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Background: Among vascular pathologies associated with obesity, peripheral artery

disease (PAD) occupies the important position. In clinical practice, nutritional interventions

are recommended for patients with PAD. In this work, we investigated how the different

dietary backgrounds affect the regeneration rate of ischemic hindlimb in mice.

Methods: Male C57BL/6J mice were housed on three types of diet: low-fat (LFD),

high-fat (HFD), and grain-based diet (GBD) for 13 weeks. Metabolic parameters including

FBG level, ITT, and GTT were evaluated. The blood flow was assessed by laser Doppler

scanning on 7, 14, and 21 days after hindlimb ischemia. Necrotic area of m.tibialis,

macrophage infiltration, and angiogenesis/arteriogenesis were evaluated by histology.

Glucose uptake in recovered skeletal muscle was analyzed using [3H]-2-deoxyglucose,

and GLUT1 and GLUT4 expression were assessed by Western blotting.

Results: In our work, we developed three experimental groups with different metabolic

parameters: LFD with normal glucose metabolism, GBD with mild hyperglycemia, and

HFDwith impaired glucose tolerance. GBD-fed mice had a tendency to increase necrosis

of m. tibialis and significantly higher macrophage infiltration than LFD and HFD groups.

Moreover, GBD-fed mice had a trend to decreased blood flow recovery and significantly

impaired arteriogenesis. Recovered skeletal muscle of GBD-fed mice had lower glucose

uptake and decreased level of GLUT4 expression.

Conclusion: Thus, we conclude that dietary background and metabolic status

determine the rate of post-ischemic regeneration including angiogenesis, skeletal muscle

recovery and metabolic activity. The most effective regeneration is supported by LFD,

while the lowest rate of regeneration occurs on GBD.
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HIGHLIGHTS

- HFD has impaired glucose tolerance and GBD has impaired
fasting blood glucose

- GBD has highest necrotic area and macrophage infiltration of
skeletal muscle

- Blood flow recovery is impaired in GBD-fed mice through
attenuation of arteriogenesis

- Skeletal muscle glucose uptake and GLUT4 expression are
impaired on GBD

- GBD has decreased regeneration rate in hindlimb
ischemia model

INTRODUCTION

Diet and nutrition have a crucial impact on whole body
metabolism and physiology. Caloric overload and consumption
of food with high fat, sucrose, or fructose content leads
to weight gain, obesity, and metabolic abnormalities (1–4).
According to recent reports, the prevalence of obesity and
associated pathologies such as insulin resistance, type 2 diabetes,
atherosclerosis, and peripheral artery disease (PAD) significantly
increased during the last decades (5–9). Furthermore, the course
of micro- and macrovascular abnormalities is complicated in
obese and diabetic states by impaired wound healing (10, 11).
Here, we investigate the effect of a high fat diet compared with
a low fat/refined grain diet and a medium fat/whole grain diet on
insulin sensitivity and hindlimb recovery.

The regeneration of muscles after ischemia depends on
several aspects: restoration of blood flow, removal of damaged
cells, and resolution of inflammation, allowing myogenic stem
cells proliferation and differentiation. Blood flow restoration
also depends on microenvironmental cues (inflammation and
oxidative stress), including angio- and arteriogenesis, and
reperfusion of novel vessels (12).

High-fat diet (HFD) has a strong influence on post-ischemic
regeneration. Previous studies reported suppressed recovery of
muscles in animals on HFD in comparison with LFD (13–15).
Increase of circulating fatty acids activates phosphatase PTEN
and inhibits AMP-dependent kinase, dampening myofibers
maturation (13, 14). Regenerated muscles of mice on HFD have
lower functional characteristics even long after injury (15, 16).
Furthermore, HFD has an effect on microvascular remodeling
and endothelial function. HFD-induced insulin resistance
impairs microvascular function by lowering endothelial cell
nitric oxide production, resulting in reduced vasodilation and
secretion of proangiogenic factors (17, 18). Obese individuals

Abbreviations: AUC, area under curve; AMP, adenosine monophosphate; BSA,

bovine serum albumin; CD31, 68, cluster of differentiation type 31, 68; DMEM,

Dulbecco’s modified Eagle medium; FBG, fasting blood glucose; GBD, grain-

based diet; GTT, glucose tolerance test; GLUT1, 4, glucose transporters type 1,

4; GAPDH, glyceraldehyde phosphate dehydrogenase; HFD, high-fat diet; ITT,

insulin tolerance test; LFD, low-fat diet; OXPHOS, oxidative phosphorylation;

PAD, peripheral artery disease; PTEN, phosphatase and tensin homolog; RIPA,

radioimmunoprecipitation assay buffer; αSMA, α-smooth muscle actin; SDS,

sodium dodecyl sulfate; SEM, standard error mean; T2DM, type 2 diabetes

mellitus.

also exhibit chronic low-grade inflammation and oxidative
stress, conditions inhibiting restorative phase of regeneration
(16, 19–23). However, the recent study reports controversial
results, suggesting the positive role of HFD in post-ischemic
regeneration (24).

Low-fat and whole grain-based diets (LFD and GBD,
respectively), are predominant dietary interventions aimed at
prevention of obesity complications and cardiovascular diseases
(25–29). Indeed, LFD improves the prognosis of PAD due to
the restoration of blood flow and vascular health (30, 31). In
contrast, the role of GBD in a post-ischemic regeneration remains
not well-characterized. GBD demonstrates therapeutic potential
in liver regeneration and therapy of fatty liver diseases (32, 33).
Moreover, wheat and other whole grains promote survival and
proliferation of progenitor cells (34, 35). On the other hand,
whole grains cause reduction of angiogenesis and are used as a
part of antiangiogenic strategy in cancer therapy (36, 37).

The lack of studies on the role of GBD in post-ischemic
regeneration encouraged us to investigate its potential for
the improvement of hindlimb post-ischemic recovery. The
comparison of muscle and vascular regeneration on LFD, GBD,
andHFDwill help to distinguish the beneficial diet and to suggest
interconnections between metabolism and regeneration.

METHODS

Animals and Diets
Five-week oldmale C57BL/6Jmice (purchased from “Andreevka”
animal husbandry facility, Russia) were matched by body weight
and fasting blood glucose (FBG) level (body weight reference
range was from 17 to 23 g; FBG reference range was from 3.9
to 6.9mM). At the age of 6 weeks mice were randomized into
3 groups (7–8 animals per group) and a diet experiment was
started. Mice were kept under standard pathogen-free conditions
with food and water ad libitum and regular 12:12 light–dark
cycle. All diets were purchased from manufacturers: low-fat diet
(LFD) D12450H, “Research Diets,” USA; grain-based diet (GBD)
PK120, “Gatchina Animal Complete Feeds Factory,” Russia; high-
fat diet (HFD) D12451, “Research Diets,” USA.More information
about protein/fat/carbohydrates content and raw components
of diets are presented in Supplementary Tables 1, 2. The mice
were put on LFD, GBD, and HFD for 10 weeks. During the
experiment body weight, FBG and food consumption were
measured every 2 weeks. For the FBG measurements glucometer
Contour Plus One, “Ascencia Diabetes Care,” Switzerland was
used. Brief description of the study design is presented in
Supplementary Figure 1. This work can be accounted as an
explorative study and contains multiple outcomes. No power
calculation was used to determine the sample size because at the
start of our work as we did not have the data for expectative
range of outcomes, neither in our previous experiments nor
in the previous works. The animal experiment was performed
in accordance with the EU Directive 2010/63/EU for animal
experiments and approved by Institutional Ethics Board for
Animal Care (National Medical Research Center for Cardiology,
permit #385.06.2009).
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Intraperitoneal Glucose Tolerance and
Insulin Tolerance Tests
Glucose tolerance test (GTT) and insulin tolerance test (ITT)
were performed at the 10th week of experimental feeding. Mice
were fasted overnight and weighted before measurements. Blood
samples were collected from the tail vein by cutting the tip
of the tail by sterile scalpel; blood glucose level was measured
with glucometer. For GTT, 2 g/kg of glucose was injected
intraperitoneally in the form of a 10% sterile glucose solution.
The blood glucose level was measured before glucose injection
(0min) and in 15, 30, 45, 60, and 90min after glucose
administration. However, GTT does not allow to distinguish
insulin resistance in peripheral tissues and reduced capacity
of the pancreatic β-cells to insulin production. To resolve this
problem, we also performed ITT, where the plasma glucose
disappearance rate indicates whole-body insulin sensitivity and
correlates well with the gold-standard glucose clamp technique
(38). For ITT, 0.5 IU/kg of human insulin (Humulin, “Lilly
France GmbH,” France) was injected intraperitoneally. The
blood glucose level was measured before insulin injection
(0min) and in 15, 30, 45, 60, 90, 120, 150, and 180min after
insulin administration.

Hind Limb Ischemia Modeling and
Postsurgical Care
After 10 weeks of experimental feeding all mice underwent
surgical modeling of hind limb ischemia, which can serve as
a PAD animal model (39, 40). Mice were anesthetized by
intraperitoneal injection of 2.5% avertin solution. All surgical
manipulations were carried out in aseptic conditions under a
binocular microscope Leica M620 TTS (“Leica Microsystems,”
Germany). Unilateral induction of hind limb ischemia was
performed as previously described (41). Briefly, skin was incised
along the midline of the left hind limb and the femoral artery,
with its branches, and was ligated between its proximal part
and popliteal bifurcation. The blood vessel was excised between
the upper and lower ligatures with the sciatic nerve kept intact.
After that the skin was closed with 5–0 silk sutures, and animals
were placed in a chamber on a heated pad until full recovery.
After surgery, all animals received a 1.5mL bolus of warm sterile
saline subcutaneously to compensate for blood loss. Postsurgical
care included the saving of pre-surgical diet type, standard
pathogen-free conditions, and regular 12:12 light-dark cycle.
Moreover, laser Doppler perfusion measurement was performed
immediately after surgery (0 day) and on days 7, 14, and 21
post-surgery. At week 13, we carried out postsurgical GTT and
ITT as described above. After that mice were sacrificed by
lethal isoflurane inhalation, skin was dissected, and samples of
inguinal fat and ischemic skeletal musclem. Tibialis anterior were
collected and frozen in liquid nitrogen.

Laser Doppler Perfusion Measurement
For the subcutaneous blood flow recovery assessment in ischemic
hind limb, we used laser Doppler scanner (“Moor Instruments
Ltd,” UK). Animals were anesthetized by avertin intraperitoneal

injection as described above. Perfusion was measured (n = 3–
4) on the plantar surface of the animal’s feet, and the obtained
data were analyzed by Moor Image Review software. Scans took
up to three consequent measurements with minimal variations
(<10%). Obtained results were normalized on blood flow in the
intact limb and presented as a relative perfusion (%).

Histological Methods and Morphometry
After skin dissection, the femoral quadriceps and m.Tibialis
anterior were harvested and frozen in TissueTek medium
(Sakura Finetek, Netherlands). Tissue sections (7µm thick) were
prepared on glass slides and stored at−80◦C.

Hematoxylin/Eosin Staining
Tissue sections were fixed in 4% paraformaldehyde and washed
with distilled water. Staining by Mayer’s Hematoxylin was
performed during 1–2min and dye was differentiated in flowing
water (1min). After that the slides were stained in eosin B
solution (3min). The slides were washed with 70% ethanol and
incubated subsequently in 96% ethanol, 100% ethanol and xylene
(10min). Slides were mounted in Cytoseal-60 (“Richard-Allen
Scientific,” USA) under coverslips. Staining was visualized on
scanning microscope Leica ScanScope CS, “Leica Microsystems,”
Germany and analyzed by Aperio ImageScope software.

Immunofluorescent Staining
Tissue sections were fixed in 4% paraformaldehyde solution,
washed, and incubated in blocking solution (2% bovine
serum albumin; 10% of secondary antibody’s donor serum;
phosphate buffer solution). Slides were incubated overnight
with primary antibodies (anti-CD68, #137001, “Biolegend,” USA;
anti-CD31, 550274, “BD Biosciences Pharmingen,” USA; anti-
α-smooth muscle actin (α-SMA), ab5694, “Abcam,” UK). After
incubation with primary antibodies, the sections were stained
with AlexaFluor488-conjugated secondary antibody (#A21206,
“Thermo Scientific,” USA) or with AlexaFluor594-conjugated
secondary antibody (#A11032, “Thermo Scientific,” USA); all
slides were counterstained with DAPI (“Sigma-Aldrich,” USA).
Staining was visualized on a fluorescent microscope Zeiss AXIO
Observer A1 (Zeiss, Germany) and analyzed by ImageJ freeware.
Morphological evaluations were performed on Day 21 after
surgery or on the 13th week of diet.

Ex vivo Glucose Uptake
Skeletal muscle biopsies were harvested from the femoral
quadriceps. Samples were immediately transferred to warm
DMEM with 1 g/l glucose supplemented with 0.1% BSA and
incubated at 37◦C, 5% CO2 for 3 h. Explants were minced into
fine pieces and washed twice in DMEM with no glucose; further
manipulations were performed in DMEM with no glucose.
Insulin was added for 30min and glucose transport was initiated
by the addition of 100µM of 2-deoxyglucose (Sigma-Aldrich,
USA) and 0.2 uCi/ml of [3H]-2-deoxyglucose (#ART0103B,
American Radiolabeled Chemicals, USA) for 20min. Uptake
was terminated with three washes with ice-cold DPBS, after
which the samples were lysed in RIPA buffer (50mM Tris-
HCl, pH 8.0, 150mM NaCl, 1% Triton X-100, 0.5% sodium
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deoxycholate, 0.1% sodium lauryl sulfate). Samples were added
into Beckman ReadySolv HP scintillation fluid (Beckman, USA).
The radioactivity was measured with a RackBeta counter (LKB
Wallac, Sweden), and the results were protein-normalized (DC
Protein Assay Kit, Bio-Rad, USA).

Western Blotting
Skeletal muscle biopsies from the femoral quadriceps were
frozen in liquid nitrogen and pulverized in liquid nitrogen
using porcelain mortar and pestle in 1 µl of RIPA buffer
supplemented with proteases (cOmplete Tablets; Roche,
Germany) and phosphatases (10mM sodium glycerophosphate,
20mM sodium pyrophosphate, 10mM sodium fluoride, 1mM
sodium orthovanadate) inhibitors per 1mg of tissue. The extracts
were heated for 30min at 56◦C in a sample buffer (65.8mM
Tris-HCl, pH 6.8, 2.1% SDS, 26.3% (w/v) glycerol, 0.01%
bromophenol blue), separated by Laemmli SDS-PAGE, and
then the proteins were transferred to polyvinylidene difluoride
membrane. Membranes were blocked in 5% solution of fat-free
milk on TBS containing 0.1% Tween 20 (TBST) and incubated
with the primary and secondary antibodies in 1% milk in TBST
in dilutions suggested by the manufacturer. We used primary
antibodies: anti-GLUT1 (ab652, Abcam, UK), anti-GLUT4
(ab166704, Abcam, UK), and anti-GAPDH (sc25778, Santa
Cruz, USA). We used secondary antibodies: anti-rabbit IgG
(ab6721, Abcam, USA) and anti-mouse IgG (#115-035-146,
Jackson ImmunoRes, USA) conjugated with horseradish
peroxidase. The protein bands were visualized using Clarity ECL
kit (BioRad, USA) and Fusion FX gel-documentation system
(Vilber-Lourmat, France) in the video mode to ensure that digital
results are in the linear range. Quantification was performed
using the GelAnalyzer2010 software.

Statistical Analysis
Data is expressed as mean ± standard error mean (SEM)
for each group. Software GraphPad Prism 8.0 was used for
the statistical analysis and graphs imaging. At each time
point, we compared 3 groups (LFD, HFD, and GBD) and did
not analyze the difference between time points. AUCs were
calculated by Gagnon’s method (42). Significance of multiple
differences (3 groups) was calculated by Kruskal–Wallis test with
statistical significance threshold set at p < 0.05. Additionally,
significant differences between the groups were found, a post-hoc
Dunn’s multiple comparison test was performed, and statistical
significance threshold also set at p < 0.05.

RESULTS

Both HFD and GBD Impair Glucose
Tolerance in Mice
The insulin sensitivity and glucose tolerance of mice fed LFD,
GBD, or HFD were estimated by analyzing body weight, FBG,
GTT, and ITT at week 10.

Body weight was significantly higher in HFD and GBD groups
from the 4th to the 9th weeks of feeding compared with LFD-
fed mice. Moreover, GBD-fed mice had higher body weight
in comparison with HFD, despite a tendency to increase food

intake only in the HFD group (Figures 1A,B). After 10 weeks of
experimental feeding, animals in both HFD and GBD displayed
a significantly increased FBG level in comparison with LFD-
fed mice; the difference between HFD and GBD groups was
nonsignificant (Figure 1C). Based on these results, we suggest the
development of impairments in glucose metabolism not only in
HFD but in GBD-fed mice.

Also we investigated the physiological response of animals
on administration of glucose (GTT) or insulin (ITT) for the
evaluation of systemic insulin sensitivity. GTT demonstrated
elevated blood glucose 60, 90, and 120min after glucose injection
in the HFD group relative to LFD. HFD also displayed higher
blood glucose level in comparison with the GBD group at
15min of GTT. The AUC was greater in the HFD group than
in LFD, indicating an impaired glucose tolerance in HFD-
fed mice (Figures 1D,E). The analysis of ITT results revealed
differences in curves (reduction of blood glucose level was
stronger in LFD group in comparison with HFD and GBD
groups at 15 and 30min, and blood glucose level was stable
and higher in GBD group in comparison with LFD and HFD
groups from 45 to 120min of ITT (Figure 1F). However, AUC
ITT was not significantly different between all the three diet
groups (Figure 1G). GTT and ITT data together testify to the
development of impaired glucose tolerance in the HFD group
at 10 week of diets and healthy metabolic phenotype in the
LFD group.

Systemic Metabolic Parameters of LFD-,
HFD-, and GBD-Fed Mice Remain Similar
During Skeletal Muscle Recovery and
Postsurgical Care
At week 10 of feeding surgical modeling of hind limb, ischemia
was carried out with consequent 3 weeks recovery. We analyzed
the systemic metabolism of mice fed with different diets during
postsurgical care and ischemic skeletal muscle recovery.

Immediately, prior hind limb ischemia modeling and on days
7 and 14 of postsurgical care GBD-fed mice had significantly
elevated body mass. Nevertheless, on day 21 of postsurgical care
all mice had equal body weight and food intake (Figures 2A,B).
Despite the similarity of body mass, FBG level was significantly
higher in HFD and GBD groups in comparison with LFD group
(Figure 2C). The analysis of insulin sensitivity at week 13 of diet
showed results similar to week 10: AUC GTT was significantly
higher in HFD group in comparison with LFD and GBD groups
(Figures 2D,E), whereas AUC ITT was equal in all three groups
(Figures 2F,G). These results suggest the development of glucose
intolerance in the HFD group and relatively healthy metabolic
phenotype in the LFD group. GBD-fed mice were characterized
by elevated FBG level, normal AUC GTT, and normal AUC ITT
(in contrast with the 10-week timepoint, Figure 1F). Moreover,
the adipocyte’s average size was increased in mice both on HFD
and GBD in comparison with LFD-fed mice (Figure 2H). These
results suggest that GBD mice do not develop glucose intolerant
phenotype as HFD, but have positive energetic balance and mild
metabolic alterations.
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FIGURE 1 | Metabolic parameters of LFD-, HFD-, and GBD-fed mice after 10 weeks of feeding, pre-surgery state. (A) Development of body weight; (B) Food intake

level; (C) Fasting blood glucose level; (D) Kinetics of blood glucose level during GTT; (F) Kinetics of blood glucose level during ITT. The area under the curve (AUC) of

GTT and ITT are shown in (E,G), respectively. LFD, low fat diet; HFD, high fat diet; GBD, grain based diet; FBG, fasting blood glucose; GTT, glucose tolerance test;

ITT, insulin tolerance test. Data are represented as mean ± SEM, Kruskel-Wallis test with post-hoc Dunn’s test, significance threshold p < 0.05.

LFD-Fed Mice Have Less Macrophage
Infiltration During Post-ischemic Skeletal
Muscle Recovery in Comparison With
HFD- and GBD-Fed Mice
On day 21 of postsurgical care after hind limb ischemiamodeling,
we analyzed morphology and inflammatory macrophages
infiltration of ischemic skeletal muscle.

Necrotic area in m. tibialis, an important reporter of post-
ischemic recovery, was not significantly changed between dietary
groups. However, in the LFD group we found a tendency
to reduce necrotic area in comparison with other dietary
groups (Figure 3A). Regarding macrophage infiltration, the
LFD group had significantly lower CD68-macrophage content
in comparison with either HFD or GBD groups (Figure 3B).
In summary, LFD-fed mice exhibited more hopeful results
in necrotic area and macrophage infiltration in comparison
with HFD and GBD groups, which had a tendency to
higher necrosis and inflammation in m. tibialis during post-
ischemic recovery.

GBD-Fed Mice Demonstrate Impaired
Arteriogenesis and Tendency to Decreased
Post-ischemic Blood Flow Recovery
Angiogenesis plays an important role in post-ischemic recovery
of skeletal muscle allowing supply of nutrients and soluble factors
for vessel growth.

Laser Doppler scanning analysis has shown that on day 7
after surgery subcutaneous blood flow was equal in all the
three groups. On day 14 after surgery GBD-fed mice had
significantly decreased recovery of subcutaneous blood flow in
comparison with HFD mice. On day 21 after surgery, GBD-
fed mice also had the lowest rate of subcutaneous blood
flow in comparison with HFD and LFD groups, but this
difference was statistically insignificant (Figures 4A,B). We can
tightly speculate that GBD-fed mice have a trend to impaired
recovery of blood flow in ischemic limb. Histological analysis
of angiogenesis in ischemic m. tibialis demonstrated statistically
equal grade of capillaries without lumen (Figures 4C,D),
enhanced formation of capillaries with lumen in HFD-fed
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FIGURE 2 | Metabolic parameters of LFD-, HFD-, and GBD-fed mice after hind limb ischemia surgical modeling at week 13, 21 days after hind limb ischemia

modeling. (A) Body weight of experimental animals over a time course of post-surgical recovery; (B) Food intake level; (C) Fasting blood glucose level; (D) Kinetics of

blood glucose level during GTT; (F) Kinetics of blood glucose level during ITT. The area under the curve (AUC) of GTT and ITT are shown in (E,G), respectively. (H)

Evaluation of the average white adipocyte size. LFD, low fat diet; HFD, high fat diet; GBD, grain based diet; FBG, fasting blood glucose; GTT, glucose tolerance test;

ITT, insulin tolerance test. Data are represented as mean ± SEM, Kruskel-Wallis test with post-hoc Dunn’s test, significance threshold p < 0.05. Scale-bar = 300 um.
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FIGURE 3 | LFD-fed mice have less necrotic area and macrophage infiltration of m. tibialis in comparison with HFD- and GBD-fed mice. (A) Representative images of

hematoxylin/eosin stained sections; (B) Percentage of necrotic area of ischemic m. tibialis; (C) Representative images of CD68-stained sections; (D) Percentage of

macrophage infiltration of ischemic m. tibialis; m. tibialis is delineated with white dashed line. CD68, cluster of differentiation type 68. Data are represented as mean ±

SEM, Kruskel–Wallis test with post-hoc Dunn’s test, significance threshold p < 0.05.

mice ischemic m. tibialis (≈15% enhancing; Figures 4C,E), and
dramatical suppression of arteriogenesis in GBD-fed mice (two-
fold decrease; Figures 4C,F). In this light, we can suggest that
tendencies to impaired recovery of both blood flow and necrotic
area, likewise high macrophage infiltration level, can be caused
by disturbances in arteriogenesis in ischemic skeletal muscle.

Downregulated Ischemic Hind Limb
Recovery Under GBD Concatenates With
Reduced Glucose Uptake and GLUT4
Expression in Skeletal Muscle
To provide insight into possible mechanisms of impaired
arteriogenesis, we analyzed the ischemic skeletal muscle energy
supply with carbohydrates under different dietary interventions.

High-fat diet or GBD feeding leads to suppression of glucose
uptake by skeletal muscle (Figure 5A). This result is consistent
with impaired blood flow recovery and arteriogenesis in ischemic
hind limbs of GBD-fed mice. Analysis of the main glucose
transporters expression showed equal level of GLUT1 expression
(Figures 5B,C), but decreased level of GLUT4 expression in
skeletal muscle of GBD-fed mice (Figures 5B,D). These data
show the role of diet and insulin sensitivity in energy supply of
regenerative processes.

DISCUSSION

Whole grain and low-fat diets offer benefits during different
metabolic complications in comparison with high fat diets.

In our work, HFD-fed mice had impaired glucose tolerance
and adipocyte hypertrophy in contrast to LFD. GBD-fed
mice had intermediate metabolic phenotype, demonstrating
impaired FBG and adipocytes hypertrophy together with
normal glucose tolerance and insulin sensitivity. These data
suggest that GBD induces the initial stage of metabolic
abnormalities. GBD composition differs from LFD in
simple sugars, oligo-, and polysaccharides content, and in
the presence of phytohormones leading to development of
a distinct metabolic phenotype (43, 44). Our observations
are inconsistent with studies, reporting improvement
of insulin sensitivity on GBD both in animals (45, 46)
and humans (47, 48). However, other investigations
demonstrated no influence of whole grain intake on insulin
sensitivity (49, 50). Thus, further we analyze post-ischemic
recovery under normal metabolic conditions (LFD), initial
metabolic complications (GBD), and impaired glucose
tolerance (HFD).

Despite differences in severity of metabolic impairments, we
found a similar degree of the m. tibialis necrosis in all groups
on day 21 after ischemia. However, muscle recovery tended
to decline in HFD- and GBD-fed mice in comparison with
LFD. Furthermore, our findings indicate increased macrophage
infiltration of m. tibialis in HFD- and GBD-fed mice. This is
in accordance with previous reports in the HFD model and
supports the idea that elevated inflammation promotes necrosis
development (Figure 3) (16, 51). However, GBD was reported
to suppress inflammation both in the experimental and clinical
studies in contrast to our results (37–40). Probably, GBD can
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FIGURE 4 | GBD-fed mice have impaired blood flow recovery in ischemic limb via impairment of 2-SMA-positive vessels formation in m. tibialis. (A) Representative

Laser Doppler scanning images of subcutaneous blood flow in mice from experimental groups obtained on day 21 after surgical ischemia induction; (B) Limb

perfusion graph indicating relative perfusion values; (C) Representative image of m.tibialis sections stained for CD31, αSMA, and DAPI; graphical presentation of blood

vessel density analysis with average group values per field of view: CD31+ capillaries with lumen (D), CD31+ capillaries without lumen (E), and αSMA-positive vessels

(F). CD31, cluster of differentiation type 31; αSMA, alpha smooth muscle actin; DAPI, 4
′

,6-diamidino-2-phenylindole. Data are represented as mean ± SEM,

Kruskel–Wallis test with post-hoc Dunn’s test, significance threshold p < 0.05. Scale-bar = 50µm.

regulate inflammation and promote muscle regeneration by
microbiome-mediated mechanisms (40).

Restoration of blood flow after ischemia is essential for tissue
regeneration and to regain its functional activity. Ischemic limb

perfusion was partially restored after day 21 of recovery period
in all the experimental groups. However, in mice fed GBD blood
flow was the lowest. Further, we found that the number of
capillaries was equal in all the groups, and only the number of
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FIGURE 5 | GBD-fed mice have impaired basal glucose uptake in complex with suppressed GLUT4 expression. (A) Statistical analysis of insulin-stimulated

[3H]-2-deoxyglucose uptake; (B) Representative Western blots of GLUT1 and GLUT4 expression, GAPDH, loading control; (C) Statistical analysis of GLUT1

expression, GAPDH normalized; (D) Statistical analysis of GLUT4 expression, GAPDH normalized. GLUT1, glucose transporter type 1; GLUT4, glucose transporter

type 4; GAPDH, glyceraldehyde phosphate dehydrogenase. Data are represented as mean ± SEM, Kruskel–Wallis test with post-hoc Dunn’s test, significance

threshold p < 0.05.

capillaries with lumen was increased on HFD. This observation
coincides with findings that HFD can accelerate vascularization
and skeletal muscle regeneration in ischemic animal model (24).
In contrast, the density of vessels with smooth muscle wall was
decreased on GBD, suggesting attenuation of arteriogenesis. This
effect can bemediated via changes of inflammatory state on GBD,
known to affect arteriogenesis (52–55).

Impaired skeletal muscle regeneration can be the consequence
of deregulated metabolism and energetic substrates intake. We
found that m. tibialis explants of HFD- and GBD-fed mice
had suppressed glucose uptake in comparison with the LFD
group. We suggest that HFD-fed mice probably use lipids
for energy supply of regenerative processes and do not need
high glucose uptake rate. Indeed, suppression of basal glucose
uptake in muscles of the HFD group was not associated with
impaired angiogenesis/arteriogenesis or muscle regeneration. In
contrast, downregulation of glucose uptake in muscle of GBD-
fed mice was accompanied with necrosis and decreased blood

flow. Probably, insufficient nutritional supply of satellite cells and
smooth muscle progenitor cells on GBD leads to an impairment
of muscle regeneration and arteriogenesis processes. In normal
conditions, both skeletal muscle recovery and angiogenesis
stimulate GLUT4 expression for increase of energy intake
in damaged cells (56, 57). However, GLUT4 expression was
decreased on GBD, which could be the consequence of excessive
blood glucose level (58, 59). Therefore, we suggest that a high
dietary carbohydrate level on GBD leads to hyperglycemia,
reduction of GLUT4 expression, and decrease of energy supply
of regenerative processes.

In summary, we suggest that different dietary backgrounds
can critically affect the processes of angiogenesis and muscle
recovery after ischemia. LFD background supports more effective
muscle regeneration in comparison with HFD and, especially,
GBD. According to our results GBD cannot be used as a
relevant control instead of LFD in works of regeneration
and obesity.
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CONCLUSION

We conclude that dietary background determines the rate
of post-ischemic regeneration including angiogenesis, skeletal
muscle recovery, and metabolic activity. The most effective
regeneration is supported by LFD, whereas the lowest rate of
regeneration occurs on GBD. It can be related to impaired
glucose uptake and GLUT4 expression on GBD leading to
insufficient energy supply. The obtained results raise a question
about the applicability of grain-based dietary interventions
during PAD and post-ischemic recovery.
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