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Biliverdin (BV) has emerged as a cytoprotective and important anti-inflammatory molecule.
Conversion of BV to bilirubin (BR) is catalyzed by biliverdin reductase (BVR) and is required
for the downstream signaling and nuclear localization of BVR. Recent data by others and us
make clear that BVR is a critical regulator of innate immune responses resulting from acute
insult and injury and moreover, that a lack of BVR results in an enhanced proinflammatory
phenotype. In macrophages, BVR is regulated by its substrate BV which leads to activation
of the PI3K–Akt-IL-10 axis and inhibition ofTLR4 expression via direct binding of BVR to the
TLR4 promoter. In this review, we will summarize recent findings on the role of BVR and
the bile pigments in inflammation in context with its activity as an enzyme, receptor, and
transcriptional regulator.
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HISTORY AND CHARACTERIZATION OF THE BILE PIGMENTS
Bilirubin has been accepted for centuries, if not longer, as a major
clinical manifestation of jaundice, a yellow hue of the skin. In fact
bile pigments can be observed in individuals everyday who have
the misfortune of sustaining a contusion or bruise. Indeed the col-
orimetric nature of the pigments with black heme,green biliverdin,
and yellow bilirubin allow one to observe in action the enzymes
responsible for heme degradation. Hippocrates was believed to
have crafted the notion that “the body of man has in itself blood,
phlegm, yellow bile, and black bile and that these four humors
make up the nature of his body, and through these man feels pain
or enjoys health. The most perfect health is enjoyed when these
elements are duly proportioned to one another in respect of com-
pounding, power and bulk, and when they are perfectly mingled.”
One might speculate whether Hippocrates was referring to heme
or biliverdin as the black bile with BR as the yellow bile. BR is the
most potent antioxidant in the serum of mammals, whereas BV
is almost undetectable being readily converted to BR by biliverdin
reductase (BVR) in most cells. In contrast, in lower vertebrates
(avian or fish), BV is a critical pigment of the blood, bile, and egg
shells of large bird species such as the Emu (Zhao et al., 2006).
Cell energy expenditure for the reduction of BV to BR shows not
only the importance for generation of a strong antioxidant, but
also may underscore the mechanism for activation of critical BVR
signaling cascades. Recent data describe kinase and transcriptional
activities of BVR, which suggest important additional roles for BV
as an intermediate in the catalysis of heme.

PHYSIOLOGY OF BILE PIGMENTS: WHY IS BV AN INTERMEDIATE OF
HEME CATALYSIS? IS IT NEEDED AT ALL?
Biliverdin is formed in a single reaction during catalysis of heme
by heme oxygenases (HO-1 and HO-2). Carbon monoxide and
iron are also released at the same time. HO-1 is one of two HO
isoforms and is inducible and designated as a protective gene medi-
ating its effects through generation of one or more of its products
(Otterbein et al., 2003). The rate of hemoglobin degradation in
the reticulo-endothelial organs (spleen and liver) is slow, therefore
all BV to BR is readily reduced particularly in the spleen, liver,
kidney, and brain. Biliverdin, in contrast to BR, is soluble and
readily excreted into bile. Bilirubin has to be glucuronidated to
be excreted, which occurs in the liver. One of the major benefits
in generating BR is its antioxidant power in the circulation. The
normal concentrations of BR in humans varies between: 0.5 and
1 mg/dL (8.6–17.1 μM) which is sufficient to alleviate oxidative
stress (McDonagh, 2001). In vitro, nanomolar concentrations of
bilirubin inhibit ROS generation (Baranano et al., 2002). Biliru-
bin is toxic however, primarily in neonates in which the direct
bilirubin may cause brain injury termed kernicterus if elevated
prior to formation of the blood brain barrier. Bile pigments have a
strong ability to absorb light and therefore phototherapy is used as
a treatment option for newborns with hyperbilirubinemia. Under
certain wavelengths of light, BR is converted to lumirubin and
photobilirubin as isomers of BR which can readily be excreted
in the urine (Pratesi et al., 1985). In contrast to the dangers of
elevated BR in neonate, high normal concentrations of bilirubin
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(>1 mg/dL; >34.3 μM) in adults correlates with better cardio-
vascular function and less inflammation (Schwertner et al., 1994;
Mayer, 2000; Novotnây and Vâitek, 2003).

ROLE OF BR – MILD HYPERBILIRUBINEMIA
Approximately 5% of the human population carries a mutation
in the glucuronyl transferase gene and therefore these individuals
present with increased levels of direct bilirubin in the serum due to
a low level of glucuronidation and secretion as bile. Gilbert’s syn-
drome is associated with high normal bilirubin levels (∼2 mg/dL;
∼34.3 μM), which correlates with decreased risk of coronary heart
disease and arteriosclerosis (Bulmer et al., 2008) as well as sys-
temic lupus erythematosus (Vitek et al., 2010). Gilbert’s syndrome
is caused by a genomic homozygous polymorphism, A(TA)7TAA,
in the promoter of the gene for UDP-glucuronosyltransferase 1A1
(UGT1A1), which leads to elevated serum levels of unconjugated
bilirubin. Development and sustained presence of this mutation
throughout evolution may indicate the importance of BR as a
major cytoprotectant against ROS and RNS for mammals liv-
ing in an oxidant environment. BR interacts with NO forming
a N -nitroso derivative and therefore can be a scavenger of NO to
counteract nitrosative stress (Minetti et al., 1998; Mancuso et al.,
2003, 2006). BR is a more potent scavenger of superoxide radicals
and peroxynitrite then BV, and therefore a lack of BVR may lead to
accumulation of excessive oxidative stress in endothelial and other
cells that leads to cell death and tissue injury (Jansen et al., 2010).

BVR-IDENTIFICATION AND CHARACTERIZATION
Biliverdin reductase has been known for many decades as the
second enzyme in the heme degradation pathway necessary for
conversion of BV to BR (Frydman et al., 1987; Bell and Maines,
1988) which serves as both a radical scavenger (Stocker et al.,
1987), but is also critical in lipid emulsion during digestion. There
are two isoforms of BVR. BVR-A, which catalyzes conversion of
BV-a specifically and is expressed in the majority of adult tissues
and inducible with stress, and BVR-B which is present during
embryogenesis and is an isoform specific for the BV-d and b iso-
mers. Both enzymes catalyze reduction of a double-bond between
the pyrrole ring into a single-bond using NADH or NADPH as
electron donors dependent on a pH optima (6.75 and 8.7, respec-
tively; McCoubrey et al., 1995). BR and BV, through BVR have
been shown to prevent cellular senescence (Kim et al., 2011) and
apoptosis (Jansen et al., 2010). Regulation of HO-1 and BVR
expression and their enzymatic activity is critical for function of
the heme degradation pathway. BVR expression is regulated neg-
atively by NF-κB activation and positively by hypoxia-mediated
HIF1α stabilization and specific HRE binding sites in the BVR
promoter (Gibbs et al., 2010). BVR is strongly induced by its sub-
strate, biliverdin as well as other agents that induce oxidative stress
including LPS, heavy metals, and toxins (Maines et al., 2001; Wegiel
et al., 2009). BVR has also been demonstrated to be the target for
statins with this interaction leading to significant cognitive ben-
efits in a preclinical model of Alzheimer’s disease (Barone et al.,
2012). BVR is expressed ubiquitously in all tissues under basal
conditions with high levels in the reticulo-macrophages in the
spleen and liver. BVR can also be induced. We view this as placing
BVR in the category of stress response genes, which is supported

by the multiplicity of its functions within the cell, particularly in
the context of inflammation. BVR is localized in different cellular
compartments in response to stress. BVR has been detected in the
membrane (Kim et al., 2004; Wegiel et al., 2009), cytoplasm/ER,
mitochondria (Converso et al., 2006), and nucleus (Maines et al.,
2001; Ahmad et al., 2002; Lerner-Marmarosh et al., 2008) and its
translocation between different cellular compartments is regulated
by nitrosylation, lipid modification, or phosphorylation (Wegiel
et al., 2009, 2011). Importantly, BV induces NO generation allow-
ing for the stabilization and translocation of BVR to the nucleus
(Wegiel et al., 2011). We showed that BVR is strongly induced
upon bacteria endotoxin treatment both in the nucleus and on
the cell surface (BVRsurf). BVRsurf is newly characterized as an
important isoform of BVR, which functions as a tyrosine kinase
receptor-mediated signaling dimer in the membrane to bind and
convert BV to BR. Simultaneously, with BV binding, BVR cross-
phosphorylates Y 198MKM motifs allowing for interaction with
PI3K p85α (Lerner-Marmarosh et al., 2005; Maines, 2007; Wegiel
et al., 2009; Figure 1).

Conversion of BV by BVR has been shown to occur in any cel-
lular compartment, however the majority of activity is detected in
the ER and cell membrane. Modification of BVR by phosphoryla-
tion (Pachori et al., 2007) or S-nitrosylation (Wegiel et al., 2011)
are important regulatory mechanisms for its activity as an enzyme.
Phosphorylation of BVR on tyrosine occurs after ligand binding
and is necessary for transmission of the signal from BVR to PI3K
and downstream activation of Akt (Figure 1). Additionally, phos-
phorylation of serine/threonine as well as S-nitrosylation of BVR
increases enzymatic activity and are important for bilirubin gen-
eration (Salim et al., 2001; Pachori et al., 2007). Post-translational

FIGURE 1 | A role of BV in activation of PI3K–Akt through cell surface

BVR to elicit anti-inflammatory effects. BVR is expressed on the cell
surface of macrophages and mediates the anti-inflammatory and
cytoprotective signaling of BV. BV is converted to BR by BVRsurf, which
drives the recruitment and activation of PI3K–p85α/p110α to BVR to
increase the IL-10 levels.
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modifications of BVR are evident in neurodegenerative mod-
els, where the presence of ROS and NO increases oxidative and
nitrosative forms of BVR (Barone et al., 2011a,b). Nitrosylation of
tyrosine residues in the brain of subjects with Alzheimer’s disease
and those with mild cognitive impairment regulates BVR activity
(Barone et al., 2011b).

FUNCTION AND REGULATION OF BVR
ANTIOXIDANT BILIRUBIN REDOX CYCLE
The majority of the effects ascribed to BV are mimicked with
BR, however the signaling pathways are vastly different including
the effects on BVR. BR blocks iNOS expression as well as proin-
flammatory cytokine expression during endotoxemia (Wang et al.,
2004; Lanone et al., 2005), improving the outcome in a lethal mod-
els of endotoxemia in rodents (Sarady-Andrews et al., 2005; Kadl
et al., 2007; Wegiel et al., 2009). Some of the beneficial signaling
and modification effects ascribed to BVR in response to BV, are
also observed in response to BR (Baranano et al., 2002). In this
cytoprotective amplification loop, biliverdin is able to be regener-
ated through oxidation of BR by ROS and then reduced back to
BR by BVR (Baranano et al., 2002). Importantly, BR also inter-
acts and neutralizes NO radicals forming NO-bilirubin (Barone
et al., 2009). The cytoprotective function of BVR is therefore even
more apparent with its dual ability to generate BV and BR inter-
changeably. However, this mechanism may not be fully functional
as BR forms mainly non-specific oxidation products, which can-
not be used by BVR in the amplification loop. Oxidation of BR
by peroxyl radicals generates ∼30% BV as product, however when
albumin-bound BR was used there was only a modest increase in
BV (<10%; Maghzal et al., 2009). This amount however may be
sufficient to drive activation of BVR and formation of additional
BR in the amplification cycle described above due to exhaustion
of the substrate. In this light, BVR can be labeled as a major pro-
tective enzyme. Sedlak et al. (2009) showed that knockdown of
BVR in vitro leads to an increase in cell death in response to
hydrogen peroxide. Similar antioxidant mechanisms of protection
mediated by BVR have been reported in a model of experimental
autoimmune encephalomyelitis (Liu et al., 2006).

KINASE ACTIVITY IGF/NF-κB
Biliverdin reductase exhibits theronine-serine and tyrosine kinase
activity (Salim et al., 2001; Lerner-Marmarosh et al., 2005). While
the enzymatic function of BVR was described in 1965, additional
roles for BVR have just recently been described. BVR interacts
and regulates the insulin receptor, extracellular regulated kinase
(ERK), and phosphatidylinositol-3 kinase (PI3K), among other
potential interacting proteins such as insulin receptor kinase-
1 (IRK-1) or toll-like receptors (TLR). The unique Y198MKM
motif of BVR allows BVR the ability to mimic the function of a
receptor-like protein by interaction with upstream signaling pro-
teins similar to growth factor receptors such as PDGFR or EGFR.
We showed that BVR interacts with PI3K–p85α to drive Akt sig-
naling and IL-10 production, while others demonstrate that BVR
regulates the activity of PKC, ERK, and IRK by direct interaction
and phosphorylation. BVR can also autophosphorylate and in a
hyperphosphorylated form functions better as a catalyst for gener-
ating BR (Salim et al., 2001). One of the critical targets for BVR in

insulin signaling is IRS-1, which increases phosphorylation of BVR
by IRK (Lerner-Marmarosh et al., 2005) and is a key element to
insulin resistance. Indeed knockdown of BVR leads to an increase
in glucose uptake after insulin treatment in HEK 293 cells.

While biliverdin treatment inhibits NF-κB activation in
response to TNFα (Gibbs and Maines, 2007) or LPS (Wegiel et al.,
2009) as well as activity of PKC, the role of BVR remains controver-
sial. On the one hand, BVR inhibits NF-κB activation in response
to LPS in macrophages and the effects are amplified with BV
(Wegiel et al., 2011). Similarly,BV inhibited transcriptional activity
of NF-κB in HEK293A cells (Gibbs and Maines, 2007). However,
on the other hand, in the same cells it has been shown that over-
expression of hBVR enhanced both basal and TNF-α-mediated
activation of NF-κB (Gibbs and Maines, 2007). The differences
between macrophages and HEK293A cells may be due to the pres-
ence or lack of receptors (TLRs or TNFR), which mediate the
upstream signaling through NF-κB.

Both PKC-β II and ERK MAPK are important signaling tar-
gets for BVR (Lerner-Marmarosh et al., 2005, 2008). Interaction
of BVR with PKC-β II as well as BVR-mediated activation of PKC-
β II through phosphorylation is critical for its translocation to the
membrane. Both BVR and PKC-β II colocalize in the cell mem-
brane and signal from this localization. Similarly, BVR is critical in
assuring the localization of ERK proteins to the nucleus (Lerner-
Marmarosh et al., 2008). BR induces phosphorylation of Erk in
astrocytes and primary rat cerebellar granule neurons and there-
fore implicates BVR in MAPK activation (Fernandes et al., 2007;
Mancuso et al., 2008). BVR forms a ternary complex with PKCδ–
ERK2 that is essential for ERK2 signal transduction and activation
of genes linked to cell proliferation and cancer (Gibbs et al., 2012).
In addition to the protein–protein interactions with BVR, hematin
is transported to the nucleus in a complex with BVR to regulate
HO-1 expression (Ahmad et al., 2002; Kravets et al., 2004).

SURFACE BVR AND PI3K–Akt SIGNALING
Biliverdin reductase is expressed in the membrane of endothelial
cells as well as macrophages. It has not been formally evaluated
in any other cell types. One of the reasons for the necessity of
BVR to be located on the membrane of the cell is a need for
rapid conversion of BV to BR as well as activation of signaling
cascades initiated by BVR. Intravenous injection of BV leads to an
immediate increase in serum BR and the process is completed 5–
10 min after injection. BVR was first identified in caveolae together
with HO-1 in EC (Kim et al., 2004). We further characterized
expression on the external surface of the plasma membrane and,
as such, colocalizes with surface markers such as TLR4 or F4.80
in macrophages (Wegiel et al., 2009). In this localization, BVR
is a dimer and an active kinase, that upon encountering BV as
its ligand, is cross-phosphorylated to transmit a signal to PI3K
(Figure 1).

One of the major determinants of cellular fate is the Akt
pathway. The broad number of targets of Akt kinase makes this
cascade important not only for cell migration, survival, prolifera-
tion, growth, but also for metabolic control of the cell. BVR acts
as a substrate for insulin receptor tyrosine kinase (IRK) as well
as phosphorylation of IR substrate-1 (IRS-1) and therefore may
regulate insulin signaling and glucose uptake (Lerner-Marmarosh
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et al., 2005). Tyrosine 198 in the YMKM motif is a substrate for
insulin-activated IRK (Lerner-Marmarosh et al., 2005) as well as
the formation of the BVR dimer (Wegiel et al., 2009) and when
phosphorylated binds PI3K p85α to drive Akt phosphorylation.
We have shown that BVR–Akt signaling is active in response
to exogenous treatment with biliverdin and drives expression of
the anti-inflammatory cytokine IL-10 production in macrophages
(Figure 1).

Biliverdin reductase mediates hypoxia induced epithelial to
mesenchymal transition via PI3K (Zeng et al., 2008). The crosstalk
between BVR and cellular signaling is very pleiotropic and not lim-
ited to PI3K–Akt. Further the signaling control by BVR is strongly
correlated with its nuclear function. We posit that BVR is the prin-
cipal receptor for BV and one of the reasons for its immediate
conversion to BR is control of BVR functionality as a signaling
molecule.

BVR AS A TRANSCRIPTIONAL MODULATOR
It is well-established that BVR dimerizes both in the nucleus and
acts as a leucine zipper–like transcription factor (Ahmad et al.,
2002; Wegiel et al., 2009). Binding of BVR to Ap-1 sites either
activates transcription (HO-1 promoter; Ahmad et al., 2002) or
blocks the expression of the gene (TLR4; Wegiel et al., 2011). BVR
as a dimer binds to a 100-mer DNA fragment of the mouse HO-1
promoter region as well as in the ATF2 promoter (−612 to +33)
encompassing two activator protein (AP-1) sites (Ahmad et al.,
2002). Mutation of Lys(143), Leu(150), or Leu(157) blocks the
interaction between hBVR DNA complex formation. Further, BVR
is essential as a transporter of heme to the nucleus to regulate HO-
1 gene expression in the cell (Tudor et al., 2008). The feed-forward
activation of HO-1 via BVR may therefore allow for additional
production of BV as the substrate for BVR and amplification of
signal under situations of persistent cellular stress.

We recently described the ability of BV to trigger Ca2+/CaMKK
signaling that then leads to phosphorylation of eNOS and
increased NO generation in macrophages with concomitant S-
nitrosylation of BVR (Wegiel et al., 2011). This modification
of BVR amplifies its enzymatic function and drives its nuclear
translocation (Figure 3). In RAW264.7 macrophages, treatment
with BV suppressed TLR4 expression and resulted in decreased
proinflammatory cytokine release. Stable knockdown of BVR in
macrophages resulted in elevated expression levels of TLR4 and
TNFα. We further showed that inhibition of the TLR4 promoter
occurs via a direct interaction of BVR with AP-1 sites on the TLR4
promoter. However due to the close proximity of the Ap-1 and
GATA4 sites in the TLR4 promoter, BVR blocks TLR4 expres-
sion in contrast to the Ap-1-mediated effect on ATF2 where BVR
activated the HO-1 promoter.

Knockdown of BVR results in a significantly heightened proin-
flammatory phenotype of macrophages with elevated levels of
TNFα and activation of TLR4 expression basally reflecting the
lack of BVR-regulated TLR4 expression. Further, we demonstrate
that decreased NO bioavailability using an inhibitor of NOS in the
liver prior to treatment with BV had similar effects as inhibition
of BVR, suggesting that modification of BVR via S-nitrosylation
is important for the protective effects of BV–BVR. Indeed, BV
is required for the post-translational modifications of BVR that

enable S-nitrosylation and phosphorylation (Figure 2). We specu-
late that inflammation or oxidative stress, which leads to induction
of HO-1, generates BV to direct BVR to the nucleus to maintain the
balance between the expression of cytoprotective genes (i.e., HO-
1) and proinflammatory regulatory proteins (i.e., TLR4, TNFα) to
prohibit unfettered inflammation.

BILIVERDIN/BILIRUBIN EFFECTS IN DISEASE MODELS
There are several preclinical models in which BV and BR have
been shown to impart salutary effects in animals. Exogenous treat-
ment with BV blocks inflammation including reducing infiltrating
cells and proinflammatory cytokine expression in models of endo-
toxemia, ischemia reperfusion injury, or epithelial regeneration
(Bellner et al., 2008, 2011). Further, biliverdin inhibits the com-
plement cascade, especially at the C1 step in the classical pathway at
low micromolar concentrations (Nakagami et al., 1993). A direct
interaction between BV and C components of complement and
its inhibition may be one of the cytoprotective mechanisms of BV
during inflammation. Oral administration of BV before the anti-
serum injection protects against anaphylaxic shock induced-death
(Nakagami et al., 1993).

Salutary effects of bile pigments have also been described in
models of vascular injury and transplantation as will be described
in detail below (see also Figure 3). The general hypothesis for the
similarity in the action of BV and BR in these models stands from
the fast conversion of BV to BR. Amplification of the BVR sig-
nal may be due to BV, which is generated from the oxidized BR
in the cytoprotective cycle (Baranano et al., 2002). However, not

FIGURE 2 | BV-mediated inhibition ofTLR4 is dependent on NO-driven

BVR translocation to the nucleus. BV drives Ca2+/CaMKK dependent
activation of phosphorylation of eNOS and NO production. Presence of NO
allows for S-nitrosylation of BVR and its translocation to the nucleus.
Nuclear BVR as a transcriptional regulator binds to the TLR4 promoter to
inhibit its expression. The mechanism is responsible for the preconditioning
in the model of acute hepatitis.
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FIGURE 3 |The cytoprotective and anti-inflammatory role of BV and BR in the disease models.

all of the effects of BV are interchangeable with BR, which may
be due to requirement for BV to activate BVR. We would argue
that generation of even low amounts of BV in the BR → BV → BR
amplification loop may be sufficient to activate BVR. This signal-
ing from the oxidized BR (BV) may be responsible for overlapping
effects of both molecules, However, the signal may be too low
in some instances. The evolutionary conserved generation of BV
but not BR (in lower vertebrates) may be due to its additional
anti-inflammatory function of BV in regulating BVR–Akt and
BVR–TLR4 signaling. Reduction of BV to BR, even energy con-
suming, maybe a critical regulatory event in activation of signaling
function of BVR.

IRI/TRANSPLANTATION
Biliverdin/BR treatment can mimic that observed with HO-1
induction, exemplified by imparting strong anti-inflammatory
and immunosuppressive effect in macrophages (Sarady-Andrews
et al., 2005) and T cells (Yamashita et al., 2004). In models of
heart or islet transplantation, BV/BR suppresses antigen-specific
responses and leads to long-term allograft tolerance (Yamashita
et al., 2004; Lee et al., 2007). BV/BR inhibits proliferation of recip-
ient splenocytes in the mixed leukocyte reaction interfering with
IL-2 production (Yamashita et al., 2004) as well as MHCII expres-
sion (Wu et al., 2005). BR administration blocks inflammatory
cell infiltration into the graft and promotes anti-apoptotic gene
expression while inhibiting proinflammatory cytokine expres-
sion in transplanted islets (Lee et al., 2007). BV alone improved
liver function and decreased ALT levels after IRI associated with
liver transplantation. Strong antioxidant and anti-inflammatory
effects were observed when BV was applied before surgery in a
model of small bowel transplantation in rats that concomitantly

ameliorated postoperative ileus (POI), a complication from exces-
sive bowel manipulation (Nakao et al., 2004). POI is a major
clinical problem for any abdominal surgical procedures and results
from a profound inflammatory response in the gut that can lead to
sepsis, shock and death from lack of bowel motility. Clinically, this
syndrome is very common and leads to extended hospital stays
because physicians will not discharge a patient without the pres-
ence of bowel sounds. The protective effects of BV in ameliorating
POI was associated with inhibition of proinflammatory cytokines
(IL-6, IL-1β), decreased infiltration of neutrophils and suppres-
sion of intestinal circular muscle contractility (Nakao et al., 2004).
Whether the beneficial effects observed with BV in the IRI and
POI models are driven by BVR directly, or involve only BR exerting
global anti-inflammatory effects remains to be elucidated.

ENDOTOXIC SHOCK AND HEPATITIS
Biliverdin has best been characterized as an anti-inflammatory
molecule that can inhibit viral replication in vitro (Zhu et al.,
2010) as well as protection against endotoxic shock (Sarady-
Andrews et al., 2005; Wegiel et al., 2009) and microbial sepsis
(Overhaus et al., 2006). Importantly, biliverdin has antiviral effects
through inhibition of hepatitis C virus protease activity (Zhu
et al., 2010). The effects of BV were mediated through BVR
(Zhu et al., 2010). Further, BV ameliorates experimental dextran-
sulfate-induced colitis (Berberat et al., 2005) inhibited IL-6 and
MCP-1 while boosting IL-10 expression in a model of cecal liga-
tion and puncture (CLP)-induced septic shock in rats. LPS induces
BVR surface expression in macrophages. Expression of the anti-
inflammatory cytokine IL-10 in response to BV–BVR activation
is solely dependent on the Akt signaling pathway as BV-induced
IL-10 is inhibited in the presence of dominant-negative Akt.
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Depletion of BVR in the liver using small interfering RNA (siRNA)
against BVR with an adenoviral construct completely inhibited
the protective effects of BV against acute hepatitis (Wegiel et al.,
2009) which partially involves NO-dependent BVR-regulated
TLR4 inhibition (Wegiel et al., 2011).

VASCULAR INJURY
Biliverdin and BR have potent protective effects in models of vas-
cular injury. Biliverdin prevents neointima formation in a model
of vascular remodeling involving arterialization of vein grafts
through inhibition of JNK1/2 MAPK in the graft as well as via
inhibition of EC apoptosis (Nakao et al., 2005). Further, BV and
BR blocked SMC proliferation through inhibition of p38 MAPK
and blockade of cell cycle progression in G1-S phase, correlating
with decreased hyperphosphorylation of Rb and YY1 expression
(Ollinger et al., 2005). These in vitro studies were corroborated
in vivo in rats in response to balloon trauma. Hyperbilirubinemic
Gunn rats validated these observations as they were resistant to
neointima formation in response to balloon trauma as compared
to wild type controls (Ollinger et al., 2005). The role of BR remains
to be determined. It has been well-described however with associ-
ation studies that Gilbert’s individuals show very low incidence of
atherosclerosis and heart disease which suggest an important role
for BR (Novotnây and Vâitek, 2003; Bulmer et al., 2008).

FUTURE STUDIES
BVR–fl/fl AND KNOCKOUT MICE
Small interfering RNA is the only strategy to date to inhibit BVR
expression in order to genetically assess the role of BVR. The field
is lacking critical knockout and conditional knockout mice that
allow detailed mechanistic testing of BVR in vitro and in vivo and
its contribution to bile pigment turnover and immune regula-
tion. We have generated conditional BVR–fl/fl mice (unpublished
data) and have specifically deleted BVR in macrophages. Prelim-
inary data show that a lack of BVR in macrophages mimics that
observed with siRNA studies; both resulting in a proinflamma-
tory phenotype of myeloid cells, their expansion in the lung and
spleen, and subsequent alterations in response to organ injury
(data not shown). Deletion of BVR in conjunction with HO-1
knockout mice allows the opportunity to study individually the
role of each of the components of the heme degradation path-
way in various tissues and under differing kinetics and stimuli.
Unlike typical knockout strategies, the conditional approach to
tissue specific deletion of BVR and/or HO-1 allows the study
of these genes without any compensatory mechanisms in place.
Indeed the HO-1 knockout shows <5% fecundity, which begs the
question as to what is truly being studied and what conclusions
can be drawn from these mice. Have these 5% somehow adapted
or compensated? And as such, are they truly allowing appropriate

conclusions to be drawn as to the role of HO-1 in naïve and dis-
ease scenarios? The conditional knockout mice will certainly shed
important light on the role of HO-1 and BVR in basal physiology
and importantly, their role in pathophysiology.

SUMMARY AND CONCLUSION – POTENTIAL THERAPEUTIC
MODALITIES AND APPLICATIONS
Biliverdin reductase, a pleiotropic signaling molecule and tran-
scriptional regulator is a clear therapeutic target. The Asian com-
munity has been using bile salts and pigments for medicinal
purposes for centuries if not millennia as a cure-all for every-
thing from headaches to indigestion. In fact, it is firmly believed
that bile from different species carries diverse biological effects. BV
is an agonist of BVR and an activator of PI3K signaling, the activ-
ity of which is altered in various pathologies (insulin resistance,
cancer). Recently BVR peptides have been designed to modulate
insulin receptor signaling (Maines, 2010).

Importantly, a homozygous nonsense mutation in BVR
(Cys214 → Ala) in humans has been described and results in accu-
mulation of biliverdin during episodes of cholestasis (Nytofte et al.,
2011). The functional consequences of this mutation and likely
others are not yet known, however they may contribute to the
development of proinflammatory syndromes, as we are starting
to observe in the BVR-deficient mice. The complexity of BVR to
both signal and modulate transcriptional activity in addition to
enzymatic generation of BR, places it as a central control switch
employed by the cell to respond appropriately to inflammation and
stress. Exogenous delivery of BV is of potential therapeutic interest
given its strong anti-inflammatory potential and defined mecha-
nisms of action. That BV and BR are natural substances make clini-
cal development perhaps more straightforward because the means
by which the body metabolizes each pigment is known making
pharmacokinetic and pharmacodynamic studies less complicated.

In conclusion, BVR is a truly remarkable molecule. It is triple-
threat functionality places it in a category all its own with no
other known molecule that has been defined that functions as
an enzyme, a signaling kinase, and a regulator of transcription.
Understanding what directs one activity over the other is the
challenge for future research. Generating tools such as the cre–
lox mice will no doubt open up knew avenues of research with
exciting discoveries. Eventually, we envision BV and BR as pow-
erful therapeutics that will prove useful in numerous disease
pathologies.
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