sensitivities [28] 

𝐺𝑆𝑖(𝑡𝑗) =
∫ 𝑆𝑖Var[𝒁]

𝑡𝑗

0

∫ Var[𝒁]
𝑡𝑗

0

, 𝐺𝑆𝑇𝑖
(𝑡𝑗) =

∫ 𝑆𝑇𝑖
Var[𝒁]

𝑡𝑗

0

∫ Var[𝒁]
𝑡𝑗

0

. (30) 

which calculates the Sobol’ indices at 𝑡𝑗 using information from all previous time points. The 

value of 𝐺𝑆𝑖 and 𝐺𝑆𝑇𝑖
 at the final time point 𝑡𝑗 = 𝑇, where 𝑇(s) is the cardiac cycle length, is 

used as a measure of parameter importance. 

 

2.8 Quantities of Interest 

We quantify parameter influence and output uncertainty for several quantities of interest 

previously identified by Bartolo et al. [13]. In the proximal vasculature, we consider time-series 

pressure and flow, as well as the proximal wall shear stress (WSS), defined by 

WSSprox = −𝜇 (
𝜕𝑢

𝜕𝑟
)

𝑟=𝑅
= 𝜇𝑈̅

(𝛾 + 2)

𝑅(𝑥, 𝑡)
. (31) 

where 𝛾 = 9 gives the blunt velocity profile, as mentioned before. We also consider the average 

pressure, flow, and WSS in the distal vasculature in our uncertainty quantification analysis, 



which corresponds to the zeroth frequency, 𝜔𝑘 = 0. The WSS in the distal vasculature at 𝜔𝑘 = 0 

is equivalent to the Poiseuille derived shear stress 

WSSdist =
4𝜇𝑄̅ 

𝜋𝑅̅4
 (32) 

where 𝑄̅ and 𝑅̅ are the average flow and radii of the distal vasculature corresponding to 𝜔𝑘 = 0. 

Lastly, the cyclic stretch (CS) in both the proximal and distal vasculature is calculated as 

CS =
max(𝑅(𝑡)) − min(𝑅(𝑡))

min(𝑅(𝑡))
 . (33) 

Though proximal pressure and flow are quantities typically used for patient-specific calibration, 

WSS and CS are known to affect and regulate cell signaling at the endothelial and smooth 

muscle cell level [2]. These mechanotransduction stimuli are rarely examined in modeling 

studies [13], though they provide insight into the magnitude of hemodynamic forces in the 

vasculature and can help guide experimental design.  

 Lastly, we investigate how uncertainties in the model affect wave-transmission in the 

proximal arteries and veins using wave intensity analysis (WIA) [19], [29]. In short, WIA 

separates pulse waves within the circulation into forward (increasing velocity) and backward 

(decreasing velocity) waves. These waves are further defined as forward compression waves 

(FCWs, increasing pressure), forward decompression waves (FDWs, decreasing pressure), 

backward compression waves (BCWs, increasing pressure), and backward decompression 

waves (BDWs, decreasing pressure). This is motivated by reported links between wave 

composition, right ventricular dysfunction, and pulmonary vascular disease [21]. The 

classification of each wave type is identical to the analysis presented by Feng et al. [29]. 

Though WIA has been used to understand pulmonary arterial hemodynamics [19]–[21], the use 

of WIA in the pulmonary venous system is less common [7], [29].  

 

2.9 Parameter Uncertainty and Study Design 

To account for uncertainties and use the PCE framework, we impose uncertainty bounds and 

prior distributions for our parameters. We consider the following parameters that describe the 

proximal and distal vasculature: 

𝜽 = {𝐾𝐴, 𝐾𝑆𝑇 , 𝐾𝑉 , 𝛼, 𝛽, ℓ𝑟𝑟
𝐴 , ℓ𝑟𝑟

𝑉 , 𝑟𝑚𝑖𝑛}. (34) 



The first three parameters describe the material properties of the vasculature, while the latter 

five describe the structured tree geometry. 

 We assume that the above parameters have a uniform prior distribution, 𝜃𝑖 ∼ 𝒰(𝑎, 𝑏), 

where 𝑎 and 𝑏 denote the upper and lower bounds of the parameters. A list of the parameters, 

their upper and lower bounds, and references where applicable can be found in Table 2. The 

uniform prior distribution in the parameters then requires the use of orthogonal Legendre 

polynomials for the PCE basis functions, 𝜓(𝜃). We compare degree 𝒦 = 2, 3, and 4 polynomials 

like previous studies using the 1D framework [9]. We assess the PCE accuracy using the mean 

square error over the validation data 

𝜺𝑀𝑆𝐸 =
1

𝑁𝑣𝑎𝑙
∑ (𝒁𝒊 − 𝑀(𝜽𝒊))

2

𝑁𝑣𝑎𝑙

𝑖=1

 (35) 

 

where 𝑁𝑣𝑎𝑙 = 100 is the number of validation datasets is the sample average of the validate 

data set. Note that 𝜺𝑀𝑆𝐸 is a vector reflecting the validation error for all validation data. We 

report the mean of these errors as a metric of validation accuracy for each PCE. We compute 

the PCEs, their moments, and the Sobol’ indices of our various outputs using the UQlab 

software in MATLAB [30]. 

 

3. Results 

We use PCEs to propagate uncertainties attributed to the model parameters to multiple 

quantities of interest. In contrast to prior studies, we calculate the uncertainty and parameter 

influence in both the proximal and distal vasculature, the latter of which has not been analyzed. 

Parameter importance is quantified through Sobol’ indices, which are readily available after 

calculating the PCE coefficients. We investigate typical hemodynamic outputs, like blood 

pressure and flow, but also consider the uncertainties and parameter effects on WSS, CS, and 

WIA. 

 

3.1 Polynomial Chaos Surrogate 

The PCE surrogate is constructed using the non-intrusive ordinary least squares regression 

approach. We investigate the validation error (equation (35)) of the PCE using a set of 100 out-

of-sample datasets. Figure 2 illustrates the effect of both training set size and polynomial order 

on the accuracy of the PCE as an emulator. Results are shown for the MPA and the four large 



pulmonary veins. Recall that MPA flow is a boundary condition in the arteries while left atrial 

pressure is a boundary condition for the pulmonary veins. As expected, the 𝒦 = 4 polynomial 

has the best validation accuracy across all four quantities of interest. The difference in accuracy 

between polynomial orders (𝒦 = 2, 3, or 4) is most apparent for MPA pressure, MPA CS, and 

pulmonary venous flow. There is some improvement in all the polynomial orders with increasing 

training data, though the polynomial order has a larger effect on the PCE validation accuracy. 

Given the apparent benefit of using a higher order polynomial, we use the PCE with 𝒦 = 4 and 

1900 training data for the remaining results. 

 

Figure 2: Polynomial chaos expansion accuracy for a set of 100 validation datasets for different 

training dataset sizes and polynomial order (𝒦). Accuracy in the MPA and four large veins is 

shown for (a) pressure, (b) flow, (c) WSS, and (d) CS. Note that the y-axis is presented on a log-

scale. 

 

 

3.2 Proximal Vascular Hemodynamics  

The PCE coefficients provide an efficient way to calculate the expectation and variance for each 

quantity of interest in our model. Figure 3 shows the average pressure, flow, and WSS in the 

MPA as well as the next two arterial branches, the left and right pulmonary artery (LPA and RPA, 

respectively). We also show one standard deviation from the mean, corresponding to the 

uncertainty using the PCE coefficients in equation (24). The arterial system is driven by a flow 

profile, hence flow uncertainty, especially in the MPA, is relatively small compared to pressure. 

Proximal arterial WSS has relatively less uncertainty, with the most variability occurring during 

peak-systole. The average CS (not shown) is between 4.3% and 4.5% in all the arterial 

segments, with a standard deviation of 0.25%. 

 Proximal vein hemodynamics are partially driven by a pressure boundary condition, 

which leads to relatively small uncertainty in the pressure signals provided in Figure 4. The 

dynamics of the pressure signal, corresponding to left atrial reservoir, conduit, and pump 

function, are correlated with the venous flow profile. Flow in the pulmonary veins is negligible or 

slightly negative during the beginning of ventricular contraction, followed by an increase in flow 

while pulmonary venous pressure decreases during atrial relaxation. Pulmonary venous flow 

decreases during the latter phase of the cycle, with a slight notch in flow corresponding to the 



change in pressure during left atrial filling. Flow into the RPA is greater than the LPA, and 

subsequently the flow into the right pulmonary veins are greater than the combined flow in the 

left pulmonary veins. In contrast to the proximal arteries, the proximal veins’ flow uncertainty 

bounds are larger than the arterial sides. This subsequently elevates the uncertainty in 

pulmonary venous WSS, which follows the time course of the flow predictions. The LSV flow is 

smaller in magnitude than that of the LIV, and, as a consequence, the WSS is also smaller in 

magnitude. Lastly, the venous CS (not shown) is much smaller than the arterial values. The 

average CS across all the proximal veins is between 1.2% and 1.3%, with standard deviation 

between 0.02% and 0.03%. 

 

Figure 3: Output uncertainty via the PCEs in the proximal arteries. The average value (black) 

and one standard deviation from the average (blue) are provided for the (a) MPA, (b) LPA, and 

(c) RPA. Results show pressure (top row), flow (middle row), and WSS (bottom row) uncertainty 

as a function of time. 

 

Figure 4: Output uncertainty via the PCEs in the proximal veins. The average value (black) and 

one standard deviation from the average (red) are provided for the (a) LIV, (b) LSV, (c) RIV, and 

(d) RSV. Results show pressure (top row), flow (middle row), and WSS (bottom row) uncertainty 

as a function of time. 

 

3.3 Wave Intensity Analysis 

Wave intensities in the proximal arteries and veins are derived from the simulated pressure, 

flow, velocity, and area. The FCWs, which represent increasing pressure and forward flow, occur 

in the proximal arteries during ventricular ejection, as shown in Figure 5. There are slight BEWs 

in the proximal arteries during ejection, but in general these are minimal. Arterial FEWs then 

follow, representing positive velocity but a decrease in pressure, and then BEWs during 

pressure and velocity decreases. These trends are similar in all the proximal arteries, but with 

decreasing wave magnitudes for branches further down the tree.  

 The proximal venous WIA results are distinct in their shape and amplitude compared to 

the arterial results. In general, the proximal veins show a small BCW corresponding to the initial 

upstroke of pulmonary venous pressure while flow is minimal and decreasing. Then, the 



pulmonary veins show a distinct, relatively large BEWs, corresponding to the decreasing 

pulmonary venous pressure and decreasing flow rate during ventricular contraction and left 

atrial filling. In the LSV, the BEW and FEW occur at nearly the same time, whereas the three 

other pulmonary veins exhibit a FEW and a BCW between 𝑡 = 0.3 and 𝑡 = 0.6. All four veins 

show a BCW at the end of the cardiac cycle, consistent with the start of atrial contraction and 

increasing pulmonary venous pressure. On average, both the LIV and the RIV have larger 

magnitude BEW than the LSV and RSV, consistent with the higher flow magnitudes shown in 

Figure 4. Though Figure 5 shows the average intensity values over all the samples, the actual 

simulated wave components (shown in the Supplement) vary dramatically in magnitude and in 

timing. Pulmonary venous wave intensities vary in shape along the venous tree, with the LIV, 

the RIV, and their first daughter branches (LIV D1 and RIV D1, respectively) exhibiting the 

largest magnitude for all four wave types. 

 

Figure 5: Output uncertainty in wave intensities using PCEs. The average values for FCWs 

(red), FEWs (cyan), BCWs (blue), BEWs (magenta), and one standard deviation from their 

respective averages (same colors, shaded) are provided for the (a) first three proximal arteries 

and (b) the four large veins. Note that, because wave magnitudes vary substantially with vein 

location, we provide a zoom in subplot in (c) for the LSV, RIV, and RSV. 

 

3.4 Proximal Vessel Sensitivity 

The coefficients of the PCE allow for straightforward computation of the first-order (𝑆𝑖) and total-

order (𝑆𝑇𝑖
) Sobol’ indices. The median Sobol’ indices and range of values for all of the proximal 

arteries and all of the proximal veins are provided in Figures 6 and 7, along with error bars 

representing the range of Sobol’ indices for all the arterial or venous branches.  

The values of both 𝑆𝑖 and 𝑆𝑇𝑖
 are nearly identical for all proximal arteries, as indicated by 

the negligible error bars in Figure 6. The structured tree parameters 𝛼 and 𝛽 are the most 

influential parameters, followed by 𝑟𝑚𝑖𝑛, ℓ𝑟𝑟
𝐴 , and ℓ𝑟𝑟

𝑉 . In contrast, the flow and WSS Sobol’ 

indices have more variability, especially the values of 𝑆𝑖 corresponding to the parameter 𝛼 and 

the values of 𝑆𝑇𝑖
 for ℓ𝑟𝑟

𝐴  and ℓ𝑟𝑟
𝑉 . The sensitivity of CS parallels the results for pressure, with the 

exception that the stiffness parameters 𝐾𝐴 and 𝐾𝑆𝑇 are more influential for CS than pressure. In 

general, the sensitivity indices for pressure and CS are consistent across all of the proximal 

arteries. 



 For the proximal veins, the largest values of 𝑆𝑇𝑖
 for pressure coincide with the 

parameters 𝛼, ℓ𝑟𝑟
𝑉 , and 𝛽, while there is variability for both 𝑆𝑖 and 𝑆𝑇𝑖

 for the parameter 𝐾𝑉. The 

sensitivity of venous flow and WSS are like the results found on the arterial side, with less 

variability in the values of 𝑆𝑖 and 𝑆𝑇𝑖
. Pulmonary venous CS is almost completely determined by 

values of 𝐾𝑉, with the other parameters in the system providing little, if any, effects on venous 

CS. 

 The median Sobol’ indices corresponding to the four WIA wave types are provided in 

Figure 7 along with error bars as we provided in Figure 6. In general, all four wave types in both 

the arterial and venous trees are most sensitive to the value of 𝛼 in the structured tree model. 

For the FCW, the parameters ℓ𝑟𝑟
𝐴  and ℓ𝑟𝑟

𝑉  are second most influential for the arterial and venous 

branches, respectively, followed by the parameter 𝛽. The FDWs, BCWs, and BDWs are also 

sensitive to ℓ𝑟𝑟
𝐴  and ℓ𝑟𝑟

𝑉 . The value of 𝑟𝑚𝑖𝑛 has some influence on all four wave types, while the 

three stiffness parameters are relatively less influential and vary in their effects on the different 

wave types. 

 

Figure 6: Generalized Sobol’ indices (equation (30)) calculated using the PCE coefficients for 

pressure, flow, WSS, and CS. Both first-order (𝑆𝑖, light gray) and total-order (𝑆𝑇𝑖
, dark gray) 

Sobol’ indices are provided in the (a) proximal arteries and (b) proximal veins. Each bar height 

represents the median Sobol’ index for the proximal arteries or veins, while the error bars 

denote the range of Sobol’ indices found in either proximal vasculature.  

 

Figure 7: Generalized Sobol’ indices (equation (30)) calculated using the PCE coefficients for 

FCWs, FEWs, BCWs, and BEWs. Both first-order (𝑆𝑖, light gray) and total-order (𝑆𝑇𝑖
, dark gray) 

Sobol’ indices are provided in the (a) proximal arteries and (b) proximal veins. Each bar height 

represents the median Sobol’ index for the proximal arteries or veins, while the error bars 

denote the range of Sobol’ indices found in either proximal vasculature.  

 

 

 

3.5 Distal Vascular Hemodynamics 



We use the same PCE framework to investigate the uncertainties in the distal vasculature as 

predicted by the structured tree model. The structured tree model is run for the same model 

parameters used to generate proximal hemodynamics shown previously. Figure 8 shows the 

uncertainty in one structured tree (corresponding to the first daughter of the right inferior 

pulmonary artery and vein, RIA-D1 and RIV-D1, respectively). The other structured tree 

locations show similar results and are provided in the Supplement. Since the value of 𝑟𝑚𝑖𝑛 is 

included in the uncertain parameter set, the terminal radii for the structured tree change with 

each draw from the prior distribution. Hence, we quantified the uncertainty of the distal vascular 

hemodynamics as a function of distance from the end of the structured tree, as shown in Figure 

8 and 9.  

The mean pressure is similar in both the 𝛼 and 𝛽 pathways on the arterial side, whereas 

the venous 𝛽 pathway exhibits a slightly smaller mean pressure than the corresponding 𝛼 

pathway at the smallest venous branches. The arterial pressure uncertainty is noticeably larger 

than the venous uncertainty in the structured tree, and the venous uncertainty decreases as 

predictions move closer to the proximal veins. 

 The flow predictions in both arterial and venous trees appear nearly identical; however, 

the mean flow at the end of the 𝛼 pathway is on the order of 1e-5, whereas flow in the 𝛽 

pathway is on the order of 1e-4. The standard deviation is small in magnitude, ranging from 2 

mL/s at the largest branches to approximately 4e-4 in the smallest branches; however, the 

coefficient of variance (CoV, the ratio of standard deviation to the mean) increases towards the 

smaller branches, with CoV ≈ 0 at the largest branches and CoV≈2 in the smallest branches, 

suggesting more uncertainty for smaller vessel radii. The uncertainty in the 𝛽 pathway is slightly 

larger than the 𝛼 pathway. 

 The results for arterial and venous WSS vary with the 𝛼 and 𝛽 pathways. The 𝛼 

pathways shows a slight increase in the mean WSS near the capillary bed, whereas the 𝛽 

pathway exhibits a more drastic increase in shear stress at the microvascular bed. Similar to the 

flow, the CoV for WSS is 1.8 at the smallest branches and 0.05 at the proximal arteries and 

veins in both pathways, again showing more uncertainty in the smaller branches. The mean 

WSS in the 𝛼 pathway is roughly 15 dyne/cm2 at the capillary beds whereas the 𝛽 pathway has 

an average WSS that is between 60 and 65 dyne/cm2. 

 Values of CS vary from 8-2% in the arterial beds to 4-1% in the venous beds. Like 

pressure, CS values are relatively continuous across the structured tree in the 𝛼 pathway, 

whereas the 𝛽 pathway shows a slight decrease from the arterial to the venous tree after 

passing the capillary bed. The CS CoV increases slightly in the arterial branches from 



approximately 60% to 70% as vessel radii decrease, whereas the CoV for venous CS is 

approximately 60% in the smallest branches but steadily decreases to approximately 20% at the 

interface with the proximal pulmonary veins.  

 

Figure 8: Output uncertainty via the PCEs in the distal arteries and veins of one of the 

structured tree beds. The average value (black) and one standard deviation from the average 

(blue or red shade) are provided for the (a) 𝛼-pathway and (b) 𝛽-pathway. Results show the 

pressure, flow, WSS, and CS uncertainty over the structured tree. Values on the left-most side 

of the x-axis correspond to the largest arteries in the structured tree, while values on the right-

most side of the x-axis correspond to the largest veins in the structured tree. The dotted black 

line denotes the transition from arteries to veins in the structured tree. 

 

 

3.6. Distal Vasculature Sensitivity 

The PCE coefficients are recomputed for the all the structured tree model predictions in each 

distal vasculature, corresponding to eight sets of PCE coefficients. Figure 9 shows the median 

Sobol’ indices and the range of values obtained from all eight sets of structured tree predictions 

in the arterial and venous 𝛼 or 𝛽 pathways. There is little variability in the pressure sensitivity 

across the eight structured tree beds. In general, 𝛼 has the largest 𝑆𝑇𝑖
 corresponding to the 

largest influence on pressure. 𝛽 and 𝑟𝑚𝑖𝑛 are also influential on both arterial and venous 

pathways. Distinct to the venous trees is the larger pressure sensitivity with respect to ℓ𝑟𝑟
𝑉 . 

Again, stiffness parameters appear to have a minimal effect on pressure. 

 The values of flow 𝑆𝑖 and 𝑆𝑇𝑖
 vary across the eight structured tree beds, with both 𝛼 and 

𝑟𝑚𝑖𝑛 exhibiting the largest effects on the flow predictions. These two parameters and 𝛽 

constitute nearly all of the model sensitivity, with little sensitivity being attributed to the other 

parameters. In contrast to the other quantities of interest (with the exception of CS, discussed 

later), the first and total order indices for flow are nearly the same in magnitude for all eight 

structured tree beds, i.e., 𝑆𝑖 ≈ 𝑆𝑇𝑖
, even though the magnitude of the indices vary with each 

structured tree bed. 

 The Sobol’ indices for WSS in the structured tree are similar across the different 

structured tree beds. Again, 𝛼 is the most influential parameter, yet the 𝛽 pathway shows a 

larger sensitivity to the parameter 𝛽 than the 𝛼 pathways. The parameter 𝑟𝑚𝑖𝑛 is somewhat 



influential on all four WSS outputs, while all the stiffness parameters, ℓ𝑟𝑟
𝐴 , and ℓ𝑟𝑟

𝑉  have little to 

no effect relative to the other three parameters. 

 Lastly, model predictions of CS vary across all four pathways. The parameters  

𝛼, ℓ𝑟𝑟
𝐴 , 𝛽, ℓ𝑟𝑟

𝑉 , and 𝐾𝑉 (in order of 𝑆𝑇𝑖
 magnitude) are the most influential on arterial CS in the 𝛼 

pathway. The arterial 𝛽 pathway is similar but is more sensitive to the 𝛽 parameter. Like the 

proximal vasculature, the 𝑆𝑖 and 𝑆𝑇𝑖
 magnitudes for venous CS are largest for the parameter 𝐾𝑉. 

However, other parameters, such as 𝛼, 𝛽, ℓ𝑟𝑟
𝐴 , and ℓ𝑟𝑟

𝑉 , are also somewhat influential. The 

venous structured trees have more variability in 𝑆𝑖 and 𝑆𝑇𝑖
 values, whereas the arterial 

sensitivities are more consistent.  

 

Figure 9: Generalized Sobol’ indices (equation (30)) calculated using the PCE coefficients for 

pressure, flow, WSS, and CS across all eight of the structured tree beds. Both first-order (𝑆𝑖, 

light gray) and total-order (𝑆𝑇𝑖
, dark gray) Sobol’ indices are provided in the (a) 𝛼 arteries, (b) 𝛽 

arteries, (c) 𝛼 veins, and (d) 𝛽 veins. Each bar height represents the median Sobol’ index for the 

distal 𝛼 and 𝛽 arteries or veins, while the error bars denote the range of Sobol’ indices found in 

across the different structured tree beds.  

 

4. Discussion 

Computational hemodynamics models are commonly used to understand proximal blood flow, 

blood pressure, and wall shear stress. Few studies investigate the effects of parameter 

uncertainty on model predictions, mostly because of high computational cost; however, PCEs 

serve as a useful tool for expediting this process. Our study identifies the important parameters 

of a recently established model of the pulmonary arterial and venous circulation [13], [14], and, 

to the authors’ knowledge, is the first study to quantify uncertainty in both the proximal and distal 

vasculature in a multiscale model. We investigate typical hemodynamics (pressure and flow), 

but also quantify uncertainty in two important mechanotransduction signals: WSS and CS. 

These latter two outputs are important in progressing the field of in-vitro studies, as these 

mechanical stimuli cannot typically be measured in-vivo nor clinically. We also examine the 

uncertainty in microvascular predictions, which are impossible to measure and can only be 

calculated through quantitative relationships. Overall, our results show that the parameters of 

the structured tree (𝛼, 𝛽, ℓ𝑟𝑟
𝐴 , ℓ𝑟𝑟

𝑉 , and 𝑟𝑚𝑖𝑛) are the most influential, whereas stiffness (𝐾𝐴, 𝐾𝑆𝑇, 

and 𝐾𝑉) are minimally influential with the exception of venous CS. 



 

4.1 Proximal Vascular Uncertainty 

Proximal pulmonary arterial hemodynamics are commonly studied, especially in PH studies. 

While several computational studies have provided predictions of pulmonary arterial 

hemodynamics [11], [12], [14], including work by the authors [13], [15], few studies have 

critically examined the uncertainty in these predictions. The average output and uncertainty 

bounds provided in Figure 3 show that, even with a fixed inflow profile, there can be large 

uncertainty in proximal arterial pressure and WSS. The study by Paun et al. [31] calibrated a 1D 

pulmonary hemodynamics model to pressure-flow data obtained from hypoxia-induced PH and 

non-PH mice with lumped parameter Windkessel boundary conditions. The study accounted for 

uncertainties in the data and model discrepancy (i.e., the difference between the model and the 

true, physiology), but only showed ±2 mmHg uncertainty in MPA pressure. Our pressure 

variance is much larger, but is attributed to the prior uncertainty (e.g., in Table 2), and would be 

smaller if we were constructing the posterior uncertainty using data.  

 Our investigation of pulmonary hemodynamic uncertainty using PCEs is, to our 

knowledge, the first; however, several studies have used PCEs to explore uncertainties in 

similar models of the systemic vasculature. Bertaglia et al. [32] investigated how geometric and 

material parameters of a 1D, viscoelastic hemodynamics model affected output uncertainty. 

Their study used stochastic collocation, as opposed to regression, to estimate the PCE 

coefficients, and found that uncertainties in their parameters contributed to ± 20 mmHg of 

uncertainty in thoracic aorta predictions. The study by Eck et al. [10] used PCEs to quantify the 

uncertainty attributed to nonlinear pressure-area dynamics in a pulse-wave propagation of 55 

systemic arteries. Similar to our findings, the authors showed a large variance (≈ 45 mmHg) in 

the systolic pressure predictions; however, this uncertainty was attributed to arterial wall model 

parameters, whereas our largest uncertainty is attributed to boundary condition parameters. Of 

note, none of these previous studies have examined the uncertainties linked to pulmonary 

arterial WSS. Bartolo et al. [13] provided predictions from a similar model framework (with fewer 

proximal branches) across different inflow and outflow boundary conditions. They showed that 

MPA flow magnitude had a large effect on WSS, while left atrial pressure had minimal effects. 

We did not consider uncertainties in the inlet flow to the proximal arteries, yet we do see some 

variability in the WSS in Figure 3 attributed to parameter uncertainty. 



 Computational models of pulmonary venous hemodynamics are less common than their 

arterial counterparts. Hellevik et al. [33] identified forward and backward waves traveling 

between the pulmonary veins and left atrium using a three-element transmission line model. 

Their results showed similar pressure-flow dynamics as our results in Figure 4. While the 

average pulmonary venous flows do not exhibit the distinct “S1” and “S2” components of human 

pulmonary flow waveforms [33], [34], several of the individual samples generated from our 

sampling routine, as shown in Figure 10, do have this feature. The study by Bartolo et al. [13] 

found that venous dynamics (specifically, WSS) were affected by changes in total flow through 

the circulations. Our study shows that the venous flow and WSS are similar in magnitude to 

those in Bartolo et al., but our waveform shapes are more distinct and are influenced by the 

dynamic left atrial pressure boundary condition. The study by Feng et al. [29] coupled the model 

from Qureshi et al. [14] with a 3D model of the mitral valve and left atrium. The authors showed 

a similar range of pulmonary venous pressures and flows in simulations of non-hypertensive 

hemodynamics. While none of these studies explicitly accounted for uncertainties in the 

parameters, Feng et al. did show that changes in the parameter 𝑟𝑚𝑖𝑛 caused changes in LIV 

flow magnitude, consistent with our observed uncertainty in pulmonary venous flow. 

 

Figure 10: Realization from the training data that includes the “S1” and “S2” components of the 

pulmonary venous flow. (a) MPA pressure; (b) LIV flow; (c) LSV flow; (d) RIV flow; (e) RSV flow.  

 

 

4.2 Wave Intensity 

Pulse-wave propagation seen clinically and in-vivo are driving new research into wave 

separation and WIA. Only recently has WIA been used to understand the progression of 

pulmonary vascular disease. The WIA by Quail et al. [20] showed that noninvasive area and 

flow data in patients with and without PH provided metrics with high sensitivity in PH diagnosis. 

The authors saw that the time integrated FCW, BCW, and were significantly different between 

PH and non-PH groups, illustrating that BCW were elevated in PH. A similar clinical study by Su 

et al. [35] used WIA by analyzing invasive pressure-velocity signals from patients with 

pulmonary arterial hypertension (PAH), chronic thromboembolic pulmonary hypertension 



(CTEPH), and no PH. Su et al. showed that FCW and BCW were elevated in both PH groups 

compared to the no PH subjects. 

In the absence of detailed data, computational models can be used to simulate 

pressure-flow dynamics and obtain WIA results. The study by Mynard and Smolich [7], which 

modeled a portion of the entire adult circulation, linked the pulmonary arteries and veins through 

lumped parameter Windkessel models. Their pulmonary predictions were validated to literature 

data, and provided WIA results with similar FCW and FEW magnitudes. In addition, Mynard and 

Smolich showed minimal arterial BEW and BCW, consistent with the results shown in Figure 5. 

The study by Qureshi and Hill [19] used a similar two-sided 1D model as we used here and 

showed minimal backward wave components under normotensive conditions. The authors 

simulated PAH, CTEPH, and PH due to lung disease, the latter of which was the most impactful 

on backward waves. Given the similarities between Quershi and Hill and the present model, it is 

expected that wave intensity profiles agree. The uncertainty in the arterial WIA results trends 

similar to the average value, with the highest uncertainty occurring at peak wave magnitude. 

Relatively few studies, experimental and computational, have considered pulmonary 

venous WIA. The study by Hellevik et al. [33] used a three element Windkessel model calibrated 

to patient data and concluded that waves in the pulmonary venous circulation are driven by left 

atrial contraction and subsequent reflected waves from the pulmonary microcirculation. The 

experimental study by Hobson et al. [36] recorded left atrial and pulmonary venous 

hemodynamics during acute LV volume loading in anesthetized dogs. They found that wave 

reflections increased with LV loading, and that increased left atrial work correlated with larger 

retrograde flow and backward waves. The authors also showed that left atrial contraction 

aligned with a prominent, bimodal pulmonary venous BCW. Our venous WIA results show a 

similar feature, with a BCW occurring at the start of the cardiac cycle (early ventricular systole) 

and at the end of the cardiac cycle (atrial contraction prior to ventricular systole). A similar 

finding was shown in the canine study by Bouwmeester et al. [34]; the authors found that mitral 

valve closure was followed by a prominent BCW and then a BEW. The authors showed a BEW 

following mitral valve opening, in contrast to our findings of a BCW in Figure 5. This is likely 

attributed to Bouwmeester’s subtraction of the reservoir pressure, which accounts for the 

“excess” pressure maintained during diastole.  

Feng et al. [29] and Mynard and Smolich [7] provided pulmonary venous WIA results 

from a computational model. Both computational studies show a BCW and BEW wave during 

the start and end of atrial contraction, respectively. However, the results in Feng et al. suggest 



that pulmonary venous BCWs are larger in magnitude than the BEWs during ventricular systole, 

while Mynard and Smolich show that the BCW during atrial kick is the largest in magnitude. Our 

results in Figure 5 show that BEWs are the largest in magnitude, contrasting these other two 

modeling studies but corroborating the findings by Bouwmeester et al. [34]. The average 

pulmonary venous WIA profiles show that the LIV and RIV (which have largest flow on average) 

have the largest wave magnitudes. However, the individual samples in the Supplement show 

that the waveform shapes and magnitudes can vary substantially in all four veins. This suggests 

that the present model can provide an array of wave intensity results and could be calibrated to 

pressure-flow data to provide data-specific wave intensity profiles. 

 

 4.3 Proximal Vascular Sensitivity 

Global sensitivity analysis is a computationally intensive but insightful metric of model behavior. 

We efficiently compute Sobol’ indices using the coefficients of the PCEs [22], which provides 

robust estimates of model sensitivity without requiring the computational cost that typically 

comes from computing Sobol’ indices using Monte Carlo methods. Nearly all of our 

hemodynamic outputs are most sensitive to the parameters of the structured tree boundary 

conditions, with the exception of pulmonary venous cyclic stretch. To the authors’ knowledge, 

this study is the first to both (a) conduct a formal sensitivity analysis of the structured tree 

model, and (b) calculate Sobol’ indices for a 1D model of the pulmonary circulation. 

 Previous studies have performed global sensitivity analysis and calculated Sobol’ indices 

for models of the systemic circulation. Huberts et al. [9] calculated Sobol’ indices for a 1D 

hemodynamics model of arteriovenous fistula. The model, which consisted of 73 parameters 

and used Windkessel boundary conditions, was most sensitive to aortic resistance, aortic 

characteristic impedance, mean aortic inflow, and parameters describing the geometry of the 

distal veins. The parameters describing the boundary conditions (i.e., the structured tree) have 

the largest Sobol’ indices and dictate a majority of the uncertainty in the model output. Two 

investigations by Eck et al. [10], [37] calculated Sobol’ indices for a pulse-wave propagation 

model of several systemic arteries. The first study [37] calculated first-order Sobol’ indices for 

both amplitude and timing of backward pressure waves with respect to different stiffness 

parameters along the aortic trunk. The authors found that proximal stiffness parameters were 

more influential on the timing and magnitude of proximal backward pressure waves than 

stiffness in the distal aortic vasculature. Our results in Figure 7 show that all four wave types are 



mostly affected by the parameters in the structured tree; however, the stiffness parameters 

𝐾𝐴, 𝐾𝑆𝑇 , and 𝐾𝑉 have some effects on both forward and backward waves. In the second study 

[10], Eck et al. calculated the Sobol’ indices for a similar model of 37 proximal systemic arteries 

but focused on parameters of three different arterial wall models. The authors concluded that 

parameters associated with pulse-wave propagation speed were most influential on both 

pressure and flow predictions, regardless of which wall model was used. In contrast, our study 

shows that boundary conditions are significantly more important than local stiffness parameters 

(𝐾𝐴 and 𝐾𝑉). 

 No studies have computed Sobol’ indices for a pulmonary circulation model, but some 

have conducted more informal sensitivity analyses. The study by Mynard and Smolich [7] 

looked at the effects of increasing or decreasing atrial and ventricular elastance parameters of 

the heart on wave propagation. They found that RV parameters were most impactful on FCWs 

and FEWs in the MPA, whereas WIA results in the LIV were more sensitive to changes in left 

atrial elastance and LV end-diastolic elastance. However, Mynard and Smolich did not consider 

the effects of vascular parameters in their system. The studies by Qureshi et al. [14], [19] 

simulated disease in the two-sided structured tree model by perturbing parameters consistent 

with pulmonary vascular disease onset and progression. Both studies found that was influential 

on wave speed and WIA results, but that changes in 𝑟𝑚𝑖𝑛 had the largest effect on pressure 

predictions. Our results show that 𝑟𝑚𝑖𝑛 is also more important than stiffness in determining 

forward and backward wave shapes, but that the other structured tree parameters are most 

influential on all four wave components. This is consistent with the idea that changes in the 

microvasculature, such as a decreased small vessel density due to distal vessel ‘pruning’ [38], 

are correlated with elevated pulmonary pressures and wave reflections in PH. The study by 

Olufsen et al. [39] concluded that systemic arterial circulation models with the structured tree 

boundary condition were more sensitive to arterial compliance, while their pulmonary arterial 

circulation model were clearly more sensitive to parameters describing the microvasculature. 

These findings are consistent with our more formal global sensitivity analysis results and 

suggest that model sensitivity may varies with which circulation is considered. 

 

4.4 Distal Vascular Uncertainty 

Computational models that account for both the proximal and distal hemodynamics are rare, but 

provide more insight into potential mechanisms of disease. The structured tree model provides 



an efficient way to couple proximal and distal hemodynamics [14], [39]. Several previous studies 

have used the structured tree model to predict dynamics in the arterial [15], [39], [40] or arterial 

and venous [13], [14], [29] distal vasculature, while others, such as Clark and Tawhai [16], have 

used different wave-propagation models. Given the importance and interactions between the 

microvasculature and proximal vessels during disease progression, a multiscale model such as 

the one presented here may provide insight into the mechanisms and hemodynamics of 

pulmonary vascular disease. An important, but underappreciated, step in the model 

development pipeline is uncertainty quantification and sensitivity analysis [24], which are 

relatively new in the context of multiscale modeling. 

 The results in Figure 8 are from a representative structured tree; however, all of the 

structured tree predictions (see the Supplement) are similar in shape and magnitude, with the 

exception of flow. In general, the pressure uncertainty is largest at the arterial root of the 

structured tree and steadily decreases towards the microcirculation and venous trees. The 

uncertainty in proximal arterial pressure has a standard deviation of 20 - 35 mmHg, and, 

similarly, the uncertainty at the start of the arterial structured tree is 20 - 25 mmHg, suggesting a 

continuity in uncertainty across these two scales. The uncertainty continues to decrease until 

reaching the proximal veins which, due to the left atrial pressure boundary condition, has 

minimal uncertainty. This again suggests that, even though the models are different in the 

proximal and distal vasculature, their uncertainty is communicable across the different scales. 

The flow uncertainty is relatively small in all the structured trees. While flow uncertainty is also 

relatively small in the proximal arteries, the proximal venous flow (Figure 4) has a noticeably 

larger standard deviation. However, the time-averaged flow in the proximal veins have small 

uncertainty (CoV between 2% and 17%), consistent with the smaller standard deviation in the 

mean flow in the structured tree in the venous tree.  

The structured tree is non-symmetric, with the 𝛼 pathway of the structured tree 

containing the largest number of branches and the 𝛽 pathway containing the least number of 

branches. Given this fact, the 𝛼 pathway will include more generations in the structured tree, 

and subsequently lead to a smaller mean flow upon reaching the capillary beds. This is 

apparent in the WSS plots of Figure 8, where the average WSS is noticeably larger in the 𝛽 

pathway relative to the 𝛼 pathway. The time-average WSS, given by Poiseuille (see equation 

(28)), is dependent on time-averaged flow, time-averaged radius, and the radius dependent 

viscosity. The minimum radius is the same for both pathways, hence the radii and viscosity 

values will be similar and the bigger contributor to differences in WSS is the flow magnitude. 



Lastly, CS values decrease from the arterial side to the venous side, with a similar reduction in 

uncertainty. The average CS decreases more across the capillary beds in the 𝛽 pathway in 

comparison to the 𝛼 pathway, similar to the trends in mean pressure. The small vessels adhere 

to a linear pressure-area relationship, hence pressure and CS (a function of vessel radius) trend 

in a similar fashion. 

 Qureshi et al. [14] provided mean pressure predictions in a similar model for non-PH and 

PH conditions, and showed a more dramatic drop in mean pressure across the 𝛽 pathway. The 

authors also found that reducing the vascular density by 30% elevated mean arterial pressure in 

the distal vasculature to 50 mmHg, which is within the range of our results in Figure 8. Bartolo et 

al. [13] provided similar quantities of interest in a two-sided model with simulated PH due to left 

heart disease. The results from the study show that WSS in the 𝛽 pathway is typically larger in 

magnitude relative to the 𝛼 pathway. In contrast to our study, Bartolo et al. showed CS values 

between 10-20% in the arterial beds and 10-5% in the venous beds, whereas our CS values are 

smaller in magnitude. One explanation for the larger CS values in Bartolo et al. is that their 

proximal vasculature only included seven proximal arteries and four proximal veins, whereas 

here we have one additional generation. This decreases the mean flow in the structured trees, 

and subsequently decreases the stretch in both structured trees. The results in Figure 8 provide 

information about both the average hemodynamic forces along the tree as well as the range of 

values that may be plausible, given the bounds of parameters shown in Table 2. Through this 

range of values, our results provide a starting point for in-vitro studies investigating the roles of 

WSS or CS on the pulmonary vasculature. As noted in the review by Allen et al. [2], these 

mechanobiological stimuli are hypothesized to progress pulmonary vascular diseases and can 

be studied in detail only when appropriate stimuli magnitude have been calculated from in-silico 

or in-vivo studies. 

 

4.5 Distal Vascular Sensitivity 

The structured tree model contains multiple parameters describing the geometry and material 

properties of the distal vasculature. Given that the structured tree model is less commonly used 

than other boundary condition models (e.g., the Windkessel), fewer studies have sought to 

quantify the impact of the model’s parameters. Similar to the results for the proximal vasculature 

in Figures 6 and 7, the distal vascular hemodynamics are on average most sensitive to 

parameters in the structured tree. Both the median and range of first- and total-order Sobol’ 



indices (𝑆𝑖 and 𝑆𝑇𝑖
, respectively) in Figure 9 show that parameters describing the structured tree 

geometry are most important. 

 To date, papers using the structured tree model have performed informal sensitivity 

analyses. The study by Qureshi et al. [14] illustrated that a reduction in vascular density (i.e., 

smaller 𝛼 and 𝛽) consistent with hypoxic lung disease induced substantial changes in the mean 

pressure along the structured tree. While we only considered the effects of the parameters on 

the structured tree predictions, Bartolo et al. [13] examined how mean flow in the MPA and 

constant left atrial pressure contributed to simulations in the structured tree. The authors found 

that changes in left atrial pressure caused a one-to-one increase in mean pressure and cyclic 

stretch in the structured tree, whereas distal WSS decreased slightly with larger left atrial 

pressures. Changes in mean flow had less pronounced effects than left atrial pressure but 

revealed that the arterial parts of the structured tree were more sensitive to flow changes than 

the corresponding venous components.  

 The results in Figure 9 provide consistent evidence that the parameters 𝛼 and 𝛽, which 

control the structured tree density, are on average the most influential parameters. In contrast to 

the results in the proximal vasculature, the parameter 𝑟𝑚𝑖𝑛 has elevated values of 𝑆𝑖 and 𝑆𝑇𝑖
, 

suggesting a pronounced effect on distal vessel predictions. The proximal vasculature showed a 

larger variability in the values of 𝑆𝑖 and 𝑆𝑇𝑖
 for WSS, while in the distal vasculature WSS is 

consistently most sensitive to 𝛼 and 𝛽. The relationship between microvascular density and PH 

has been documented previously in imaging studies. Gerges et al. [41] conducted a prospective 

histological analysis of lung biopsies from 49 patients undergoing surgery for CTEPH. The 

authors found that patients who experienced adverse outcomes after surgery had elevated 

small artery and venous remodeling than patients who responded well to treatment. A 

retrospective histological study by Fayyaz et al. [42] found that patients diagnosed with heart 

failure and PH had more intermediate vessels (≤100 𝜇m) with intimal thickening relative to 

control. The authors also showed a strong positive relationship between the transpulmonary 

gradient (the difference between mean pulmonary arterial pressure and pulmonary capillary 

wedge pressure) and intermediate vessel intimal thickness, suggesting a significant role of the 

microvasculature in the progression of PH after heart failure. This again suggests that 

parameters describing small vessel density and geometry are most important on proximal and 

distal vascular hemodynamics, congruent with our findings here. 

 



 

 

4.6 Limitations 

Our study conducted a formal sensitivity analysis for a 1D model of pulmonary arterial and 

venous hemodynamics. We considered uncertainties in proximal vascular stiffness, distal 

vascular stiffness, and structured tree parameters, but assumed that the arterial, venous, and 

microcirculation material properties (𝐸ℎ/𝑟0) were constant. Prior studies have included radius 

dependent stiffness [13], [14], though it’s unclear if this is physiological given limited 

experimental data. Our findings show that, even for large stiffness values, the structured tree 

parameters are still more influential and would not change our findings here. We did not 

consider any uncertainties in the inflow or outlet boundary conditions. We anticipate that 

considering inflow and outlet pressure uncertainty, similar to Brault et al. [23], will increase the 

uncertainty in flow and pressure predictions at the proximal arteries and veins, respectively. 

Alternatively, coupling this model to a right ventricle and left atrium would allow for more 

flexibility in the dynamics of the pulse-wave propagation model; however, this would increase 

the parameter dimensionality of the problem. Lastly, our model terminates at the minimum 

radius 𝑟𝑚𝑖𝑛, which ignores the possible effects of the pulmonary capillaries. Follow up studies 

should implement a model of the pulmonary capillaries, like Clark and Tawhai [16], to further 

identify capillary circulation sensitivity and its parameters’ effects on proximal arterial 

predictions. 

 

5. Conclusions 

This study provides uncertainty quantification and sensitivity analysis results for a multiscale 

hemodynamics model of the pulmonary arterial and venous trees. We use PCEs as an efficient 

tool for uncertainty quantification and analyze the sensitivity of multiple quantities of interest 

using Sobol’ indices. Our results show that the model framework is flexible, given the large 

uncertainty bounds in nearly all hemodynamic outputs, and that structured tree parameters are 

in general the most influential. We provide ranges for standard hemodynamic quantities 

(pressure and flow), but also quantify uncertainty in WIA and mechanobiological stimuli. These 

latter results are especially crucial in the development of in-vitro studies that pinpoint and isolate 

the effects of hemodynamics on cell signaling. We believe that this in-depth model analysis 



provides key insight into future studies using the structured tree model for patient-specific 

simulations, and will be useful in identifying new experimental studies on pulmonary vascular 

disease. 
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Table 1: Vessel network used in this work based on [7]. 

Branch Name Length 
(cm) 

Radius (cm) Parent: daughters 

Arteries 

Main Pulmonary Artery (MPA) 4.30 1.350 None: LPA, RPA 

Left Pulmonary Artery (LPA) 2.50 0.900 MPA: LIA, LSA 

Right Pulmonary Artery (RPA) 5.75 1.100 MPA: RIA, RSA 

Left Inferior Pulmonary Artery (LIA) 2.15 0.842 LPA: LIA D1, LIA D2 

Left Superior Pulmonary Artery (LSA) 1.23 0.481 LPA: LSA D1, LSA 
D2 

Right Inferior Pulmonary Artery (RIA) 2.35 0.922 RPA: RIA D1, RIA D2 

Right Superior Pulmonary Artery (RSA) 1.92 0.755 RPA: RSA D1, RSA 
D2 

LIA Daughter 1 (LIA D1) 1.93 0.757 LIA: LIV D1 

LIA Daughter 2 (LIA D2) 1.31 0.514 LIA: LIV D2 

LSA Daughter 1 (LSA D1) 1.10 0.433 LSA: LSV D1 

LSA Daughter 2 (LSA D2) 0.75 0.293 LSA: LSV D2 

RIA Daughter 1 (RIA D1) 2.11 0.829 RIA: RIV D1 

RIA Daughter 2 (RIA D2) 1.43 0.562 RIA: RIV D2 

RSA Daughter 1 (RSA D1) 1.17 0.460 RSA: RSV D1 

RSA Daughter 2 (RSA D2) 1.55 0.610 RSA: RSV D2 

Veins 

Left Inferior Pulmonary Vein (LIV) 2.15 0.641 None: LIV D1, LIV D2 

Left Superior Pulmonary Vein (LSV) 1.23 0.716 None: LSV D1, LSV 
D2 

Right Inferior Pulmonary Vein (RIV) 2.35 0.864 None: RIV D1, RIV 
D2 

Right Superior Pulmonary Vein (RSV) 1.92 0.824 None: RSV D1, RSV 
D2 

LIV Daughter 1 (LIV D1) 1.93 0.576 LIV: LIA D1 

LIV Daughter 2 (LIV D2) 1.31 0.391 LIV: LIA D2 

LSV Daughter 1 (LSV D1) 1.10 0.643 LSV: LSA D1 

LSV Daughter 2 (LSV D2) 0.75 0.436 LSV: LSA D2 

RIV Daughter 1 (RIV D1) 2.11 0.777 RIV: RIA D1 

RIV Daughter 2 (RIV D2) 1.43 0.527 RIV: RIA D2 

RSV Daughter 1 (RSV D1) 1.73 0.740 RSV: RSA D1 

RSV Daughter 2 (RSV D2) 1.17 0.502 RSV: RSA D2 

 

 

 

 

 



 

 

Table 2: Parameter descriptions and uncertainties 

Parameter Representation Bounds References 

𝐾𝐴 Proximal arterial stiffness (g/cm/s2) [5.60e5, 1.04e6] [7], [13], [14], [29] 

𝐾𝑆𝑇 Structured tree stiffness (g/cm/s2) [1.75e5, 3.25e5] [13], [14], [29] 

𝐾𝑉 Proximal venous stiffness (g/cm/s2) [5.95e5, 1.11e6] [7], [13], [14], [29] 

𝛼 Radius ratio for 𝛼 daughter (ND) [0.80, 0.92] 
[13]–[15], [29], 

[40] 

𝛽 Radius ratio for 𝛽 daughter (ND) [0.60, 0.70] 
[13]–[15], [29], 

[40] 

ℓ𝑟𝑟
𝐴  

Length-to-radius ratio for the arterial 
side of the structured tree (ND) 

[10, 50] 
[13]–[15], [29], 

[40] 

ℓ𝑟𝑟
𝑉  

Length-to-radius ratio for the venous 
side of the structured tree (ND) 

[10, 50] [13], [14], [29] 

𝑟𝑚𝑖𝑛 
Minimum radius for terminating the 

structured tree model (cm) 
[1e-3,1e-2] 

[13]–[15], [29], 
[40] 
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