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Recent evidence suggests that gut microbiota-derived metabolites affect many biological processes of the host, 
including appetite control and weight management. Dysbiosis of the gut microbiome in obesity influences the 
metabolism and excretion of gut microbiota byproducts and consequently affects the physiology of the host. 
Since identification of the gut microbiota-host co-metabolites is essential for clarifying the interactions between 
the intestinal flora and the host, we conducted this systematic review to summarize all human studies that 
characterized the gut microbiota-related metabolites in overweight and obese individuals. A comprehensive 
search of the PubMed, Web of Science, and Scopus databases yielded 2,137 articles documented up to July 2018. 
After screening abstracts and full texts, 12 articles that used different biosamples and methodologies of metabolic 
profiling and fecal microbiota analysis were included. Amino acids and byproducts of amino acids, lipids and 
lipid-like metabolites, bile acids derivatives, and other metabolites derived from degradation of carnitine, choline, 
polyphenols, and purines are among the gut microbiota-derived metabolites which showed alterations in obesity. 
These metabolites play an important role in metabolic complications of obesity, including insulin resistance, 
hyperglycemia, and dyslipidemia. The results of this study could be useful in development of therapeutic strategies 
with the aim of modulating gut microbiota and consequently the metabolic profile in obesity.
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INTRODUCTION

Obesity is a global epidemic disorder with a multifaceted 
etiology, including genetics and environmental factors [1]. The 
gut microbiota, the microbial community inhabiting the intestine, 
has been recently implicated as an important environmental 
factor in obesity and its related metabolic disorders [2–4]. The 
most abundant phyla of the human gut microbiota are Firmicutes 
and Bacteroidetes, the ratio of which is strongly associated 
with obesity [2]. It has been shown that the Bacteroidetes to 
Firmicutes ratio decreases in obesity but increases after weight 
loss following gastric bypass or calorie restriction [5]. However, 
some studies have reported inconsistent findings, and these 
differences should be investigated in lower taxonomic ranks [6, 
7]. The gut microbiota is considered to be an endocrine organ 
because of its comprehensive metabolic ability and its extensive 

genes that influence the host [8]. Recent studies indicate that the 
obesity-related intestinal microbiota leads to alterations in some 
circulating metabolites and are associated with fasting levels of 
some metabolites, such as amino acids, fatty acids, lipids, and 
glucose [9, 10]. The gut microbiota releases metabolites which 
can be passed through the intestinal barrier and eventually 
biotransformed by the host [11]. Metabolomics, the systematic 
study of low-molecular-weight molecules produced in 
biochemical pathways, is a strong method for recognition of the 
crosstalk between the gut microbiota and host metabolism [12]. 
Gut microbial species are the origin of key features of the serum 
metabolite profile associated with metabolic disorders, including 
obesity, insulin resistance, and cardiovascular diseases [9, 13]. 
The process used in metabolomics surveys is classified into 
five major phases: sample collection, sample preparation, data 
acquisition, data analysis, and biological interpretation of the 
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findings [14]. There are many targeted and untargeted metabolites 
profiling techniques capable of quantifying polar metabolites and 
molecular lipids present in biological samples, such as blood, 
urine and feces [15]. The most prevalent analytical techniques 
applied for the determination of the metabolic profile of a 
biological sample are liquid chromatography-mass spectrometry 
(LC-MS), gas chromatography-mass spectrometry (GC-MS), and 
nuclear magnetic resonance (NMR) [16].

Specific metabolites are strongly associated with gut microbial 
community structure, and some of these correlations are 
specific to the overweight or obesity state [17, 18]. Therefore, 
we performed this systematic review to summarize all human 
studies that characterized the gut microbiota-related metabolites 
in overweight and obese individuals or focused on correlations 
between metabolites and gut microbiota in obesity.

METHODS

Search strategy and study selection
PubMed, Web of Science, and Scopus databases were 

searched for all human studies focused on the gut bacteria-
related metabolites in obesity. The search was restricted 
to English language studies with no restriction regarding 
publication date up to July 2018. The search terms included the 
following: Metabolom*, metabonom*, metabolite*, “metabolic 
profiling”, “metabolic profile” AND “gut microbiota”, “intestinal 
microbiota”, “faecal microbiota”, “gut microbiome”, “intestinal 
microbiome”, “faecal microbiome”, “gut microbial profile”, 
“faecal microbial profile”, “gut flora” AND obesity, overweight, 
obese, adiposity.

Two researchers independently screened titles, abstracts, and 
then full-text articles to lessen selection bias. Disagreements 
between the two researchers were resolved by discussing until 
reaching consensus. Moreover, other relevant references in the 
selected articles were also reviewed. Targeted and untargeted 
metabolomics approaches were both included in the selection 
strategy. Low-molecular-weight (<1,000 Da) metabolites related 
to gut microbiota which were significantly up- or downregulated 
in overweight and obese individuals compared with lean, healthy 
control subjects were the primary outcomes of interest of this 
systematic review. Some literature, including in vitro studies, 
animal studies, reviews, and studies conducted on nonobese hosts, 
were excluded from the systematic review. The present study 
was conducted according to the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) guidelines.

Data extraction
Relevant data were extracted from the included studies by 

two researchers separately. Disagreements between the two 
investigators were resolved by discussion and consensus. The 
following information was extracted from the studies: authors; 
publication year; country of origin; study design; characteristics 
of the participants, including gender, age, ethnicity, and body 
mass index (BMI) range; fecal microbiota analysis method, 
platforms used for metabolites profiling; and the metabolites 
found to correlate with gut microbiota.

RESULTS

The search yielded 2,137 articles (PubMed, 738; Scopus, 692; 

Web of science, 697; hand searching, 10), of which 2,125 were 
excluded because they were duplicates, irrelevant or animal 
studies, or reviews or they were missing outcome data (Fig. 1). 
Ultimately, 12 human studies successfully met the search criteria 
and were included in this systematic review. All studies were 
published between 2010 and 2018 (Table 1).

Most of the included studies compared metabolites in 
overweight or obese individuals with normal weight controls in 
different populations, including Chinese [9], Finnish [19–22], 
Swiss [23], American [24], Italian [25], Canadian [26], Mexican 
[27], and Arabian [28] populations. The age range varied from 
school-age children [23, 27] to young and middle age adults [9, 
19–21, 24–26, 28, 29]. One study investigated obese women 
in early pregnancy [22]. The biological samples used in these 
studies consisted of serum and plasma samples (in 7 studies), 
fecal samples (in 3 studies), and urine samples (in 2 studies). 
The analytical platforms applied for targeted metabolic profiling 
consisted of ultra-high-performance liquid chromatography 
(UHPLC) coupled to triple quadrupole mass spectrometry 
(UPLC-QqQMS) [9, 19], gas-liquid chromatography [21, 
29], high-pressure liquid chromatography (HPLC) [21, 23], 
nuclear magnetic resonance (NMR) spectroscopy [20], liquid 
chromatography with on-line tandem mass spectrometry (LC-MS/
MS) [20], gas chromatography-mass spectrometry (GC-MS) [21, 
26, 27], and a pulsed electrochemical detector [21]. The platforms 
for untargeted metabolic detection included gas chromatography 
coupled to time-of-flight mass spectrometry (GC_GC-TOFMS) 
[19], ultra-performance liquid chromatography coupled to 
quadrupole-TOFMS (UPLC-QTOFMS) [19], HPLC-MS [9], 
high-throughput proton NMR metabolomics [22], LC-MS 
[24], high-resolution proton NMR (1H NMR) spectroscopy 
[25], and NMR-based metabolic profiling [28]. The most used 
method for fecal microbiota analysis was 16S ribosomal RNA 
amplicon sequencing [20, 22, 24, 27], and the other techniques 
included shotgun sequencing [9, 24], quantitative real-time PCR 
[21, 23, 29], denaturing gradient gel electrophoresis (DGGE) 
[19], phylogenetic microarray [29], temperature gradient gel 
electrophoresis (TGGE) [23], and multi-tag pyro-sequencing 
[26].

DISCUSSION

Metabolites related to gut microbiota in obesity
In this systematic review, we categorized several metabolites 

related to gut microbiota in obesity to simplify evaluation of 
potential mechanisms.

Amino acids and metabolites produced from bacterial 
degradation of amino acids

Gut microbiota manipulate several amino acids (AAs) from 
dietary or endogenous proteins. These amino acids have a role 
in the synthesis of metabolic end products produced by the gut 
microbiota. Therefore, alteration of the gut bacterial composition 
in obese subjects can play an important role in susceptibility to 
metabolic disorders by affecting amino acid bioavailability to the 
host.

Branched-chain and aromatic amino acids
Some kinds of amino acids, including branched-chain 

amino acids (BCAAs)—valine, leucine, and isoleucine—and 
aromatic amino acids (AAAs)—phenylalanine, tyrosine, and 
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tryptophan—have been reported as a risk factor for metabolic 
disorders, including obesity, insulin resistance, diabetes, and 
fatty liver [30–32]. With respect to obesity, Liu et al. [9] found 
that the serum levels of AAAs, glutamate, and BCAAs increased 
in obese subjects. They showed that the gut microbiota of obese 
individuals may have a higher capacity for production of these 
amino acids in comparison with lean controls [9].

The concentrations of aromatic amino acid-derived microbial 
metabolites, including benzoic acid (BA), phenylacetic 
acid (PAA), phenylpropionic acid (PPA), p-hydroxybenzoic 
acid (p-HBA), p-hydroxyphenylacetic acid (p-HPAA), 
3,4-dihydroxyphenylacetic acid (3,4-DHPAA), indoleacetic acid 
(IAA), indole propionic acid (IPA), and 5-hydroxyindoleacetic 
acid (5-HIAA), which are produced through deamination, 
transamination, decarboxylation, and dehydrogenation reactions, 
are altered in metabolic disorders [33]. In a recent animal study, 
Konopelski et al. [34] found that a tryptophan-rich diet reduced 

weight gain in rats compared with a control group via an increase 
in production of gut bacteria-derived indole propionic acid from 
tryptophan. This evidence suggested the potential role of gut 
microbiota-produced metabolites in weight management [34]. 
In response to feeding a high-fat diet to rat models, metabolism 
and elimination of p-HPAA, a metabolite produced from tyrosine 
by gut microbiota, altered in such a way that the p-HPAA 
concentration decreased in urine while it increased in serum and 
feces. p-HPAA can be further metabolized to p-cresol through 
decarboxylation by Clostridium difficile. These alterations 
suggest the underlying mechanisms of accumulation of p-cresol 
and overgrowth of C. difficile in obesity [35]. Furthermore, an 
animal experiment reported that 3,4-DHPAA, which could protect 
against pancreatic β-cell dysfunction, increased in obese rats as 
a potential protection in response to obesity [36]. Moreover, the 
urinary concentration of the indolic compound 5-HIAA, a clinical 
indicator of gastrointestinal carcinoid tumors, was elevated in 
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Fig. 1. Flow diagram of the systematic literature search.
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obesity by the monoamine oxidase activity of Escherichia coli 
[37].

Org et al. [20] and Piening et al. [24] also showed higher serum 
and plasma levels of BCAAs and phenylalanine in obese subjects 
and individuals with high insulin resistance values. Bondia-
Pons et al. [19] revealed that plasma BCAAs were increased in 
heavier twins compared with leaner co-twins in the fasting state. 
These amino acids were negatively correlated with Bacteroides 
species, including B. thetaiotaomicron, B. intestinalis, B. ovatus, 
and B. uniformis [9], and Christensenellaceae [20]. It has been 
demonstrated that B. thetaiotaomicron and B. ovatus can ferment 
AAAs to produce phenylacetic acid [38]. Piening et al. [24] 
showed a correlation between BCAAs and B. vulgatus, which 
has been shown to be a mediator between BCAA metabolism and 
insulin resistance [13]. Altogether, the changes in gut microbiota, 
especially the depletion of species from the Bacteroides genus 
in obese individuals, may be related to the higher concentration 
of AAAs and BCAAs in circulation [19]. These amino acids 
are known risk factors for insulin resistance, hyperglycemia, 
hyperlipidemia, elevated circulating inflammatory factors, 
diabetes, and cardiovascular diseases [9, 39, 40]. They may also 
directly promote insulin resistance, possibly by disconnecting 
insulin signaling in skeletal muscle [41]. Recent studies have 
indicated that ribosomal protein S6 kinase 1 (S6K1) is sensitive 
to both insulin and some nutrients, including amino acids, and 
that amino acids also negatively affect insulin signaling through 
phosphorylation of insulin receptor substrate 1 (IRS1) [42].

In a study on overweight and obese women in early pregnancy, 
Houttu et al. [22] showed that the serum concentrations of BCAAs 
and phenylalanine were significantly higher in the obese pregnant 
women compared with the overweight ones. They also observed 
a higher abundance of Prevotella copri and a lower abundance of 
Prevotella uniformis in obese compared with overweight pregnant 
women [22]. However, the findings of this study could have been 
influenced by the fact that the gut microbiota composition may 
change during pregnancy [43]. Prevotella copri, which belongs 
to the phylum Bacteroidetes, is associated with biosynthesis 
of BCAAs and subsequent development of insulin resistance 
[13]. Ottosson et al. [44] showed that higher abundances of 
all BCAAs and byproducts of BCAA metabolites in plasma, 
such as branched-chain keto acids (3-methyl-2-oxovalerate, 
a-ketoisovalerate, and a-ketoisocaproate) and short-chain 
acylcarnitines (propionylcarnitine and isovalerylcarnitine), were 
correlated with higher BMI. They revealed correlations between 
four gut microbiota genera (Blautia, Dorea, Ruminococcus, and 
SHA-98) and BCAAs and glutamate, which are BMI-predictive 
metabolites. Therefore, these metabolites could be underlying 
mechanisms connecting gut microbiota and obesity. Three of 
these genera, Blautia, Dorea, and Ruminococcus, are members of 
the Lachnospiraceae family, one of the most abundant families in 
the gut microbiota. Two bacterial genera, SHA-98 and a genus in 
the Rikenellaceae family, were correlated with a lower BMI [44]. 
Dorea and Ruminococcus have been found to be connected to 
metabolic syndrome and weight gain [45, 46].

Glutamate
The other important gut microbiota-derived AA in obesity is 

glutamate. Glutamate is a secondary product of the first step of 
BCAA catabolism. It is significantly related to obesity and gut 
bacterial genera, including Blautia, Dorea, Ruminococcus, and 
SHA-98 [44]. Glutamate has been shown to exhibit the most 

remarkable increase in obese individuals compared with lean 
controls [9, 20]. The serum concentration of glutamate exhibited 
positive correlations with obesity features, such as BMI, waist to 
hip ratio (WHR), waist circumstance (WC), insulin resistance, 
and triacylglycerol [9]. Positive correlations were observed 
between glutamate and Ruminococcus spp., Dorea longicatena, 
Coprococcus comes [9], and Clostridiales [20]. A recent survey 
revealed that B. thetaiotaomicron colonization increases the 
levels of mRNAs encoding glutamate transporter and glutamate 
decarboxylase in epithelial cells, which may influence host 
glutamate levels [47]. Dorea longicatena expression is associated 
with obesity and increased levels of glutamate [44]. The level of 
B. thetaiotaomicron, a glutamate-fermenting species, decreases in 
the gut microbiota of obese subjects. Moreover, serum glutamate 
was shown to be inversely correlated with the abundance of B. 
thetaiotaomicron, which possesses genes encoding glutamate 
decarboxylase. Therefore, the depletion of B. thetaiotaomicron 
may contribute to the higher circulating concentration of 
glutamate in obesity [9].

It has been documented that glutamate, which is used 
as a common food additive, is able to induce obesity when 
administered to rodents [48]. Excessive glutamate consumption 
has been shown to be positively correlated with overweight in 
Chinese adults [49]. On the other hand, some studies indicated a 
protective effect of glutamine versus glutamate and demonstrated 
that glutamine supplementation altered the gut microbiota 
composition and improved glucose tolerance and obesity [32, 
50]. Glutamine is essential for maintaining the overall nitrogen 
balance by providing mediators to the tricarboxylic acid cycle and 
for its ammonia carrying potential [51]. The utility of glutamine 
in metabolic impairments could be due to mechanisms such as 
higher release of glucagon-like peptide 1 (GLP-1), externalization 
of glucose transporter type 4 (GLUT-4), transcription of insulin-
dependent enzymes, pancreatic beta-cell insulin secretion, and 
insulin sensitivity of adipose tissue [52]. Glutamate exhibited 
positive correlations with 16 obesity-enriched metagenomic 
linkage groups (MLGs) and negative correlations with 18 control-
enriched MLGs that harbored genes encoding enzymes involved 
in glutamate metabolism [9, 53]. In particular, obesity-enriched 
Ruminococcus spp., Dorea longicatena, and Coprococcus 
comes, which possessed genes encoding enzymes required to 
produce glutamate from glutamine, were positively correlated 
with circulating glutamate levels and negatively correlated with 
glutamine levels [9]. These observations suggest that the levels of 
glutamate and glutamine in circulation may reflect the changes in 
the abundance of these bacterial species.

Altogether, these data suggest that amino acid metabolism 
by gut microbial species may modulate the levels of circulating 
amino acids that are correlated with obesity and its metabolic 
complications.

Other amino acids and related metabolites
Negative correlation has been observed between some 

amino acids, including arginine, methionine, and ornithine, 
and unclassified Christensenellaceae, a gut microbial species 
associated with lower risk of obesity [27]. Other studies have 
reported higher levels of Christensenellaceae in subjects 
with normal weights [54, 55]. It has also been shown that 
germ-free mice transplanted with fecal samples incubated 
with Christensenella minuta, a cultured member of the 
Christensenellaceae family, gained significantly less weight than 
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mice treated with unamended stool [55]. However, the underlying 
mechanism of the effect of Christensenellaceae on BMI of the 
host is unclear.

Besides the mentioned AAs, two AA-related metabolites, 
3-indolepropionic acid and N6-trimethyllysine, were also 
evaluated in a study by Piening et al. [24]. They revealed that in 
insulin-resistant subjects, the plasma level of 3-indolepropionic 
acid was positively associated with the abundance of 
Proteobacteria, a phylum that has been shown to increase in 
obese subjects [56]. N6-trimethyllysine was also positively 
associated with the Proteobacteria exclusively in insulin-
sensitive individuals [24]. 3-Indolepropionic acid is a microbial 
fermentation product from tryptophan which could be a potential 
drug target for the management of insulin resistance [57]. This 
metabolite has been shown to be associated with insulin resistance 
[13]. N6-trimethyllysine, a methylated derivative of lysine, is a 
precursor for L-carnitine biosynthesis, which improves glucose 
tolerance and increases total energy expenditure in obesity [58]. 
These findings show that there are microbial differences between 
insulin-resistant and insulin-sensitive subjects and that they are 
related to differences in the metabolism of the host.

The other AA-derived metabolite is indoxyl sulfate, a 
metabolite of dietary L-tryptophan, which is catalyzed by 
tryptophanase produced by gut microbiota [59]. Ahmad et al. [28] 
reported decreased excretion of indoxyl sulfate in obese subjects. 
An inverse relationship of indoxyl sulfate with BMI has also been 
shown in other animal and human studies [60, 61]. Furthermore, 
it has been shown that Bifidobacterium can metabolize indole 
to form indoxyl sulfate [62]. So, the lower abundance of 
Bifidobacterium in obese subjects can explain the low levels of 
indoxyl sulfate in overweight/obese individuals.

Lipids and lipid-like molecules
Alterations in gut microbiota have been shown to be associated 

with lipid and lipid-like metabolites which may affect lipid 
metabolism and obesity by increasing substrates for energy 
metabolism in the liver and peripheral tissues [63]. Increased 
levels of lipids and free fatty acids are known risk factors for 
metabolic syndrome, insulin resistance, and obesity, but different 
types of lipids have been shown to exert contradictory metabolic 
effects [64, 65].

Short-chain fatty acids
The important gut microbiota-derived lipids which might 

affect energy balance and weight changes in humans are short-
chain fatty acids (SCFAs) [2]. SCFAs (acetate, propionate, and 
butyrate) resulting from the colonic fermentation of digestion-
resistant starch may provide an estimated additional 10% daily 
dietary energy to the host and can be used for de novo hepatic 
triglyceride and glucose synthesis [66]. Moreover, SCFAs could 
have a role in releasing satiety hormones [67]. They have been 
suggested to be signaling molecules for production of peptide YY 
(PYY) by enteroendocrine cells and thus decrease gut motility and 
further increase SCFA absorption and energy extraction from the 
gut lumen [68]. SCFAs, especially butyrate, significantly increase 
plasma levels of gastric inhibitory peptide (GIP), glucagon-like 
peptide 1 (GLP-1), PYY, insulin, and amylin, which would have 
a net effect on slowing digestion and nutrient intestinal transit, 
promoting satiety, and increasing plasma insulin. Acetate is 
reported to increase leptin released by fat cells; propionate 
increases G-protein-mediated secretion of PYY and GLP-1 in the 

gut and controls the rates of lipolysis and lipogenesis in fat cells 
[69]. However, there are inconsistent findings regarding the role 
of these compounds in obesity and its complications. Metabolic 
analyses of the feces of obese and normal-weight adults have 
identified increased levels of SCFAs in obese individuals [7]. 
Payne et al. [23] showed that fecal SCFAs, including isobutyrate, 
formate, butyrate, and propionate, increased in obese children but 
that lactate and valerate were elevated in normal-weight subjects. 
They found a correlation between lactate and butyrate with lactate-
utilizing and butyrate-producing species, including clostridial 
cluster XIVa species Eubacterium hallii and Anaerostipes caccae, 
in obese children. They also showed correlations between fecal 
propionate and the Gram-negative Bacteroides–Prevotella group 
and Gram-positive species of clostridial cluster IX [23]. These 
species may contribute to glucose and lipid metabolism through 
the produced metabolites, including propionate and acetate, that 
participate in gluconeogenesis and synthesis of cholesterol and de 
novo synthesis of lipids, respectively [70]. Prevotella uniformis 
has been found to decrease metabolic and immune dysfunction 
by affecting macrophage and dendritic cell function and intestinal 
dysbiosis in obese mice consuming a high-fat diet [71].

The major microbiota phyla affecting SCFA production in the 
gut are Firmicutes and Bacteroidetes [72]. Blautia is a common 
gut habitant belonging to the family Lachnospiraceae, which is 
one of the major taxonomic groups of the human gut microbiota 
that degrade complex polysaccharides to SCFAs. It has the 
ability to ferment a large variety of organic substrates, enabling 
flexible growth in the colon. Different bacterial species in the 
Blautia genus have been associated with obesity [73]. There is 
an association between Blautia and human genetic variants in a 
genomic region that has been associated with obesity and BMI 
[74]. Furthermore, SCFAs have been reported to be positively 
associated with Prevotella, Alistipes, and Barnesiella and 
negatively correlated with Bacteroides and Enterococcus. It is 
notable that Prevotellaceae has been shown to increase in obese 
individuals [75].

Triglycerides, cholesterol, and saturated and unsaturated fatty 
acids
Some microbial species have been found to alter the blood 

triglycerides and cholesterol fatty acids and thus can also influence 
host energy and lipid metabolism by regulating serum lipid levels. 
Org et al. [20] showed that Blautia was positively correlated 
with serum saturated fatty acids (SFAs) and monounsaturated 
fatty acids (MUFAs) but negatively correlated with acetate and 
polyunsaturated fatty acids (PUFAs), including omega-3, 22:6 
docosahexaenoic acid, omega-6, and 18:22 linoleic acids. They 
also showed an increased abundance of Blautia in individuals 
with high BMI levels. The serum triglyceride (TG) level was 
associated with higher abundances of genus Methanobrevibacter 
from Archaea and Tenericutes, a phylum of bacteria. However, 
Peptococcaceae and Christensenellaceae were associated with 
lower TG levels [20].

Tiihonen et al. [21] showed increased fecal concentrations 
of BCFAs, including 2-methylbutyric acid and isovaleric acid, 
in obese subjects. BCFAs synthesized from proteins and amino 
acids are precursors of long-chain fatty acids and aldehydes. 
It should be noted that some gut bacteria, such as Bacteroides 
succinogenes, need both branched-chain volatile fatty acids (e.g., 
isobutyric acid) and straight-chain fatty acids (e.g., valeric acid) 
for growth. BCFAs can also be used as nitrogen donors for other 
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important amino acids, such as glutamine and alanine, which both 
serve as an energy source for the gastrointestinal tract [76, 77].

Houttu et al. [22] showed that serum lipids in certain high-
density lipoprotein cholesterol (HDL-C) subclasses, omega-6 
fatty acid, 18:2 linoleic acid, the ratio of PUFAs to total fatty 
acids, and the estimated degree of unsaturation of fatty acids 
were decreased but that several very-low-density lipoprotein 
cholesterol (VLDL-C) subclasses were increased in obese 
pregnant women.

Bondia-Pons et al. [19] found a negative correlation between 
Bifidobacterial diversity and plasma long-chain TGs and positive 
correlations between Ruminococcaceae diversity and clusters of 
PUFA-containing TGs, sphingomyelins, and other phospholipids. 
The postprandial changes of medium-chain fatty acids and 
monounsaturated fatty acids containing TGs were both negatively 
associated with liver fat and intra-abdominal fat. Postprandial 
changes of TGs with odd-chain fatty acids in plasma were 
negatively associated with the diversity of Lachnospiraceae, thus 
suggesting that this group may be involved in the metabolism of 
dietary lipids. Furthermore, the diversity of Bacteroides spp. was 
associated negatively with postprandial changes of unsaturated 
medium-chain TGs in plasma [19].

Conjugated linolenic acid (CLnA) and conjugated linoleic 
acid (CLA) are two important PUFA-derived metabolites with 
proven beneficial effects on weight loss. Druart et al. [29] showed 
positive correlations between the serum concentrations of both 
CLnA and CLA and Bifidobacterium, Eubacterium ventriosum, 
and Lactobacillus abundances. They also found negative 
correlations between these metabolites and the blood cholesterol 
profile, suggesting a potential beneficial effect of some PUFA-
derived bacterial metabolites [29]. The effects of CLA on body 
composition appear to be due in part to reduced fat deposition and 
increased lipolysis in adipocytes, possibly coupled with enhanced 
fatty acid oxidation in both muscle cells and adipocytes; however, 
CLnA modulates the body fat and TG metabolism differently 
from CLA by an unclear mechanism [78, 79]. These associations 
thus suggest a potential role of these bacterial species in the 
production of CLA and CLnA in vivo in humans. In fact, it has 
been demonstrated in vitro that Bifidobacterium can produce 
both CLA and CLnA but that Eubacterium ventriosum and 
Lactobacillus only produce CLA [80, 81].

Bile acid derivatives
Primary bile acids, including cholic and chenodeoxycholic 

acids, are formed from cholesterol in the liver, conjugated to either 
taurine or glycine, and then excreted into the gastrointestinal 
tract. They are deconjugated by several gram-positive bacterial 
species, such as lactobacilli, and after additional microbial 
modifications create over 50 different secondary bile acids in 
human feces [82]. Bile acids, which are hydroxylated steroids, 
contribute to the digestion of dietary lipids in the gut and have a 
signaling function [83]. Increased primary bile acid biosynthesis 
has been shown to be associated with obesity; however, higher 
levels of secondary bile acids are observed in normal-weight 
individuals [84]. Secondary bile acids affect energy expenditure 
and glucose homeostasis via their impacts on gluconeogenesis, 
insulin secretion, and insulin sensitivity [85]. The concentration 
and composition of bile acids in the gastrointestinal tract can 
influence carbohydrate and lipid metabolism, so they can alter 
the rate of weight loss [86]. Aleman et al. [87] showed significant 

positive associations between secondary bile acid metabolism and 
Christensenellaceae. They also reported a negative correlation 
between Christensenellaceae and weight loss [87].

It has been shown that bile acids are the key metabolic mediators 
between the gut microbiota and the host metabolism [88]. The 
gut microbiota has a profound effect on bile acid metabolism by 
promoting deconjugation, dehydrogenation, and dehydroxylation 
of primary bile acids in the distal small intestine and colon [41]. 
Bondia-Pons et al. [19] showed positive correlations between 
Bacteroides diversity and plasma clusters of the bile acid 
lithocholic acid (LCA) and phosphatidylethanolamines. Bile 
acids are predominantly conjugated to glycine in humans and 
to taurine in mice. They are critical regulators of hepatic lipid 
and glucose metabolism and influence signaling pathways via 
two receptors with pleiotropic functions, the nuclear farnesoid 
X receptor (FXR) and the G protein-coupled bile acid receptor 
TGR5 [41]. The gut microbiota modulates bile acid synthesis by 
changing the bile acid pool composition and by alleviating FXR 
inhibition in the small intestine.

Metabolites derived from bacterial degradation of carnitine 
and choline

Trimethylamine N-oxide (TMAO) is generated through a 
two-step pathway that begins with the conversion of dietary 
nutrients such as phosphatidylcholine, choline, and carnitine 
into trimethylamine (TMA) by the gut microbiota. TMA then 
circulates to the liver, where it is oxidized into TMAO. It has been 
shown that the urinary excretion of metabolites associated with 
bacterial degradation of choline, such as TMA and dimethylamine 
(DMA), increased in an obese group [28]. Org et al. [20] showed 
that serum TMAO was positively correlated with Peptococcaceae 
and Prevotella but negatively correlated with Faecalibacterium 
prausnitzii. Lower levels of F. prausnitzii have been related to 
increased levels of inflammatory markers, obesity, diabetes, and 
immune-related diseases [89]. Since higher levels of TMAO are 
associated with heart failure and chronic kidney disease, recently, 
research has been focused on the discovery of inhibitors that 
block TMAO production as a therapeutic strategy to decrease the 
risk of cardiovascular or kidney disease [90]. It has been found 
that iodomethylcholine (IMC) and fluoromethylcholine (FMC), 
choline analogs which irreversibly inhibit microbial choline 
TMA lyase activity, led to reductions in plasma TMAO level 
and atherosclerotic lesion development in mice [91]. Regarding 
the possible role of TMAO in obesity, the full extent of the 
therapeutic potential of TMAO inhibition in obesity still needs 
to be investigated.

Other microbiota-derived metabolites
Glycoprotein acetyl
Glycoprotein acetyl, mainly α1-acid glycoprotein (GlycA), is 

a novel marker of low-grade inflammation that has been shown 
to increase in obese subjects [28] and obese pregnant women 
[22]. GlycA includes a complex heterogeneous nuclear magnetic 
resonance signal containing N-acetyl sugar groups originating 
from multiple acute phase circulating glycoproteins [92]. It has 
been shown that GlycA is associated with obesity and insulin 
resistance [93, 94]. Moreover, GlycA was correlated with higher 
concentrations of triglycerides, LDL-C, and BCAA in obese 
individuals [95, 96]. It was also demonstrated that specific gut 
bacterial groups were negatively associated with GlycA, which 
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was further related to intake of fiber. Fiber intake was linked 
negatively with bacteria of the Firmicutes and Bacteroidetes 
phyla and linked positively with a genus of the Bacteroidetes 
phylum [97].

Hippuric acid
One of the urinary gut bacterial metabolites assessed in 

two included articles was hippuric acid. Ahmad et al. [28] and 
Calvani et al. [25] showed an inverse relationship of hippuric 
acid with obesity. Hippurate is a gut microbial-mammalian co-
metabolite of benzoic acid that can be made by gut Clostridium 
spp. from low-molecular-weight aromatic compounds and 
polyphenols, conjugated with glycine in the mitochondria, and 
then excreted in the urine [98]. Other human and animal models 
of obesity have consistently shown the association of urinary 
hippurate with leaner phenotypes and an altered gut bacterial 
composition [99–101]. Pallister et al. [102] showed that the 
plasma hippurate concentration was positively associated with 
the Ruminococcaceae and Rikenellaceae families and negatively 
associated with the Lachnospiraceae family. Hippurate was 
significantly associated with gut bacterial diversity, independently 
of dietary intake in a sample of 1,032 individuals, accounting 
for 6.5% of the variance in Shannon diversity index. Higher gut 
bacterial diversity and hippurate level were associated with a 
reduced risk of having metabolic syndrome [102].

Trigonelline
Trigonelline, an alkaloid formed by the methylation of niacin, 

is excreted in urine. Although trigonelline may have dietary 
sources, it is mainly biosynthesized by the gut microbiota during 
the methionine cycle. Decreased urinary level of trigonelline 
has been shown to be correlated with an alteration in energy 
and tryptophan metabolism. Calvani et al. [25] reported an 
inverse relationship between urinary trigonelline and obesity, 
suggesting that oxidative stress possibly has a role in the observed 
relationship. Trigonelline, a byproduct of the conversion of 
S-adenosylmethionine to S-adenosylhomocysteine consumed in 
the regenerating pathway of glutathione stores, is depleted by 
oxidative stress in obesity [103]. The variations in trigonelline 
excretion in obesity demonstrate the relationships between gut 
bacterial composition and function and the obese phenotype.

Xanthine
Xanthine is a purine base found in most human body tissues and 

fluids which is produced in the pathway of purine degradation and 
ultimately converted to uric acid by the xanthine oxidase enzyme 
[104]. It is a gut microbiota-derived metabolite that has been 
shown to decrease in obese individuals. Moreover, a decreased 
urinary level of xanthine was associated with an increased serum 
level of uric acid in obese subjects [25].

CONCLUSION

In this systematic review, we provided an overview of the role of 
gut microbiota-derived metabolites in obesity. These metabolites 
can affect multiple metabolic pathways in the host which lead 
to obesity. Some of these metabolites consistently decrease in 
obesity and its related metabolic complications, while others 
seem to increase as a result of host-microbiome interactions. 
Metabolomics studies have allowed identification of microbial 
markers associated with obesity across different populations 
and subsequently development of therapeutic strategies. 
Interventional studies with the aim of modulating gut microbiota 

and consequently the metabolic profile in obesity could also 
contribute to obesity management. There are various strategies 
for gut microbiota modulation, including the use of functional 
foods, probiotics, prebiotics, fecal microbiota transplantation, 
and bariatric surgery. However, a limited number of studies have 
assessed the alteration of gut microbiota, their metabolites, and 
the consequential functional effects after interventions in obesity. 
Currently, there is no consensus on which type of gut microbiota-
modulating interventions will induce a better metabolic profile 
in obesity. Further studies are needed in this field to develop 
strategies for modifying the specific gut microbiota-derived 
metabolites. Moreover, considering the strain-dependent 
functions of some taxa, more studies are needed to investigate 
the relationship between gut microbiota and metabolites at the 
strain level.
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