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Abstract

More than 1,100 genetic loci have been correlated with drug response outcomes but
disproportionately few have been translated into clinical practice. One explanation for the low rate
of clinical implementation is that the majority of associated variants may be in linkage
disequilibrium (LD) with the causal variants, which are often elusive. This study aims to identify
and characterize likely causal variants within well-established pharmacogenomic genes using
next-generation sequencing data from the 1000 Genomes Project. We identified 69,319 genetic
variations within 160 pharmacogenomic genes, of which 8,207 variants are in strong LD (r2 > 0.8)
with known pharmacogenomic variants. Of the latter, 8 are coding or structural variants predicted
to have high-impact, with 19 additional missense variants that are predicted to have moderate-
impact. In conclusion, we identified putatively functional variants within known
pharmacogenomics loci that could account for the association signals and represent the missing
causative variants underlying drug response phenotypes.
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Introduction

The current paradigm of drug therapy follows a “trial-and-error” approach where patients
are prescribed a drug at a standardized dose with the expectation that alternative therapies or
doses will be given during a return clinical visit(s).X Not surprisingly, this is inefficient and
potentially hazardous for patients who require urgent care or are susceptible to adverse
events, which may result in prolonged suffering and fatalities.2 A better understanding of the
modulators of drug response will improve and hopefully replace our current trial-and-error

approach of drug therapy with more precise methods that are based on scientific knowledge.
3

To date, more than 1,100 genetic loci have been correlated with drug response phenotypes
(The Pharmacogenomics Knowledgebase (PharmGKB): www.pharmgkb.org) but only a
small fraction of these genomic findings have been implemented into clinical practice. In
2009, PharmGKB partnered with the Pharmacognomics Research Network (PGRN) to
establish the Clinical Pharmacogenetics Implementation Consortium (CPIC)).426 The goal
of CPIC is to provide specific guidelines that instruct clinicians on how to use or interpret a
patient’s genetic test results to determine the optimal drug and dosage to each patient. As of
June 2017, there are 36 drug-gene pairs with CPIC guidelines published, although there are
127 well-established pharmacogenomic genes identified as CPIC genes and 64 additional
genes labeled as Very Important Pharmacogenes (VIP) by the PharmGKB curators, which
totals to 160 unique genes.

An example of a CPIC guideline is one that instructs physicians on how to interpret genomic
information from clinical assays to determine a therapeutic dosage for warfarin, a commonly
used drug for the prevention of thrombosis.” Warfarin is known to have a narrow therapeutic
index and wide effect variances among patients. For example, a conventional dose of
warfarin may not be an effective anticoagulant in some patients or induce adverse events
(e.g. excessive bleeding) in others.® Thus, it is often difficult to achieve and maintain a
targeted effect by administering conventional doses. Recent advancement in
pharmacogenomics helped to facilitate genetic tests of two genes that can be used to predict
a patients’ sensitivity to the drug prior to administration. Specifically, the therapeutic dosage
of warfarin may be calculated based on one’s genotypes at these loci, which has resulted in a
significant improvement in drug safety.8:9

Despite the successful translation of a small fraction of pharmacogenomics findings into
clinical practice, the rate of clinical implementation has been slow.6 One explanation is that
the majority of pharmacogenomics loci are correlated with drug response but do not
represent the actual, causal variants themselves.1911.12 We hypothesize that the majority of
known pharmacogenomics loci are genetic markers that tag causal variants, which have yet
to be identified and are likely to be in linkage disequilibrium (LD) with the associated
markers. The use of associated variants instead of the causal variants in clinical tests is
limiting in that it may not reliably predict drug response.13

The primary objective of this study is to identify potentially causal variants in well-
established pharmacogenomics-associated genes, which may account for the reported
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association signals. Specifically, we used whole genome sequencing data from the 1000
Genomes Project1415 to derive all genetic variations identified within the 160 unique CPIC
and VIP pharmacogenomics genes. Next, we tested the LD with known pharmacogenomic
variants, and determined the predicted function of these LD variants using annotation
databases and clinical outcome databases. Our results include a catalog of potentially
functional variants that are in LD with well-established pharmacogenomics variants and
could represent the causative mutations within these loci.

Selection of pharmacogenomics loci and annotation of variants

We selected 127 CPIC genes and 64 VIP genes (total of 160 unique loci) from PharmGKB,
which we deemed as “well-established” pharmacogenomics loci (Supplemental data 1).
Next, we identified 887,980 variants within these loci using next generation sequencing data
from the 1000 Genomes Project Phase I, of which 69,319 were variants with minor allele
frequencies > 1% (Supplemental data 2). Annotation analysis using SnpEff1® (genetic
variant annotation and effect prediction toolbox) revealed that 65,333 (94%) of these
variants were single nucleotide polymorphisms (SNPs), 1,404 (2%) were insertions, and
2,582 (4%) were deletions. As shown in Figure 1, the majority of these occur within
intronic regions (~75%), with the remainder located 3’ or downstream (~11%), 5’ or
upstream (~9%), and exonic (~2%). Of the coding variants, approximately half of these
variants are missense (~49%), or synonymous mutations (~50%) with some occurrences of
nonsense (~1%) mutations. We compared our findings with annotation results of whole
genome sequencing data of 1000 Genome Project phase | dataset (http://
snpeff.sourceforge.net/1kg.html) and confirmed that the results of variant annotation within
160 PGx genes are within an expected range (Supplemental figure 1).

Linkage disequilibrium analysis

We assessed the LD between associated variants within known pharmacogenomics loci and
variants identified in our study. Analysis of LD was done in each of the four populations
(American, European, East Asian, African) from Phase | of 1000 Genomes Project. This
resulted in 8,207 novel variants forming 21,256 instances of LD (r2 > 0.8) with 859 known
pharmacogenomics variants (Supplemental data 3).

High-impact variations

We identified 8 variants predicted to have a high-impact using SNPEff from the 1000 GP
database that were in LD (r2 > 0.8) with 22 known pharmacogenomics variants. These
included potentially functional variants that code for an alternative splice donor site,
structural interaction, frameshift mutation, stop gain, or stop lost variation. Table 1 lists these
new LD variants along with the corresponding pharmacogenomics variants, the majority of
which are predicted to be non-coding located within introns, up/downstream, and
synonymous, with only few instances of missense and frameshift variants).
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Moderate-impact variations

We identified 19 missense variants that are in LD with 32 pharmacogenomics variants,
which are predicted to have a moderate, low, or modifying effects by SNPEff (Table 2).
Among the newly identified variants, two are regulatory variants that could potentially affect
protein binding, and one has been associated with neural tube defects and spina bifida
cystica.

Low-impact variations

From the total of 8,207 variants in LD, 7,751 variants are classified by SNPEff as variants
with unpredictable impact or “modifier” variants. These are in LD with 920 known
pharmacogenomics variants with similar impact features. Of these, 324 modifier variants
were potential regulatory variants affecting gene expression, protein binding, or transcription
factor binding.

In this study, we will focus on modifier variants that are classified under category 1 of
RegulomeDB database, which are known eQTLs or variants correlated with variable gene
expression. Among 324 modifier variants with RegulomeDB scores, 84 variants were
classified as category 1, forming 213 instances of LD with 73 pharmacogenomics variants
which are predicted to have low or modifying effects (Supplemental data 4).

Variants associated with clinical outcomes

Using SNPedia database, we discovered 46 variants in LD that are correlated with clinical
phenotypes as documented in Supplemental data 5.

Discussion

This manuscript reports the identification of potentially functional genetic variants within
genes previously correlated with drug response outcomes. We show that some of the novel
variants identified from next-generation sequencing (NGS) of whole genomes (Phase | of
the 1000 Genomes Project) are in LD with well-known pharmacogenomics variants and
could account for the functional basis underlying the association signals. Many of these LD
variants code for non-synonymous amino acid substitutions, frame-shift mutations,
introduce a splice variant that results in alternative splicing of the transcript, or located in
non-coding regions but are correlated with gene expression levels (expression quantitative
trait loci or eQTL) or other clinical phenotypes.

In this study, we used LD analysis to determine the correlation between novel genetic
variants identified from the 1000 Genomes Project database and known pharmacogenomics
variants. We reasoned that any variant(s) in strong LD (r2 > 0.8) with the known
pharmacogenomics loci could account for the association signal and have potential to be the
actual causal variants at these genomic loci. In order to prioritize the identified variants, we
used a popular annotation toolbox (SNPEff) to predict the function of each variant. In
addition, we used additional information such as RegulomeDB and SNPedia to prioritize the
variant(s) of higher impact from those with low impact.

Pharmacogenomics J. Author manuscript; available in PMC 2019 March 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Choi et al.

Page 5

Many of the variants we identified are “novel” in that these have not been reported in earlier
pharmacogenomics studies. For example, we identified a splice donor variant (rs28364311)
located on a VIP gene ADHIA. This variant is in LD with a pharmacogenomics associated
variant, rs6811453, which is associated with increased resistance to cytarabine, fludarabine,
gemtuzumab ozogamicin and idarubicin in patients with acute myeloid leukemia.l” The
associated pharmacogenomics variant is non-coding and have no known biological function
as it is located downstream (3’) of the gene. Considering the potential impact of rs28364311
on splicing and its strong LD with the associated pharmacogenomics variant, it is plausible
that the splice variant identified is the functional variant that accounts for the original
association signals at this locus.

Moreover, we identified that a stop gain variant rs4330 from the VIP gene ACE, encoding
the angiotensin-converting enzyme, is in LD with 6 known pharmacogenomics variants
(rs4341, rs4344, rs4331, rs4359, rs4363, and rs4343). Whereas the latter are intronic or code
for synonymous changes, which are less likely to have detrimental effects on the gene
product, the identified rs4330 codes for a truncated protein that is likely to have detrimental
effects.

Another example is a modifier variant (rs2854509), which we report to be in LD with a
pharmacogenomics variant (rs3213239) that is associated with decreased overall survival
and progression-free survival when treated with Platinum compounds in patients with non-
small-cell lung carcinoma. Our identified variant rs2854509 is located at downstream,
whereas pharmacogenomics variant rs3213239 is located upstream of gene encoding X-Ray
Repair Cross Complementing 1 protein (XRCCZI). Our analysis revealed that variant
rs2854509 is a cis-eQTL variant acting on CPIC gene XRCC1, which is associated with
variable efficacy in in platinum-based chemotherapy agents. Additional findings from
RegulomeDB showed a direct evidence of binding-site alteration through ChIP-seq and
DNase with a matched position weight matrix to the ChIP-seq factor and a DNase footprint.
These findings suggest the possibility that rs2854509 has regulatory effects on the gene
XRCC1, which could modulate response to platinum based chemotherapy treatments.

Our proof of principle study demonstrates that many of the well-known pharmacogenomics
loci from PharmGKB are genetic markers that may tag causal variants. Often the latter
remain elusive and are likely to be in linkage disequilibrium (LD) with the associated
markers. Using NGS data, we identified a number of sequence variants in LD with these
pharmacogenomics loci with supporting functional evidence from current annotation
softwares. These findings, pending experimental evidence, will ultimately facilitate the
translation of improved clinical assays to predict response for a particular drug or dosage
prior to administration. The implementation of these clinical tests promises to improve
efficacy of drug therapy while reducing the incidence of adverse events.18

One limitation of the approach taken is the exclusion of rare variants (minor allele frequency
< 0.01). While rare variants are more likely to be functional and clinically relevant, our
decision to exclude them from this study was based on the limited sample size (approx. 200—
400 in each of the four main populations: American, European, East Asian, African) of
1KGP Phase 1. Specifically, we would not be able to determine LD among rare variants
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(MAF < 0.01) in such small populations. Another limitation is that this study was based on
bioinformatics methods and we did not experimentally validate the potentially functional
variants identified, nor confirm their correlation with drug response outcomes. Instead our
study was proof of concept that associated variants in well-established pharmacogenomics
genes could represent markers of drug response rather than the casual variants. Further
studies are needed to identify and ultimately validate the often elusive functional variants in
these loci. These additional studies include genotyping of these potentially functional
variants (identified in LD with the associated variants) and testing them directly for
correlation with drug response outcomes in clinical trials. Other experiments are needed to
confirm the biological impact of these variants on the resultant RNA transcripts or proteins,
which depends on the predicted impact of the variants identified. For example, variants of
high impact (Table 1) include splicing effects, premature stop codons, and structural
interactions, which could be validated through direct sequencing of transcripts and mass
spectrometry to detect truncated and mis-folded proteins.

Our study identified novel genetic variations located in well-established pharmacogenomics
genes, which could account for the association signals at these loci and have strong impact
on the resulting gene products. We applied an innovative approach that combined
bioinformatics resources such as PharmGKB, sequencing data from the 1000 GP, population
annotation software such as SNPEff as well as databases such as RegulomeDB to identify
novel variants and predict their functional effects within pharmacogenomics loci. Moreover,
we determined that a number of these potentially functional variants are in LD with known
pharmacogenomics variants and could account at least in part for the original association
signals. Identification of these elusive causal variants could facilitate more accurate genetic
tests to predict treatment response prior to drug administration. The improved accuracy
results from direct testing instead of relying on LD, which varies among populations (as
noted by our study of LD across 4 populations in the 1000 GP). Thus, identification of
causal variants will improve the translation of pharmacogenomics findings into clinical
practice and ultimately replace the current trial and error approach for drug therapy, moving
us closer towards precision medicine.

Pharmacogenomic genes

We selected 160 unique pharmacogenomics associated loci, containing 127 CPIC genes
(June 5t 2017 release) and 64 VIP genes (May 1st, 2017 release) from the PharmGKB
database. Then, we identified the genomic coordinates of each gene from the GRCh37/hg19
assembly of the human reference genome using the University of Santa Cruz (UCSC)
Genome Browser.1® Next, genomic coordinates were padded with 5000 bp both 5’ and 3’ of
each gene to include potential regulatory regions. All variants that appear in at least 1% of
the 1000 Genomes Project Phase | population (Feb. 2009 release) were extracted.

Functional annotations

After reviewing many annotation tools (including annoVar, VEP, Polyphen/SIFT, CADD),
we decided that SnpEff best meets our needs as it allows a great degree of compatibility with

Pharmacogenomics J. Author manuscript; available in PMC 2019 March 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Choi et al.

Page 7

various input formats, offers high flexibility in search settings, can annotate a full exome set
in seconds, based on up-to-date transcript and protein databases, and has the ability to be
integrated with other tools. SnPEff (version 4.2, build 2015-12-05) was used with the
GRCh37.75 assembly to predict the effects of identified variants. For variants with multiple
annotations (e.g. variant affects multiple genes or have varying effects depending on the
transcript), only the most severe consequence was selected and used to represent each
variant in tables to ease the comparison of impacts among variants. To standardize
terminology used for assessing sequence changes, SNPEff uses sequence ontology (http://
www.sequenceontology.org/) definitions to describe functional annotations.

Linkage disequilibrium analysis

Linkage disequilibrium (LD) between the well-established pharmacogenomics variants
(1,151 variants annotated by PharmGKB retrieved on June 16t 2017, that are found within
160 PGx loci and 1000 Genomes project phase 1 dataset) and identified variants from the
1000 Genomes Project phase 1 dataset using Plink (version 1.09).20 Distance window for the
LD analysis were set to 1Mb and an r2 threshold of > 0.8.

SNPs associated with regulation and phenotypes

For each variant identified to be in LD with an established pharmacogenomic variant, we
used RegulomeDB?2! to evaluate and score those that have the potential to cause regulatory
changes, such as eQTL, regions of DNAase hypersensitivity, binding sites of transcription
factors and proteins. RegulomeDB uses GEO?2, the ENCODEZ3 project, and various
published literatures to assess these information. In addition to that, we used SNPedia?4, a
database of over 90,000 SNPs and associated peer-reviewed scientific publications, to
identify variants that are previously associated with phenotypes. (Figure 2)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Flow of work outlined in methods section of the manuscript, which highlights the selection
of 160 genes from the Pharmacogenomics Knowledge Database (PharmGKB), identification
of variants from the 1000 Genome Project Data, and subsequent steps for annotation and test

LD among variants.
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