
plants

Article

Enzymes Involved in the Biosynthesis of Arginine
from Ornithine in Maritime Pine (Pinus pinaster Ait.)

José Alberto Urbano-Gámez, Jorge El-Azaz, Concepción Ávila , Fernando N. de la Torre *
and Francisco M. Cánovas *

Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica,
Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain; alburb@uma.es (J.A.U.-G.);
jelazaz@alu.uma.es (J.E.-A.); cavila@uma.es (C.Á.)
* Correspondence: fdelatorre@uma.es (F.N.d.l.T.); canovas@uma.es (F.M.C.)

Received: 11 September 2020; Accepted: 24 September 2020; Published: 27 September 2020 ����������
�������

Abstract: The amino acids arginine and ornithine are the precursors of a wide range of nitrogenous
compounds in all living organisms. The metabolic conversion of ornithine into arginine is catalyzed
by the sequential activities of the enzymes ornithine transcarbamylase (OTC), argininosuccinate
synthetase (ASSY) and argininosuccinate lyase (ASL). Because of their roles in the urea cycle,
these enzymes have been purified and extensively studied in a variety of animal models.
However, the available information about their molecular characteristics, kinetic and regulatory
properties is relatively limited in plants. In conifers, arginine plays a crucial role as a main constituent
of N-rich storage proteins in seeds and serves as the main source of nitrogen for the germinating
embryo. In this work, recombinant PpOTC, PpASSY and PpASL enzymes from maritime pine
(Pinus pinaster Ait.) were produced in Escherichia coli to enable study of their molecular and kinetics
properties. The results reported here provide a molecular basis for the regulation of arginine and
ornithine metabolism at the enzymatic level, suggesting that the reaction catalyzed by OTC is a
regulatory target in the homeostasis of ornithine pools that can be either used for the biosynthesis of
arginine in plastids or other nitrogenous compounds in the cytosol.

Keywords: arginine; ornithine; Pinus; conifers; nitrogen metabolism; amino acid biosynthesis;
enzyme kinetics; biochemical regulation

1. Introduction

Nitrogen (N) is an essential constituent of proteins, nucleic acids and many other compounds
essential for life such as hormones, vitamins, porphyrins and a wide range of specialized metabolites.
Although N is highly abundant in the atmosphere as dinitrogen, only combined forms such as nitrate,
ammonium or amino acids can be assimilated by plants. Because these forms of N are usually
present in low abundance in nature, N availability is a major limiting factor for plant growth and
development [1]. When an excess of N is available, plants can assimilate and store it directly as free
arginine, the amino acid with the highest N content or as a component of storage proteins in the bark
and the seeds [2,3]. Therefore, arginine is of paramount importance in N metabolism, and therefore
the study of its biosynthesis and utilization is essential to understand N homeostasis.

The biosynthesis of arginine can be divided into two pathways: the conversion of glutamate into
ornithine and the synthesis of arginine from ornithine through the sequential action of the enzymes
ornithine transcarbamylase (OTC), argininosuccinate synthetase (ASSY) and argininosuccinate lyase
(ASL) [4,5].

Figure 1 shows a schematic representation of the enzymatic steps involved in the conversion
ornithine-arginine and the metabolic fates of arginine as a precursor for the biosynthesis of polyamines,
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storage proteins and nitric oxide (NO). The enzymatic generation of NO from arginine has been
demonstrated biochemically, but the identity of the protein and gene responsible for this conversion in
plants remain unknown [6]. When the arginine metabolic pathway is compared among different live
forms an outstanding characteristic is its metabolic plasticity, enabling it being able to adapt and meet
the requirements of various organisms to maintain an appropriate N balance. For example, in the urea
cycle in mammals the arginine biosynthetic pathway has been adapted for the disposal of ammonium,
a highly toxic product generated through the catabolism of the excess proteins ingested in their diet [7].
The enzymes of the urea cycle are located in the hepatocytes [8], where the catalytic action of the
mitochondrial enzymes carbamoyl-P synthetase I and OTC convert ammonium into citrulline which is
transported to the cytoplasm for the synthesis of arginine by the sequential action of ASSY and ASL.
An additional enzyme of the arginine metabolism, arginase (ARG), is critical for the cyclic nature of
urea synthesis, catalyzing the formation of the ornithine and urea that is excreted in urine. The enzymes
ASSY and ASL have been immunocytochemically located to the immediate vicinity of mitocondria,
close to the outer membrane, further supporting the functionality of the cyclic pathway [9]. Given the
metabolic importance of this cycle, the enzymes involved in urea biosynthesis have been isolated from
different animal sources, including humans, and their molecular and kinetic properties have been
determined (Table S1). Their deficiencies have been found to be related to cancer and several metabolic
disorders involving N metabolism and causing hyperammonemia [10,11]. Furthermore, the high
nutritional value of arginine as a complement to vitamin deficiency in humans has been determined [12].
In contrast, much less is known about the molecular characteristics, kinetic parameters and regulation
of enzymes involved in arginine biosynthesis in plants [5] (Table S1).

The compartmentation of arginine biosynthesis in plants was controversial in early studies,
and the cytoplasmic and mitochondrial localization of several enzymes was reported [13], as previously
described in animals. However, after the completion of the Arabidopsis genome sequence [14], it was
found that genes encoding most arginine biosynthetic enzymes contain a presequence for chloroplast
targeting [15]. Recent localization studies have confirmed these genomic data and have provided
strong evidence showing that the complete pathway is confined to plastids, including the enzymes of
ornithine pathway and those involved in the biosynthesis of arginine from ornithine, OTC, ASSY and
ASL [4,16,17].

Storage proteins are of key importance for the nutrition of conifer germinating seeds. In maritime
pine, arginine is one of the most abundant amino acid residues in the storage proteins representing
with glutamine/glutamate the majority of the total amino acid content [18]. Storage proteins mainly
accumulate in the megagametophyte but also reside in the embryo during the final stages of seed
formation [19]. Fundamental knowledge of pine embryogenesis is critical to develop experimental
procedures for the multiplication of genotypes of commercial interest through in vitro culture
techniques. In fact, somatic embryogenesis in combination with cryopreservation is currently a
major biotechnological tool for vegetative propagation of selected maritime pine varieties [20].
However, previous works have shown a deregulation of the arginine biosynthetic pathway and a lower
accumulation of storage proteins during the last steps of somatic embryogenesis [4,19].
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Figure 1. Arginine biosynthesis. Schematic pathway of arginine biosynthesis from ornithine with the 

main acting molecules and possible metabolic destinations for arginine. * Although the implication of 

arginine in the biosynthesis of NO has been established in animals, it remains a matter of debate in 

plants. NAGS: N-acetylglutamate synthase; NAGK: N-acetylglutamate kinase; NAGPR: N-

acetylglutamyl-phosphate reductase; NAOAT: N-acetylornithine aminotransferase; NAOGAcT: N-

Figure 1. Arginine biosynthesis. Schematic pathway of arginine biosynthesis from ornithine
with the main acting molecules and possible metabolic destinations for arginine. * Although the
implication of arginine in the biosynthesis of NO has been established in animals, it remains
a matter of debate in plants. NAGS: N-acetylglutamate synthase; NAGK: N-acetylglutamate
kinase; NAGPR: N-acetylglutamyl-phosphate reductase; NAOAT: N-acetylornithine aminotransferase;
NAOGAcT: N-acetylornithine:glutamate acetyltransferase; NAOD: N-acetylornithine deacetylase;
OTC: Ornithine transcarbamilase; ASSY: Argininosuccinate synthetase; ASL: Argininosuccinate lyase.
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Current research efforts are addressed to further understand how arginine biosynthesis is
regulated during pine embryogenesis. The availability of genomic resources has greatly facilitated
the performance of functional studies in maritime pine [21,22]. To further understand the molecular
regulation of arginine biosynthesis, the enzymes involved in the metabolic conversion of ornithine to
arginine have been overproduced in E. coli as recombinant proteins, and their molecular, kinetic and
regulatory properties have been determined. The results reported here provide new insights into the
short-term biochemical regulation of the arginine biosynthetic pathway.

2. Results

2.1. Identification of Conserved Protein Motifs in the Catalytic Mechanism of PpOTC, PpASSY and PpASL

In a previous paper, full-length cDNAs of PpOTC, PpASSY and PpASL genes [4] were cloned,
their expression was analyzed and the subcellular localization of the corresponding proteins
demonstrated their targeting to plastids [4]. Here, a detailed analysis was conducted to identify
of the protein motifs involved in their catalytic mechanism.

Through a multiple alignment analysis of PpOTC from different plant and animal species,
the characteristics of C-terminal ornithine binding motifs FMHCLP and DVWASMG were identified
(consensus DXXXSMG) [23] (Figure 2). The motifs directly involved in the binding of carbamoyl-P,
HPCQ and SMRTR, respectively, were also identified (Figure 2, OTC) [23]. For PpASSY, conserved
protein motifs involved in the citrulline/aspartate binding loop, ENRLVGMKSRGVYETP, aspartate
binding, TGKGNDQVRFE and in the citrulline and ATP binding, SRDRNLWHLSHE [24,25]. Based on
sequence homology, the N-terminal domains involved in ATP binding, VVLAYSGGLDTS, and citrulline
binding, YLLGTS [26] were also recognized (Figure 2, ASSY). Finally, the PpASL primary structure
was also analyzed to detect three characteristic conserved domains involved in the conformation of
the catalytic active site: KLHTARSRNDQV, PGYTHLQRAQ and STGSSIMPQKKNPDPMELVR [27]
(Figure 2, ASL). The former sequence has also been described as fundamental for argininosuccinate
binding [28]. These sequences are highly conserved among the ASL enzymes in plants and
animals, as illustrated in Figure S1 and described in the literature [29,30]. Together, these analyses,
revealed the critical protein motifs required for the corresponding enzymatic reactions of PpOTC,
PpASSY and PpASL.
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Figure 2. Schematic representation of OTC, ASSY and ASL primary structures. The distribution of
conserved protein motifs and the primary structures of the proteins in both plants and animals are
shown, with the conserved sequences and the punctual changes in some motifs (underlined). It is
also highlighted the predicted cleavage site of the transit peptide using bioinformatics algorithms
(TargetP 2.0). “Animal consensus” refers to the integration of sequences from Homo sapiens, Mus musculus,
Rattus norvegicus, Anas platyrhynchos, Bos taurus, Ovis aries and Danio rerio. Complete alignment for
these enzymes is shown in Figure S1.

2.2. Production of Recombinant PpOTC, PpASSY and PpASL Enzymes

With the aim of deepening the understanding of the metabolic role of these enzymes, experimental
protocols for the production of active recombinant PpOTC, PpASSY and PpASL enzymes in E. coli were
established to enable the characterization of their molecular and kinetic attributes. For this purpose,
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the ORFs without the sequence corresponding to the chloroplast transit peptide (CTP) were subcloned
into a pDEST17 vector. The CTPs were removed according to theoretical predictions based on the
TargetP-2.0 server [31] and WoLF PSORT tools [32]. The proteins were produced as fusions to 6xHis
N-terminal tags to confirm their production by western blotting and to facilitate their subsequent
purification. Several bacterial strains were used, and different culture conditions were assayed to
successfully overexpress the maritime pine enzymes. Figure S2 depicts the expression conditions as
optimized for each protein. To confirm that all recombinant polypeptides were correctly expressed,
we determined their molecular weights through SDS-PAGE analysis, confirming the predictions based
on the sequence analysis: 38 kDa for PpOTC, 47 kDa for PpASSy and 54 kDa for PpASL. The sizes of
the individual polypeptides were confirmed with purified preparations of the recombinant enzymes
(Figure S3). As shown below, the resulting recombinant purified fractions of PpOTC, PpASSY and
PpASL were fully active.

2.3. Molecular Size of Maritime Pine OTC, ASSY and ASL Enzymes

Purified preparations of recombinant PpOTC, PpASSY and PpASL enzymes were used to
estimate the molecular mass of holoenzymes by gel filtration chromatography through a calibrated
column with protein markers of a known size (Figure 3). The recombinant PpOTC holoenzyme
showed a size of 112 kDa, 2.9-fold larger than that of the polypeptide and thus consistent with a
trimeric structure comprising identical subunits of 38 kDa. The size of the PpASSY holoenzyme was
estimated to be 193 kDa, 4.1-fold the mass described for the 47 kDa polypeptide, strongly suggesting a
homotetrameric structure. Finally, the size of the PpASL holoenzyme was determined to be 208 kDa,
consistent with a homotetrameric structure comprising integrated subunits of 54 kDa. These results
are consistent with previous reports about the quaternary structure of these enzymes in bacteria,
plants and animals [5,15,33].
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Figure 3. Molecular mass estimations of PpOTC, PpASSY and PpASL. Samples from purified proteins
were loaded separately onto a size exclusion ENrich™ SEC 650 column (Bio-Rad). Molecular masses
were calculated by comparing the partition coefficient (Kav) of the samples with the standards
used to calibrate the column: thyroglobulin (669 kDa), apoferritin (443 kDa), β-amylase (200 kDa),
alcohol dehydrogenase (150 kDa) and carbonic anhydrase (29 kDa).

2.4. Catalytic Properties of the Recombinant PpOTC, PpASSY and PpASL Enzymes

To obtain more information about these enzymes and their functional roles, we performed a
detailed kinetic analysis using highly purified recombinant enzyme aliquots (Table 1). For PpOTC,
our results demonstrated a strong positive cooperativity for ornithine with an estimated nH = 3.5,
according to the Hill plot (Figure 4a), and the S0.5 value was estimated to be 1.28 mM. On the other
hand, our analysis showed negative cooperativity of PpOTC assayed with increasing concentrations



Plants 2020, 9, 1271 7 of 17

of carbamoyl-P, as determined by the Hill plot (nH = 0.48) with a S0.5 value of 3.48 mM (Figure 4b).
The affinity of the PpASSY towards citrulline and aspartate was 0.12 mM in both cases. The Vmax

for this enzyme was estimated to be 0.06–0.08 nkat/µg, noticeably lower than that of observed for
PpOTC or PpASL (Table 1). Finally, the kinetic dynamics of PpASL with various concentrations
of argininosuccinate, the single substrate of the reaction, was studied, and Michaelian kinetics was
observed with a Km value of 0.22 mM and a Vmax of 21 nkat/µg.
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Figure 4. Sigmoidal kinetics of PpOTC. The graph shows the saturation curve of the enzyme in the
presence of ornithine (a) and carbamoyl-P (b). A Hill plot of the kinetic data is shown in the inset
(nH = 3.47 ± 0.38 for ornithine; nH = 0.48 ± 0.03 for carbamoyl-P).
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Table 1. Kinetic parameters for recombinant PpOTC, PpASSY and PpASL.

Enzyme Substrate Km (mM) S0.5 (mM) Vmax
(nkat/µg) nH kcat (s−1)

kcat/Km
(M−1s−1)

PpOTC ornithine 1.28 ± 0.16
4.44 ± 1.4

3.47 ± 0.38
11.03carbamoyl-P 3.48 ± 1.4 0.48 ± 0.03

PpASSY citrulline 0.12 ± 0.03
0.07 ± 0.01 2.82 2.46 × 104

aspartate 0.12 ± 0.05

PpASL argininosuccinate 0.22 ± 0.03 20.93± 0.75 1139.24 5.18 × 106

Based on the determination of the number of reaction centers and kinetic measurements,
we estimated the kcat values for the PpOTC, PpASSY and PpASL enzymes. Recombinant PpOTC,
with the molecular size of each monomer equal to 38.46 kDa, exhibited a kcat value of 11.03 s−1.
Recombinant PpASSY, with the molecular size of each monomer equal to 47.44, had a kcat value of
2.82 s−1, and a kcat/Km value of 2.46 × 104 M−1s−1. Finally, recombinant PpASL, with a molecular
size of 54.45 kDa for each monomer, showed a kcat value of 1139.24 s−1, and a kcat/Km value of
5.18 × 106 M−1s−1.

2.5. Effect of Several Metabolites on PpOTC, PpASSY and PpASL Activities

Next, a series of enzymatic measurements were performed to determine the putative influence
of several metabolites on the metabolic flux from ornithine to arginine. As illustrated in Figure 5a,
the activities of PpOTC, PpASSY and PpASL enzymes were determined at saturating concentrations of
the corresponding substrates and in combination with selected metabolites at 10 mM, as described in
the Materials and Methods section. Enzyme activity in the absence of additional compounds was used
as a control (100%). A significant effect (25–40% reduction) on PpOTC activity was observed by the
addition of Thr, Leu, Val, and the final product of the pathway, Arg. Interestingly, we also observed a
significant slight increase in PpOTC activity, of approximately 10%, by the presence of two polyamines
synthesized from arginine: spermine and spermidine. An in-depth analysis of the inhibitory dynamics
resulting from Val and Arg addition was performed, and the results showed that concentrations of
Arg and Val greater than 20 mM caused a reduction in PpOTC activity of 50% and 70%, respectively
(Figure 5b).

Since PpOTC shows strong positive cooperativity with ornithine, the inhibitory effect of Arg
on PpOTC activity was also investigated using different concentrations of both Arg and ornithine.
As shown in Figure 6, Vmax was reduced when Arg was increased, with a Vmax in the presence of
20 mM Arg being one-half that in the absence of this compound, thus indicating a critical role of Arg as
a negative allosteric modulator of PpOTC activity.

Next, we investigated the effect of the same set of metabolites on PpASSY activity and determined
that only the addition of 10 mM of Arg significantly affected its activity, by approximately 20%.
Surprisingly, a detailed study of this effect showed that a similar impact on the PpASSY
activity was achieved by Arg concentrations from 1 mM to concentrations greater than 20 mM.
Finally, the modulatory impact of these metabolites on PpASL activity was proven. Interestingly, 10 mM
of Gln, Glu, Val, Asn, Asp, Leu and Thr resulted in an increase in PpASL activity between 10% and 30%.
Previous work reported an inhibitory effect of succinate versus fumarate on the reverse reaction of
bovine ASL activity [34] but no effect versus argininosuccinate, as shown here. Interestingly, the presence
of succinate increases PpASL activity. In the particular case of PpASL, the presence of polyamines
resulted in PpASL activity reduction of approximately 40% and 30% when spermine and spermidine
were present, respectively. IC50 values for the different compounds tested are shown in Table 2.
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Figure 5. Effect of different compounds on the enzyme activities of PpOTC, PpASSY and PpASL.
(a) The histogram shows the enzymatic activity of the three enzymes in the presence of different
amino acids, spermine (Spn), spermidine (Spd) and succinic acid (Succ). N.d. for no determined data.
The enzyme assays were performed in the presence of different compounds at a final concentration
of 10 mM as described in the Material and Methods section. Enzyme activity levels in the absence of
compounds were considered the controls, C (100%), and the corresponding values were 2.3± 0.1 nkat/µg
for PpOTC, 0.21 ± 0.02 nkat/µg for PpASSY and 15.63 ± 0.41 nkat/µg for ASL. (b) Inhibition plots
showing PpOTC, PpASSY and PpASL activities in the presence of increasing amounts of selected
effectors indicated in panel (a). (*) Significant difference vs. the control. All reactions were carried out
with substrate concentrations greater than their respective Km (mM) values at 25 ◦C with vigorous
shaking during 5 min (end point).
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Table 2. IC50 values for PpOTC, PpASSY and PpASL activity inhibitor compounds.

Enzyme Compound IC50 Value (mM)

PpOTC
arginine 10.28

valine 7.19

PpASSY arginine 1.94

PpASL
spermidine 4.97

spermine 19.24

3. Discussion

3.1. Enzyme Structure and Recombinant Production

Advances in NGS have allowed the establishment of a large body of genomic resources in conifers
with multiple applications in fundamental biology and biotechnology. In this study, the genomic
resources available for maritime pine were used to explore the function of enzymes involved in the
biosynthesis of arginine from ornithine [21] The primary structure of these enzymes is very similar
to the corresponding sequences of their counterparts in mammals. Essential protein motifs for the
binding of substrates are highly conserved, with only small changes in their amino acid sequences
(Figure 2). The most relevant difference among plant and animal polypeptides is the presence of an
N-terminal presequence for plastid targeting.

Fully active recombinant enzymes involved in the conversion of ornithine to arginine have not
been previously studied in plants. In this work, active OTC, ASSY and ASL enzymes were successfully
overexpressed (Figures S2 and S3). In fact, previous attempts at producing recombinant plant enzymes
were unfruitful. The Arabidopsis OTC was poorly expressed in E. coli and did not complement an
auxotrophic mutant [35]. Highly purified preparations were used to estimate their native molecular
masses, which were consistent with a homotrimer for PpOTC and a homotetramer for both PpASSY
and PpASL holoenzymes in maritime pine (Figure 3). These results are in line with the molecular
masses reported for enzymes purified from other organisms [15,36,37].
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3.2. Enzyme Kinetics

Overproduction of maritime pine enzymes in E. coli provided sufficient amounts for the
determination of their kinetic and regulatory properties. The affinity of pine OTC, ASSY and ASL for
their substrates was in the range of those previously characterized for the counterparts in animals and
plants (Table S1): (0.20–3.0 mM) for ornithine and (0.01–1 mM) for carbamoyl-P in OTC; (0.04–0.12)
for citrulline and (0.020–0.12) for aspartate in ASSY; (0.02–0.15 mM) for argininosuccinate in ASL.
Interestingly, maritime pine OTC showed a sigmoidal behavior against ornithine, suggesting regulation
of this enzyme in response to fluctuations of ornithine concentration in the plastid, with low levels
of OTC activity when ornithine availability is low and a rapid increase in activity the levels of this
substrate are high. It is also remarkable that the negative cooperativity of OTC against carbamoyl-P
serves the enzyme to buffer changes in its availability. This kinetic behavior will provide a constant
flux of ornithine independently of changes in the concentration of carbamoyl-P in the plastid. As the
pathways for arginine and pyrimidine biosynthesis are both located in the plastid, these results
strongly suggest that the levels of OTC activity in pine is mainly regulated by the magnitude of the
ornithine pool inside the organelle. In this context, it is crucial to consider the activity of arginine
and ornithine transporters located in the chloroplast inner membrane. Mitochondrial membrane
transporters (BAC1 and BAC2) mediating the translocation of basic amino acids such as arginine,
ornithine and lysine have been characterized in Arabidopsis [38,39] and are potentially involved in the
catabolism of arginine [5]. Unfortunately, very little is known about membrane transporters similarly
involved in the interchange of ornithine and arginine between the chloroplasts and the cytosol.

3.3. Relevance of the Ornithine-Arginine Conversion in N Metabolism

It has been reported that Arabidopsis chloroplasts are able to dissimilate arginine, releasing ornithine
and ammonium [40]. This ability can allow a rapid utilization of the N contained in the guanidinium
group of this N-rich amino acid because the released ammonium is efficiently assimilated by the
GS2-GOGAT cycle in angiosperms. In fact, a citrulline-arginine shuttle was proposed for the metabolic
transport of photorespiratory ammonium from mitochondria to chloroplast [40]. As arginine plays an
important role in pine as a transient N storage metabolite, the operability of such a mechanism for
the rapid interconversion of arginine to ornithine would facilitate a rapid N storage and mobilization.
However, no plastidic GS isoform is present in pines and other conifers [41,42], and, therefore, arginine
dissimilatory activities would be present in the cytosol in these plants where it will possibly contribute
to the cytosolic pool of ornithine. In addition, ornithine is synthesized in the cytosol of plant cells by
the action of N-acetyl ornithine deacetylase (NAOD) and serves as a precursor for the biosynthesis
of polyamines and alkaloids in this subcellular compartment [4,43]. Thus, ornithine plays a central
role as an intermediate metabolite in the crossroads of several pathways. Ornithine is also a precursor
of proline and it has been proposed to play a role in the response of plants to abiotic stresses such as
salinity and drought [44,45]. Ornithine released by arginase activity during the mobilization of seed
storage proteins during germination can be used for glutamate biosynthesis when photosynthetic
glutamate synthases are inactive [46].

3.4. Effector-Mediated Regulation of Ornithine and Arginine Biosynthesis

NAGS, the first enzyme in the arginine biosynthetic pathway is allosterically controlled by arginine
in prokaryotes and likely in plants [44]. However, the best characterized regulatory step in the arginine
biosynthetic pathway is the reaction catalyzed by N-acetylglutamate kinase (NAGK), which is inhibited
allosterically by arginine, the end product of the pathway [47]. NAGK is further regulated by the
PII protein, which is able to relieve arginine inhibition, allowing the storage of N as arginine [48–50].
In plants, when N availability is high, increased levels of glutamine act as a signal that is sensed
by PII and transduced in enhanced NAGK activity [51] causing increased flux through the pathway.
In maritime pine, two molecular variants of PII, PpPIIa and PpIIb, are able to enhance NAGK activity
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in the presence of 10 mM of glutamine, with PpPIIa being the isoprotein predominantly involved in
the regulation of arginine biosynthesis during embryogenesis [52]. The allosteric regulation of PpOTC
by ornithine and arginine (Figures 4 and 6) strongly suggest that the reaction catalyzed by this enzyme
is also an important step for the short-term regulation of the pathway. PpOTC activity is also sensitive
to the inhibition by Ile, Leu and Val (Figure 5) (reported for animal extracts in [53]) and that suggests a
metabolic connection between the aspartate and arginine metabolic pathways as previously pointed
out for the biosynthesis of amino acids [54]. The observed inhibition of the last enzyme in arginine
biosynthesis, ASL, by spermine and spermidine may reflect the fine-tuned control that polyamines,
the arginine and ornithine byproducts, may exert over the biosynthesis of their own precursors.

In summary, our studies address a highly regulated pathway with several points of control
allowing the use of ornithine as a precursor placed at the crossroads of several metabolic pathways in
different subcellular compartments. The results presented in this study provide a molecular basis for the
regulation of ornithine and arginine metabolism in plants at the enzymatic level. The reaction catalyzed
by OTC emerges as a key regulatory point controlling the balance between subcellular ornithine pools
that can be either used for the biosynthesis of arginine in the plastid and other nitrogenous compounds
in the cytosol. Consistently, it is not surprising that ornithine biosynthesis and utilization are the targets
for the action of pathogen toxins such as phaseolotoxin and mangotoxin [55,56]. As a product of arginase,
ornithine is also a metabolic intermediary for arginine catabolism in the mitochondria. The activity
of plastidic and mitochondrial transporters for arginine and ornithine likely play essential roles in
maintaining N homeostasis during maritime pine embryogenesis and germination. The functional
analysis of these membrane proteins deserves further attention in future studies.

4. Material and Methods

4.1. RNA Isolation and cDNA Cloning

Maritime pine seeds (Sierra de Segura) were submerged in water with constant aeration for
24 h. Soaked seeds were spread between two layers of vermiculite (Vermiculita No3, Projar S.A.)
for 30 days, adding only distilled water for seed germination and seedling growth. Cotyledons of
seedlings were harvested and quickly frozen in liquid nitrogen. Frozen cotyledons were pulverized,
and total RNA was extracted and isolated following the protocol described by de la Torre et al. [57].
RNA was converted to cDNA using iScript reversotranscriptase (BioRad) as previously described [58].

Oligonucleotides for the corresponding ORF cloning were designed by retrieving maritime pine
OTC, ASSY and ASL (PpOTC, PpASSY and PpASL) sequences from maritime pine data available at
Congenie database [21]. Oligonucleotides were designed avoiding the sequence corresponding to the
chloroplast transit peptide sequence (Table S1).

Cloned cDNAs were 984 nucleotides in length for PpOTC, 1218 nucleotides for PpASSY and
1398 nucleotides for PpASL. attB1 and attB2 ends were added by PCR using specific primers (Table S1),
necessary for Gateway® cloning (Invitrogen™, Thermo Fisher Scientific™). Sequences were inserted
into the pDONR207 vector via Gateway® BP II clonase mix (Invitrogen™, Thermo Fisher Scientific™)
reaction and later inserted into the pDEST17 expression vector via Gateway® LR clonase II mix
(Invitrogen™, Thermo Fisher Scientific™) reaction following manufacturer’s indications. pDEST17 with
inserted cloned sequences were sequenced to confirm correct insertion of cDNA sequence.

4.2. Overexpression of Recombinant Enzymes

Escherichia coli BL21 AI (Thermo Fisher Scientific™), RIL (BL21 Codon Plus DE3 RIL ™,
Thermo Fisher Scientific™) and LEMO (BL21 Codon Plus DE3 Lemo System ™, New England
BioLabs®) strains were transformed with the pDEST17 plasmid for recombinant protein production.
Different growth and production conditions were tested until reaching the optimals or overproduction
of each recombinant protein (Table 1). Transformed cells were grown at 37 ◦C temperature with
shaking in Luria Bertani broth containing 100 µg mL−1 ampicillin and 25 µg mL−1 chloramphenicol
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until OD600 = 0.5 was reached. Induction of protein production was performed by addition of 0.4 mM
IPTG (Isopropyl-β-D-thiogalactoside #sc-202185B SantaCruz Biotechnology) for PpOTC and 0.5 mM
IPTG for PpASSY. No IPTG was required for PpASL production. Temperature was set to 30 ◦C for
induction of PpOTC, 25 ◦C for PpASSY and 37 ◦C for PpASL. Cultures were maintained under their
optimal temperature and gentle shaking (60–75 rpm) for 8 h (PpOTC) and 5 h (PpASSY and PpASL).
Bacterial cultures were centrifuged at 5000× g and pellets were frozen. Proteins were purified by
HisTag affinity onto Ni-agarose resin (Protino™NiTED HisTag purification kit; Macherey-Nagel®).
Aliquots from the different purification steps were analyzed by SDS-PAGE to follow the progress
of purification (Figure S1). Protein concentration was determined via western blot using a known
concentration HisTag recombinant protein as reference. The antibodies used were anti-His 6 (Roche Life
Science) and anti-mouse HRP-conjugate (Santa Cruz Biotechnology) at dilutions at 1:5000 and 1:10,000,
respectively. SDS-PAGE and western blot analysis were carried out as described previously [59,60].

The purified preparations of recombinant enzymes were loaded onto Sephadex G-25 in PD-10
desalting columns to be separated from small molecules and ions that could interfere during enzymatic
assays. Collected aliquots were utilized to perform the assays.

4.3. Enzyme Assays

The enzyme OTC catalyzes the following reaction:

Ornithine + Carbamoyl-P→ Citrulline + Pi

PpOTC activity was determined by quantification of the Pi released with molybdate, that turns
into the colored compound phosphomolybdate. The protocol used is the one described by Bernhart
and Wreath [61], with minor modifications. Briefly, the reaction mixture in a total volume of 100 µL of
50 mM Tris-HCl (pH 8.0), 1 mM L-ornithine, 5 mM carbamoyl-P and 1.2 µg of the purified recombinant
protein was incubated at 25◦C for a range of time from 1 to 5 min. The reaction was stopped by the
addition of 800 µL of a molybdate solution containing 50% (v/v) acetone, 5 N H2SO4 and 5% (w/v)
ammonium molybdate in proportions (2:1:1)). Absorbance was measured at 430 nm, 12 s after the
arrest of the reaction. The concentrations used ranged from: 375 µM to 4 mM, for ornithine and
between 250 µM and 30 mM for carbamoyl-P. Pi contents were calculated based on a standard curve
using commercial sodium phosphate (Merck, Darmstadt, Germany).

The ASSY enzyme catalyzes the following reaction:

Citrulline + Aspartate + ATP→ Argininosuccinate + AMP + PPi

PpASSY activity was determined by measuring of the released PPi and its reaction with molybdate,
forming 18-molybdopyrophosphate. This compound turns blue when reduced in presence of ascorbic
acid and has a peak of absorbance at 790 nm, as described previously by Katano H. et al. [62].
The reaction mixture contained in a total volume of 100 µL 50 mM Tris-HCl (pH 8), 2 mM citrulline,
2 mM aspartate, 3 mM adenosin triphosphate (ATP), 10 mM MgCl2 and 2.4 µg of purified PpASSY.
Incubation was performed at 25 ◦C for a range of times from 1 to 8 min. Aliquots of 10 µL were
taken each minute and the enzyme reaction stopped by adding 10 µL of an EDTA-NaOH solution
containing 400 mM EDTA, 1.4 M NaOH. A volume of 200 µL of a molybdate solution containing 60%
(v/v) acetonitrile, 5% (v/v) 12 N HCl and 20 mM sodium molybdate was added, and the resulting
solutions were incubated at room temperature (RT) in darkness for 10 min. A volume of 80 µL of a
solution containing 60% (v/v) acetonitrile, 5% (v/v) 12 N HCl and 500 mM ascorbic acid (#A5960-100G,
Sigma-Aldrich) was added to a final volume of 300 µL, incubated at room temperature for 10 min and
absorbance read at 790 nm. The concentrations used ranged from 50 µM to 2 mM for both citrulline
and aspartate. PPi contents were calculated based on a standard curve using commercial sodium
pyrophosphate (Merck, Germany).
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The ASL catalyzes the reaction:

Argininosuccinate→ arginine + fumarate

PpASL activity was determined by measuring absorbance of fumarate at 240 nm. The reaction
mixture contained in a volume of 100 µL 50 mM Tris-HCl (pH 8), 2 mM argininosuccinate and 13.2 µg
of the purified PpASL. The reaction was incubated at 25 ◦C for 8 min, measuring the absorbance each
30 s. The concentrations used ranged from 25 µM to 2 mM of argininosuccinate. Fumarate contents
were calculated based on a standard curve using commercial fumaric acid (Merck, Germany).

For the three enzymes, apparent Km and Vmax values were determined using PRISM5 software
(nonlinear analysis: “allosteric sigmoidal” for ornithine and carbamoyl-P and “Michaelis-Menten” for
citrulline, aspartate and argininosuccinate) (GraphPad Software LLC).

4.4. Size-Exclusion Chromatography

Desalted aliquots of purified recombinant enzymes (PpOTC, PpASSY and PpASL) were loaded
separately onto a size-exclusion ENrich™ SEC 650 column (BioRad) in order to determine the size of
the multimer. The column was calibrated using commercial protein standards: thyroglobulin (669 kDa),
apoferritin (443 kDa), β-amylase (200 kDa), alcohol dehydrogenase (150 kDa) and carbonic anhydrase
(29 kDa) (Gel Filtration Markers Kit MWGF1000 from Sigma-Aldrich, MO, USA). The fractions were
collected, and the elution of the holoenzymes was determined by measuring absorbance at 280 nm and
further confirmed by western blot analysis [58].

Supplementary Materials: The following files are available online at http://www.mdpi.com/2223-7747/9/10/1271/
s1, Figure S1: Alignment of OTC, ASSY and ASL polypeptides from different species; Figure S2: Purification
progress of recombinant maritime pine enzymes; Figure S3, Kinetics plots for the substrates of PpOTC, PpASSy
and PpASL; Table S1: List of Primers used for cDNA cloning PpOTC, PpASSY and PpASL from Pinus pinaster
cDNA and Gateway® BP reaction.
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