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Abstract: Targeting proteasome with proteasome inhibitors (PIs) is an approved treatment strategy in
multiple myeloma that has also been explored pre-clinically and clinically in other hematological ma-
lignancies. The approved PIs target both the constitutive and the immunoproteasome, the latter being
present predominantly in cells of lymphoid origin. Therapeutic targeting of the immunoproteasome
in cells with sole immunoproteasome activity may be selectively cytotoxic in malignant cells, while
sparing the non-lymphoid tissues from the on-target PIs toxicity. Using activity-based probes to assess
the proteasome activity profile and correlating it with the cytotoxicity assays, we identified B-cell
chronic lymphocytic leukemia (B-CLL) to express predominantly immunoproteasome activity, which
is associated with high sensitivity to approved proteasome inhibitors and, more importantly, to the
immunoproteasome selective inhibitors LU005i and LU035i, targeting all immunoproteasome active
subunits or only the immunoproteasome β5i, respectively. At the same time, LU102, a proteasome
β2 inhibitor, sensitized B-CLL or immunoproteasome inhibitor-inherently resistant primary cells of
acute myeloid leukemia, B-cell acute lymphoblastic leukemia, multiple myeloma and plasma cell
leukemia to low doses of LU035i. The immunoproteasome thus represents a novel therapeutic target,
which warrants further testing with clinical stage immunoproteasome inhibitors in monotherapy or
in combinations.

Keywords: immunoproteasome; chronic lymphocytic leukemia; acute myeloid leukemia; multiple
myeloma; plasma cell leukemia; proteasome inhibitors; LU005i; LU035i; activity-based probes;
proteasome activity

1. Introduction

The differentiation of human B-cells from their progenitors to immunoglobulin-
secreting cells is completed in a series of clearly recognized, discrete stages. At each
step of the B-cell differentiation, a cell can undergo malignant transformation, thus giving
rise to various malignancies arising from the B-cell lineage. Poorly differentiated acute
B-cell malignancies, such as B-cell acute lymphoblastic leukemia (B-ALL) are more common
in children than in adults, while the most prevalent B-cell malignancies in adults are chronic
lymphocytic leukemia (B-CLL) or malignancies of terminally differentiated plasma cells,
such as multiple myeloma (MM) or plasma-cell leukemia (PCL). While B-CLL is the most
common chronic type of leukemia in adults, the most common type of acute leukemia in
adults is acute myeloid leukemia (AML), a malignancy arising from a myeloid progenitor
(National Cancer Institute: https://seer.cancer.gov accessed on 20 January 2022).

The treatment of these hematological malignancies has considerably improved in the
past years with the recent approval of several novel agents for the treatment of AML, B-ALL,
B-CLL and MM, which contributed to expanding the palette of therapeutic options in these
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diseases [1–4]. However, the main reason for treatment failure in a significant proportion
of adult patients with leukemias or MM is the occurrence of intrinsic or acquired drug
resistance in a subset of malignant cells that is responsible for the development of relapse
or refractory disease with a dismal prognosis [5–8]. Subsequently, as the development of
drug resistance is one of the limiting factors affecting long-term efficacy of anti-leukemic
or anti-myeloma drugs, the search for therapies with novel mechanisms of action is an
ongoing challenge.

Proteasome inhibitors (PIs), such as boronate-based bortezomib and ixazomib and
epoxyketone-based carfilzomib specifically inhibit proteasomes, which are large protein
complexes with three main catalytic subunits β1, β2 and β5, providing the proteasome with
caspase-like, trypsin-like and chymotrypsin-like activities to digest and recycle ubiquitin-
tagged proteins [9]. By design, PIs bind to the active pocket of the proteasome β5 subunit,
which was initially identified as a rate-limiting protease for functional proteasomal degra-
dation. Only recently, the importance of other proteasome subunits has been shown. The
proteasome β5 subunit allosterically activates the β1 subunit [9–11], but its co-inhibition
has not shown a strong additional cytotoxic effect, whereas the functional β2 subunit
co-inhibition together with β5 inhibition is cytotoxic in MM and breast cancer cells [12–14].

PIs are cornerstones of treatment of plasma cell malignancies, such as MM, PCL, and
mantle cell lymphoma [15]. Moreover, they were extensively evaluated for the therapy of
other myeloid or lymphoid malignancies. Although the pre-clinical data showed efficacy
of PIs bortezomib and carfilzomib in B-CLL [16–19], AML [20,21] and ALL [22], clinical
observations of PIs in monotherapy in B-CLL, AML or ALL [23–26] did not fully confirm
this data as most of the patients experienced only modest anti-leukemic activity of PIs.
Moreover, the patients experienced several toxic side effects from bortezomib therapy,
whereas carfilzomib was rather well tolerated.

In the cells of hematopoietic origin, the constitutive proteasome is replaced by the
immunoproteasome, in which the standard β1, β2 and β5 catalytic subunits are replaced by
the inducible subunits β1i (LMP2), β2i (MECL-1) and β5i (LMP7) [27]. Immunoproteasome
expression is noticeably induced upon stimulation by inflammatory cytokines, such as
interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) [28]. The primary function of
immunoproteasome is to generate more hydrophobic peptides, which are more likely
to be presented by HLA molecules (MHC class I molecules) [29,30], but it also plays an
important role in protein homeostasis control. Not only does it regulate quality control and
clearance of oxidized proteins and protein aggregates generated under cytokine-induced
oxidative stress, but it also controls protein transcription and levels of transcription factors
that regulate multiple signaling pathways [31].

Given the abundance of immunoproteasome in several leukemia types or myeloma
cells, selective targeting of the immunoproteasome is an attractive treatment option [32].
The recent development of immunoproteasome-specific PI may further allow selective
targeting of such increased immunoproteasome activity to overcome drug resistance,
while sparing the vast majority of tissues not expressing the immunoproteasome, thus
considerably reducing the secondary effects and toxicities related to PI treatment.

To date, the proteasome/immunoproteasome composition and activity in the most
common subtypes of adult leukemia is unknown. Moreover, we lack data that compare the
activity of individual proteolytic subunits of the constitutive versus the immunoproteasome
to the cytotoxic activity of the approved PI or novel immunoproteasome-selective PIs.
Therefore, we used a cocktail of activity-based proteasome probes (ABPs), which covalently
bind to the proteolytically-active sites of the constitutive and the immunoproteasome in
a way that corresponds to their catalytic activity [33], to assess the proteasome content in
primary samples of patients with AML, B-CLL, B-ALL, MM and PCL. Subsequently, we
related the proteasome activity to the cytotoxicity of bortezomib and carfilzomib and of the
novel immunoproteasome selective inhibitors LU005i and LU035i [34]. We identified B-CLL
to have exclusively high immunoproteasome activity over the constitutive proteasome
activity that may be used as a novel target for the immunoproteasome-selective inhibitors.
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Moreover, the malignancies inherently resistant to immunoproteasome-selective inhibitors
may be sensitized to their cytotoxic activity by the selective inhibition of the proteasome
β2 subunit.

2. Materials and Methods
2.1. Patients’ Samples

Primary samples of patients with B-cell acute lymphoblastic leukemia (ALL), acute
myeloid leukemia (AML), chronic B-cell lymphocytic leukemia (CLL), multiple myeloma
(MM) and plasma cell leukemia (PCL) and peripheral blood mononuclear cells (PBMC)
from healthy volunteers were obtained at the Clinics for Medical Oncology and Hema-
tology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland. All samples were obtained
during routine diagnostic procedures after approval by the independent cantonal ethical
committee and after obtaining written informed consent form in accordance with Helsinki
Declaration guidelines.

B-ALL, AML, B-CLL and PCL samples were obtained from peripheral blood. B-ALL
and AML samples were enriched by CD34+ selection (EasySep Human Cord Blood CD34
Positive Selection Kit II, StemCell Technologies, Vancouver, BC, Canada). B-cell CLL
samples were isolated using EasySep Direct Human B-CLL Cell Isolation Kit (StemCell
Technologies, Vancouver, BC, Canada). MM plasma cells samples were obtained from
bone marrow aspirates, enriched by CD138+ selection using EasySep Human Whole Blood
and Bone Marrow and CD138+ positive selection kit (StemCell Technologies, Vancou-
ver, BC, Canada). PBMC were obtained by standard Ficoll gradient separation of the
peripheral blood.

2.2. Cell Culture

Primary cells were thawed into RPMI-1640 medium (Sigma-Aldrich, Buchs, Switzer-
land) supplemented with 20% heat-inactivated fetal calf serum (FCS), 100 mg/mL strepto-
mycin and 100 U/mL penicillin (all Sigma-Aldrich, Buchs, Switzerland) and seeded for
further analyses.

AMO-1 cell line was obtained from commercial sources (American Type Culture Col-
lection, ATCC/LGC, Wesel, Germany). AMO-1 wild-type and AMO-1 PSMB5KO cell lines
were maintained under standard conditions in RPMI-1640 medium supplemented with
10% FCS, 100 mg/mL streptomycin and 100 U/mL penicillin. MycoAlert Mycoplasma De-
tection Kit (Lonza, Basel, Switzerland) was used to rule out the mycoplasma contamination
in the cell culture and the modified cell line was authenticated with its parental cell line
by the STR-typing (at DSMZ, a German collection of Microorganisms and Cell Cultures,
Braunschweig, Germany).

2.3. CRISPR/Cas9 Knockout of PSMB5

Two different short guide RNAs (sgRNAs) targeting PSMB5 gene in positions span-
ning the proteolytically active site were designed by web-based tool CRISPOR [35], to
generate a larger deletion in PSMB5 gene, as was described before [36]. The proteolyti-
cally active site of human β5c subunit was obtained from UniProt database (P28074). The
sequences of the sgRNAs are as follows (with the PAM sequence in italics): PSMB5_g1:
CCGCTACCGGTGAACCAGCGCGGG, PSMB5_g2: TGCCTCCCAGACGGTGAAGAAGG.

Briefly, sgRNAs PSMB5_g1 and PSMB5_g2 were cloned into lentiCRISPRv2 vector
plasmid carrying both Cas9 and guide RNA (a gift from Zhang’s lab; Addgene plasmids
#52961). Next, separate lentiviruses for PSMB5_g1 and PSMB5_g2 were produced by
packaging plasmids pMD2.G and psPAX2 (a gift from Trono’s lab; Addgene plasmids
#12259 and #12260) and the lentiCRISPRv2 transfer plasmids in HEK-293-LentiX cells
(Takara-Bio, Kusacu, Japan) following protocol described elsewhere [37]. AMO-1 cells were
transduced with PSMB5_g1 and PSMB5_g2 viral particles in 1:1 ratio and cells with stably
introduced CRISPR/Cas9 vectors were selected by puromycin (2 µg/mL, Sigma-Aldrich,
Buchs, Switzerland). Single-cell derived colonies of AMO-1 cells were obtained using
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MethoCult Classic (#H4434, StemCell Technologies, Vancouver, BC, Canada). The clones
were screened for larger deletions in PSMB5 using PCR with primers spanning the deletion
site (PSMB5_del_F: AGGAAGTGAAGCTGTGACGG and PSMB5_del_R: CGTTCCCA-
GAAGCTGCAATC) that produces PCR product of 1442 bp in non-deleted PSMB5 and
250 bp in deleted PSMB5. Sanger sequencing was performed to confirm the presence of
a deletion in the on-target sequence of genome. Moreover, the clones were screened for
knock-out of the β5c activity by ABP and a single-cell derived colony with confirmed
deletion and no β5c activity was chosen for further analyses.

2.4. Chemicals

Bortezomib and carfilzomib were obtained from commercial sources (Selleck Chemi-
cals, Houston, TX, USA). LU005i, LU035i, LU025c, LU102 and ABP were synthesized at
Leiden University. Detailed information regarding proteasome inhibitors used in the study
is presented in Table S1.

2.5. Proteasome β-Subunits Profiling with Activity-Based Proteasome Probes Labelling

Activity of proteasome subunits was assessed on a protein lysate by SDS-PAGE after
1 h/37 ◦C incubation with the set of subunit-selective activity-based probes (ABP) that
differentially visualize individual activities of β1, β2 and β5 subunits of the constitutive and
the immunoproteasome, as described [33]. Protein subunits were separated by SDS-PAGE,
gel images were acquired using Fusion Solo S Western Blot and Chemi Imaging System
(Vilber Lourmat, Collégien, France). The quantification of the activity was performed
using Fiji (open source image processing package based on ImageJ) [38]. For each sample,
the ratio of activity of the immunoproteasome vs. constitutive proteasome subunits was
calculated by dividing the band intensity of each of the immunoproteasome subunits by
the band intensity of the corresponding constitutive proteasome subunit.

2.6. CTG Viability Assay

An amount of 1 × 104 of cells were seeded per well into a white, flat bottom 96-
well plate (Corning, Root, Switzerland). The cells were exposed to increasing doses of
proteasome inhibitors in 100 µL of standard media per well for 48 h and cell viability was
determined using CellTiter-Glo luminescent cell viability assay (Promega, Madison, WI,
USA) according to manufacturer’s protocol. Only samples where the untreated controls
showed high ATP production were used in the analysis. The cytotoxicity of the drugs was
normalized to control—untreated cells—and for each sample a dose-response curve to each
tested chemical was generated.

2.7. Lactate Dehydrogenase Quantification

Levels of lactate dehydrogenase (LDH, assessed in U/L) from peripheral blood of the
patients were determined during patients’ routine diagnostic procedures at the Cantonal
Hospital, St. Gallen.

2.8. Statistical Analysis

Dose-response curves were generated using nonlinear fit. The IC50 of each chemical
was determined using nonlinear regression analysis from dose-response curves. Ordinary
one-way ANOVA with Tukey’s multiple comparisons test was used for the comparison of
statistically significant differences between the samples. Correlation coefficients between
the activity ratios of β5i/c, the cytotoxicity of proteasome inhibitors and LDH levels
were calculated using Spearman’s rank correlation, and p values < 0.05 were considered
as statistically significant. Statistical evaluation was performed in GraphPad Prism v8
(GraphPad Software, La Jolla, CA, USA).
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3. Results
3.1. B-CLL Shows Exclusive Predominant Activity of the Immunoproteasome

Initially, the activity of both types of proteasomes were tested in different hematologi-
cal malignancies, including 16 AML, 3 B-ALL, 17 B-CLL, 6 MM and 5 PCL and in PBMC
samples obtained from six healthy donors. Detailed characteristics of patients/samples
included in the study is provided in Table 1.

Table 1. Basic characteristics of patients included in the study.

AML B-ALL B-CLL MM PCL

Nr of patients 16 3 17 6 5
Male-females (%) 62–38% 33–67% 65–35% 50–50% 20–80%

Age (median; min–max) 64 (32–84) 35 (28–38) 69 (54–81) 74 (56–84) 60 (51–69)
AML = acute myeloid leukemia, B-ALL = B-cell acute lymphoblastic leukemia, B-CLL = B-cell chronic lymphocytic
leukemia, MM = multiple myeloma, PCL = plasma-cell leukemia.

In each sample, activity of each of the proteolytically active β-subunits was determined
by ABP and is expressed as a ratio between the respective immunoproteasome and the
constitutive proteasome subunit (β5i/c, β1i/c and β2i/c). While most of the malignancies
show activity of both types of the proteasomes, B-CLL samples show increased activity
of the immunoproteasome active sites β5i, β1i and β2i over the corresponding β5c, β1c
and β2c sites (Figure 1A–C). The most significant differences were observed in the activity
ratios for β5 and β2 subunits, where B-CLL differed significantly in β5i/c activity ratio
from AML, T-ALL, MM and PCL (Figure 1A) and in β2i/c activity ratio from AML, B-ALL,
MM and PCL (Figure 1C). Deeper analysis of B-CLL cohort of patients (for basic biological
and clinical information about the B-CLL cases, see Supplementary Table S2) showed that
levels of lactate dehydrogenase (LDH) correlate positively with the β5i/β5c activity ratio
(Spearman r = 0.6818; p = 0.0251, Supplementary Figure S1A). Of note, PBMC samples show
rather heterogeneous activity profile of the β5i/β5c, as they are a mixture of different cell
types with different proteasome activities (as, for example, normal B-cells predominantly
express β5i) [39]. Nevertheless, from the malignant entities of a B-cell origin, B-CLL shows
a unique profile of high relative immunoproteasome activity, which is not seen in other
acute or chronic B-cell malignancies and which correlates with levels of LDH, a general
marker of tumor burden.
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Figure 1. Profile of the activity of the immunoproteasome subunits over constitutive proteasome
subunits determined by ABP labelling in different hematological malignancies. (A) Comparison
between the ratio of activity of proteasome β5i versus β5c, data represent mean ± SD. (B) Comparison
between the ratio of activity of proteasome β1i versus β1c, data represent mean ± SD. (C) Comparison
between the ratio of activity of proteasome β2i versus β2c, data represent mean ± SD. In all analyses,
statistical significance was obtained with ANOVA and Tukey’s multiple comparison test, where
* represents p < 0.05, *** represents p < 0.001 and **** represents p < 0.0001. AML = acute myeloid
leukemia, B-ALL = B-cell acute lymphoblastic leukemia, B-CLL = B-cell chronic lymphocytic leukemia,
MM = multiple myeloma, PCL = plasma-cell leukemia, PBMC = peripheral blood mononuclear cells.
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3.2. B-CLL Is the Most Sensitive to Bortezomib and Carfilzomib

The approved PIs for MM therapy are designed to target the chymotrypsin-like site
(β5 subunit) of the constitutive and immunoproteasome, which is the most important
target to inhibit proteasomal proteolysis [40,41]. It was later discovered that higher doses
of bortezomib co-inhibit caspase-like sites (the β1 subunits), while carfilzomib co-inhibits
trypsin-like sites (the β2 subunits). Moreover, they target the active sites of the immuno-
proteasome at low nanomolar doses, comparable to doses necessary for the inhibition of
the active sites of the constitutive proteasome [42–44]. Therefore, we tested the cytotoxicity
of bortezomib and carfilzomib in our cohort of hematological malignancies by analyzing
dose-response curves and obtaining IC50 value for each sample. B-CLL was the most
sensitive cohort of samples to both bortezomib and carfilzomib, supporting our previous
observations (Figure 2A,B). Specifically, B-CLL samples were significantly more sensitive
to bortezomib and carfilzomib than AML, which was the most resistant cohort of samples
in our analysis. Importantly, only B-CLL cells were also significantly more sensitive to
bortezomib and carfilzomib than PBMCs, showing an opportunity for a selective toxicity
of malignant cells and less systemic toxicity associated with the use of these PIs.
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Figure 2. Profile of the IC50 values of the approved proteasome inhibitors in different hematological
malignancies. (A) Comparison of IC50 values of bortezomib determined 48 h after the continuous
treatment in various hematological malignancies, data represent mean ± SD. (B) Comparison of
IC50 values of carfilzomib determined 48 h after the continuous treatment in various hematologi-
cal malignancies, data represent mean ± SD. In all analyses, statistical significance was obtained
with ANOVA and Tukey’s multiple comparison test, where * represents p < 0.05 and **** repre-
sents p < 0.0001. AML = acute myeloid leukemia, B-ALL = B-cell acute lymphoblastic leukemia,
B-CLL = B-cell chronic lymphocytic leukemia, MM = multiple myeloma, PCL = plasma-cell leukemia,
PBMC = peripheral blood mononuclear cells, BTZ = bortezomib; CFZ = carfilzomib.

Nevertheless, although B-CLL is uniformly sensitive to bortezomib and carfilzomib,
there was no correlation between sensitivity of the individual samples to bortezomib or
carfilzomib and their β5i/c activity ratio. This suggests that B-CLL depend on functional
proteasome activity, irrespective of its type.

3.3. Immunoproteasome-Selective Proteasome Inhibitors Are Selectively Cytotoxic in B-CLL and
Their Cytotoxicity Correlates with Immunoproteasome Activity

Since B-CLL shows the highest relative immunoproteasome activity, it could be exclu-
sively sensitive to novel selective immunoproteasome inhibitors. These inhibitors could
preserve efficacy on malignant cells, but significantly reduce treatment-emergent toxicities
by sparing other tissues with little to no immunoproteasome activity [32]. First, we tested
the cytotoxic activity of novel immunoproteasome inhibitors on a cohort of various hema-
tological malignancies. We chose LU005i for selective inhibition of the immunoproteasome
active subunits β5i, β1i and β2i with predominant activity on β5i > β1i > β2i at low micro-
molar doses [34] (Supplementary Figure S2). LU005i was cytotoxic in low micromolar range
(below 2.5 µM, where it retains the selectivity for the immunoproteasome subunits) in all
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tested hematological malignancies. Moreover, it was significantly more cytotoxic in B-CLL
cells with high relative immunoproteasome activity, in contrast to AML or PCL, which keep
both types of active proteasomes (Figure 3A). Cytotoxicity of LU005i correlated with the
activity ratios of the β5i/c subunit across the whole cohort of hematological malignancies
tested (Figure 3B); however, we did not observe any significant correlation between the
activity ratios of individual β subunits and cytotoxicity of LU005i in B-CLL.

Cells 2022, 11, x FOR PEER REVIEW 7 of 15 
 

 

cytotoxic activity of novel immunoproteasome inhibitors on a cohort of various hematological 

malignancies. We chose LU005i for selective inhibition of the immunoproteasome active sub-

units β5i, β1i and β2i with predominant activity on β5i > β1i > β2i at low micromolar doses 

[34] (Supplementary Figure S2). LU005i was cytotoxic in low micromolar range (below 2.5 

µM, where it retains the selectivity for the immunoproteasome subunits) in all tested hemato-

logical malignancies. Moreover, it was significantly more cytotoxic in B-CLL cells with high 

relative immunoproteasome activity, in contrast to AML or PCL, which keep both types of 

active proteasomes (Figure 3A). Cytotoxicity of LU005i correlated with the activity ratios of 

the β5i/c subunit across the whole cohort of hematological malignancies tested (Figure 3B); 

however, we did not observe any significant correlation between the activity ratios of individ-

ual β subunits and cytotoxicity of LU005i in B-CLL. 

 

Figure 3. Cytotoxicity of the immunoproteasome-selective proteasome inhibitors in hematological 

malignancies. (A) Comparison of IC50 values of LU005i determined 48 h after the continuous treat-

Figure 3. Cytotoxicity of the immunoproteasome-selective proteasome inhibitors in hematological
malignancies. (A) Comparison of IC50 values of LU005i determined 48 h after the continuous
treatment in various hematological malignancies. Data represent geometric mean ± geometric SD,
statistical significance was obtained with ANOVA and Tukey’s multiple comparison test, where
* represents p < 0.05 and **** represents p < 0.0001. Line represents a 2.5 µM dose, to which the inhibitor
retains its selectivity. (B) Correlation between the activities of constitutive vs. the immunoproteasome
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β5 subunits and the cytotoxicity of LU005i in 15 AML, 3 B-ALL, 17 CLL, 6 MM and 5 PCL samples.
Correlation and statistical significance were obtained using Spearman’s rank correlation. (C) Compar-
ison of IC50 values of LU035i determined 48 h after the continuous treatment in various hematological
malignancies, data represent geometric mean ± geometric SD. In samples, where the IC50 value
was not reached, it was arbitrarily given an IC50 = 100 µM. Statistical significance was obtained
with ANOVA and Tukey’s multiple comparison test, where ** represents p < 0.01 and **** represents
p < 0.0001. Line represents a 5 µM dose, to which the inhibitor retains its selectivity. (D) Correlation
between the activities of constitutive vs. the immunoproteasome β5 subunits and the cytotoxicity
of LU035i in 17 CLL samples. Correlation and statistical significance were obtained using Spear-
man’s rank correlation. (E) Dose-response curves of AMO-1 and AMO-1 PSMB5 knock-out cells
to LU035i determined 48 h after the treatment. Data represent mean ± SD of three independent
experiments. (F–H) Dose-response curves of three B-CLL samples to LU035i alone or in combination
with 1 µM LU025c determined 48 h after the treatment. Data represent mean ± SD of tetraplicate.
AML = acute myeloid leukemia, B-ALL = B-cell acute lymphoblastic leukemia, B-CLL = B-cell chronic
lymphocytic leukemia, MM = multiple myeloma, PCL = plasma-cell leukemia, PBMC = peripheral
blood mononuclear cells; LU005i = proteasome β5i + β2i + β1i selective inhibitor; LU035i = protea-
some β5i selective inhibitor; LU025c = proteasome β5c selective inhibitor; i = immunoproteasome,
c = constitutive proteasome.

The chymotrypsin-like site of the immunoproteasome (β5i) is more hydrophobic
and has different structure and size than the chymotrypsin-like site of the constitutive
proteasome (β5c) [45]. Therefore, it allows the design of selective β5i inhibitors. Since
β5i is rate-limiting for the proteolytic activity of the immunoproteasome, as is the β5c
for the activity of the constitutive proteasome, we hypothesized that the sole inhibition
of the β5i subunit activity with LU035i may be sufficient to induce cytotoxicity in cells
with predominant immunoproteasome activity. LU035i is an epoxyketone-based selective
PI that is selective for the inhibition of the β5i subunit up to 5 µM concentration [34]
(Supplementary Figure S3). Almost all B-CLL samples were sensitive to cytotoxic activity
of LU035i at low micromolar doses (Figure 3C), in contrast to the AML, B-ALL, MM and
PCL samples, suggesting that β5i may be a novel therapeutic target in B-CLL. Moreover,
the cytotoxicity of LU035i correlated with the β5i/c activity ratios in B-CLL (Figure 3D),
whereas it could not be properly assessed in other malignancies, since the inhibitor did
not reach the IC50 values here or else reached it at very high doses, where it most likely
loses the β5i selectivity. At the same time, as we observed a positive correlation between
β5i/β5c activity ratios and levels of LDH, we likewise observed here a negative correlation
between LDH levels and IC50 values of LU035i (Supplementary Figure S1B, Spearman
r = −0.6545, p = 0.0336).

Previously, we have shown that in cells with both β5i and β5c activities, inhibition
of β5i is not cytotoxic, as the residual β5c activity can substitute for inhibited β5i activ-
ity [12]. Since we observed the correlation between β5i/c activity ratios and cytotoxicity
of LU035i in B-CLL, we aimed to assess if the cytotoxicity of LU035i is solely related to
predominant β5i activity or also to other factors. At the same time, we aimed to assess to
what extent a presence of β5i only, or both β5i and β5c activities, affects the cytotoxicity of
LU035i. Towards this aim, we first knocked-out the β5c activity in AMO-1 MM cell line
by introducing a deletion in PSMB5, including the enzymatic active site. We subsequently
obtained a single-cell derived colony with no detectable β5c activity, but with present β5i
activity (Supplementary Figure S4). At the same time, we chemically inhibited the residual
β5c activity with selective β5c inhibitor LU025c [46] in B-CLL samples, which showed
lower cytotoxicity of LU035i. As expected, LU035i was not cytotoxic in AMO-1 wild-type
cells up to 10 µM concentration, whereas it was cytotoxic in AMO-1_PSMB5KO cells at sub
micromolar doses (Figure 3E). Likewise, inhibition of residual β5c with LU025c sensitized
B-CLL cells to LU035i (Figure 3F–H). Of note, AMO-1_PSMB5KO cells completely lacking
the active β5c were not sensitized to LU035i by LU025c up to 3 µM concentration, whereas
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AMO-1 wt were sensitized significantly (Supplementary Figure S5A,B), confirming that the
residual β5c activity is the only factor affecting cytotoxicity of LU035i in malignant cells.
Therefore, high relative activity of the β5i subunit is a signature of B-CLL representing a
novel therapeutic target for immunoproteasome β5-selective inhibitor LU035i, associated
with low cytotoxicity on cells with low relative immunoproteasome activity.

3.4. β2-Selective Proteasome Inhibitor Sensitizes Hematological Malignancies to β5i-Selective
Immunoproteasome Inhibitor

Co-inhibition of the proteasome β2c and β2i activity sensitizes MM cells to immuno-
proteasome inhibitor ONX-0914 [47]. Thus, we assessed if samples inherently not sensitive
to β5i inhibition may be sensitized to LU035i by co-inhibition of the β2c and β2i activity
with selective inhibitor LU102 [48]. In living cells, LU102 sub-totally inhibits both β2c
and β2i activity at 10 µM dose and retains its β2 selectivity up to 20 µM [12]. We have
not observed any difference in the cytotoxicity of LU102 across different malignancies
(Figure 4A). However, 2.5 µM LU102, a dose not affecting the viability in most of the
samples, significantly sensitized all tested hematological malignancies to low doses of
LU035i, where it retains selectivity only for the β5i inhibition (Figure 4B–F). Moreover,
LU102 alone was more cytotoxic in AMO-1_PSMB5KO cells, as compared to AMO-1 wild-
type cells (Figure 4G), suggesting that lower drug doses are needed to induce cytotoxicity
in the absence of β5c activity. This aligns with previous data, where in the presence of
β5i and β5c inhibition, lower doses of LU102 were needed to achieve complete β2i and
β2c inhibition [12]. At the same time, 2.5 µM dose of LU102, not affecting the viability
of AMO-1 wild-type cells, significantly sensitized the cells to β5i-selective immunopro-
teasome inhibitor LU035i (Figure 4H). Therefore, combination of the immunoproteasome
selective inhibitors with β2c and β2i selective inhibitor allows using lower doses of both
drugs to induce cytotoxicity in hematological malignancies, such as AML, MM and PCL.
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Figure 4. β2-selective inhibitor sensitizes hematological malignancies to immunoproteasome-
selective inhibitors. (A) Comparison of IC50 values of LU102 determined 48 h after the continuous
treatment in various hematological malignancies, data represent geometric mean ± geometric SD.
Statistical significance was obtained with ANOVA and Tukey’s multiple comparison test. (B) Com-
parison of IC50 values of LU035i combined with fixed dose of LU102 (2.5 µM) determined 48 h after
the continuous treatment in various hematological malignancies. Data represent geometric mean ±
geometric SD. Statistical significance was obtained with ANOVA and Tukey’s multiple comparison
test. (C) Paired comparison of IC50 values of LU035i combined with fixed dose of LU102 (2.5 µM)
determined 48 h after the continuous treatment in AML samples. Statistical significance was obtained
with paired t-test, where *** represents p < 0.001. (D) Paired comparison of IC50 values of LU035i
combined with fixed dose of LU102 (2.5 µM) determined 48 h after the continuous treatment in B-ALL
samples. Statistical significance was obtained with paired t-test, where * represents p < 0.05. (E) Paired
comparison of IC50 values of LU035i combined with fixed dose of LU102 (2.5 µM) determined 48 h
after the continuous treatment in MM samples. Statistical significance was obtained with paired t-test,
where ** represents p < 0.01. (F) Paired comparison of IC50 values of LU035i combined with fixed
dose of LU102 (2.5 µM) determined 48 h after the continuous treatment in MM samples. Statistical
significance was obtained with paired t-test, where * represents p < 0.05. (G) Dose-response curves of
AMO-1 wt and AMO-1 PSMB5 knock-out cells to LU102 determined 48 h after the treatment. Data
represent mean ± SD. (H) Dose-response curves of AMO-1 cells to LU035i alone or in combinations
with 2.5 µM LU102, determined 48 h after the treatment. Data represent mean ± SD. AML = acute
myeloid leukemia, B-ALL = B-cell acute lymphoblastic leukemia, B-CLL = B-cell chronic lymphocytic
leukemia, MM = multiple myeloma, PCL = plasma-cell leukemia, PBMC = peripheral blood mononu-
clear cells; LU035i = proteasome β5i selective inhibitor; LU102 = proteasome β2c and β2i selective
inhibitor; i = immunoproteasome, c = constitutive proteasome.

4. Discussion

Targeting immunoproteasome is a treatment strategy clinically tested in autoimmune
diseases and experimentally explored in pediatric ALL or adult malignancies, such as
MM [47,49–51]. Here we show that B-CLL cells possess increased activity of the im-
munoproteasome subunits over the constitutive proteasome active subunits, which is
associated with their high sensitivity to approved PIs bortezomib and carfilzomib or novel
immunoproteasome-selective inhibitors LU005i and LU035i. While bortezomib and carfil-
zomib inhibit both the constitutive and the immunoproteasome, they have been shown
unlikely to move forward in B-CLL as a single agent given the minimal efficacy observed.
At the same time, high selectivity and cytotoxic activity of LU035i in B-CLL, and significant
correlation between the cytotoxicity and the immunoproteasome β5i activity assessed by
ABP labelling suggests that proteasome inhibition is still interesting to pursue as part of
combination strategies in which efficacy of another drug may be improved by inhibition
of proteasome-mediated protein breakdown. Moreover, proteasome activity assessment
should be used for patients’ stratification and identification of patients that may benefit the
most from such therapy.

The molecular mechanism underlying high immunoproteasome activity in B-CLL
remains to be elucidated. The activity of the immunoproteasome can be reversibly stim-
ulated by pro-inflammatory cytokines IFN-γ or TNF-α, or by reactive oxygen species
(ROS) [52–55], which may potentially influence the composition of proteasome in B-CLL;
however, multiple other factors may be involved. At the same time, as we observed a
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positive correlation between high relative β5i/β5c activity and levels of LDH, it suggests
that higher relative immunoproteasome activity is associated with more severe disease
and poorer prognosis [56]. Increased LDH levels are associated with poor prognosis in
myelodysplastic syndromes, AML and B-CLL [57–59]. It remains to be elucidated whether
immunoproteasome inhibition decreases LDH levels, a potential useful marker of dis-
ease control.

Currently, two immunoproteasome inhibitors have entered clinical evaluation for
the treatment of autoimmune disorders. Both, ONX-0914 and KZR-616, are selective irre-
versible inhibitors of β5i (LMP7) and β1i (LMP2) sites of the immunoproteasome [60,61].
Following the discovery of their activity against autoimmune disorders, their anti-tumor
activities were tested in selected groups of patients with leukemia. ONX-0914 showed
activity in pediatric ALL, in contrast to rather low activity in pediatric AML [49]. More re-
cently, ONX-0914 has been shown to be effective in pediatric T-ALL cases with t (4; 11) (q21;
q23) chromosomal translocation that leads to the expression of MLL–AF4 fusion protein
conferring poor outcome [50]. Newly, orally bioavailable reversible immunoproteasome
β5i inhibitor M3258 showed efficacy in diverse in vitro and in vivo MM models, a favorable
safety profile and a lack of cardiac, respiratory, and neurobehavioral effects, supporting
the initiation of a phase I clinical trial of M3258 in patients with relapsed/refractory MM
(NCT04075721) [62,63]. In this study, we tested LU005i and LU035i irreversible immuno-
proteasome inhibitors, which selectively target immunoproteasome subunits over a broad
concentration range up to micromolar doses [34]. Our data extend previous observations
and shows that a sole inhibition of the β5i subunit in B-CLL is sufficient to induce cytotoxi-
city, which proportionally corresponds to the high relative immunoproteasome β5i activity
ratio. At the same time, healthy PBMCs are less vulnerable to LU035i-induced cytotoxicity,
thereby offering a therapeutic window at which cells expressing both types of proteasomes
are spared from on-target toxicity of LU035i.

Previous data suggested that β2 inhibition ex vivo sensitizes adult malignancies, such
as MM, or pediatric B-ALL and T-ALL cases to ONX-0914 or LU035i [47,49,50]. Our data
support these results and show that β2 inhibition provided by LU102 sensitizes B-CLL cells
to β5i inhibition provided by LU035i. More importantly, malignancies with the activity
of both types of proteasomes, such as AML, B-ALL, MM or PCL, which are intrinsically
resistant to LU035i, can be sensitized to its cytotoxicity by LU102. These findings offer novel
therapeutic possibility for the treatment of malignancies with lack of effective therapies.

To the best of our knowledge, this is the first study showing composition and activity
of proteasome/immunoproteasome in the most common adult hematological malignancies
and demonstrating the exclusive activity of the immunoproteasome-selective inhibitors in
B-CLL. We acknowledge the limitation of our study, which is the low number samples used
in the analysis that does not allow further stratification of patients to major cytogenetically
defined subgroups with different prognoses. We observed consistently low activity ratios
between the constitutive vs. the immunoproteasome β-subunits in AML, MM and PCL,
whereas in B-CLL, the activity ratios varied considerably from high to intermediate/low.
These observations require further studies on larger cohorts of patients.

5. Conclusions

In conclusion, we provide a strong rationale for further in vivo studies of
immunoproteasome-selective inhibitors in B-CLL, which may provide higher activity and
lower off-target toxicity in combination setting with other drugs used for B-CLL therapy.
At the same time, combination of immunoproteasome-selective and β2-selective inhibitors
may be effective in hematological malignancies with poor prognosis and lack of effective
therapies, such as AML or PCL.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells11050838/s1, Figure S1: Correlation of LDH with proteasome activity and cytotoxicity
of the immunoproteasome selective inhibitor in B-CLL primary samples. Figure S2: Inhibitory
profile of pan-immunoproteasome selective inhibitor LU005i. Figure S3: Inhibitory profile of β5-
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immunoproteasome selective inhibitor LU035i. Figure S4: Profile of active proteasome β-subunits in
AMO-1 wild-type cells and in AMO-1 cells with PSMB5 knock-out. Figure S5: Dose-response curves
of AMO-1wild-type and AMO-1_PSMB5 knock-out cells to β5i inhibition in a presence or absence
of the β5c inhibition. Table S1: Detailed characteristics of proteasome inhibitors used in the study.
Table S2: Basic biological and clinical characteristics of B-CLL cohort.
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