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Abstract
The anomaly detection for communication networks is significant for improve the quality of communication services and 
network reliability. However, traditional communication monitoring methods lack proactive monitoring and real-time alerts 
and the prediction effect of a single machine learning model on communication data containing multiple features is not ideal. 
To solve the problem, A prediction-then-detection anomaly detection method was proposed, and quantitative assessment 
of network anomalies was developed. Specifically, anomaly-free data was obtained by eliminating outliers, and the long 
short-term memory (LSTM) and autoregressive integral moving average (ARIMA) were combined via residual weighting to 
predict the future state of the key performance indicators (KPI) without outliers. Anomalies were identified using the error 
comparison between the prediction and actual values, and the network condition was quantified using the scoring method. 
It is observed that the proposed LSTM-ARIMA hybrid model has better prediction effect, which can well represent the per-
formance of KPIs of the future state, and the prediction-then-detection anomaly detection method has excellent performance 
on both precision and recall.

Keywords Anomaly detection · Prediction · Hybrid model · Quantification

1 Introduction

Communication network has long become an important 
way of information exchange. With the rapid development 
of intelligence and information technology, the security 
requirements of communication network are getting more 
and more important. Network management is an important 
technology for maintaining the security of communication 
networks. Meanwhile, network monitoring is the most fun-
damental part of network management, aiming to improve 
communication service quality, resource utilization, and 
network reliability. Traditional communication network 
monitoring is achieved through reporting alarms, but with 
the complication and diversification of the network, only 

reporting alarms cannot satisfy the requirements of proactive 
monitoring and real-time alarms.

Analyzing the anomalies of network performance index 
data allows proactive monitoring for abnormal or defective 
conditions in the communication network. The threshold 
method is the most commonly used method in network 
anomaly detection, Ref. [1] applied statistical methods to 
set thresholds and successfully detected anomalies in the 
traffic flow. Ref. [2] utilized ARMA (Autoregressive mov-
ing average model) to predict confidence intervals to set 
thresholds for network outlier detection and achieved better 
results. Ref. [3] adopted firewalls, intrusion detection sys-
tems and intrusion prevention systems to calculate baseline 
and mean and standard deviation to define thresholds. The 
threshold method is essentially a method based on statistical 
hypothesis testing, which is too static and cannot reflect the 
dynamic changing characteristics of network performance 
indicators. The general threshold value is determined based 
on the experience of the operation and maintenance person-
nel, however, a narrow threshold range will lead to false 
alarms and a wide will lead to missed alarms. The setting of 
the threshold value is the key to the threshold method, which 
directly affects the accuracy of anomaly detection.
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Intrusion detection technology is an effective way to 
deal with network threats, Anomaly-based network intru-
sion detection is an important research and development 
direction of intrusion detection [4], and machine learning 
techniques are becoming the primary tools for network 
intrusion detection with the popularity of machine learn-
ing.Machine learning-based anomaly detection methods for 
communication networks can be divided into three types: 
supervised learning, unsupervised learning and semi-
supervised learning. According to the supervised approach, 
labeled data are exploited to single out a feature subset to 
classify network anomalies [5]. As in Ref. [6], support vec-
tor machines (SVM) was used to distinguish disk operating 
system (DOS) attack patterns and detect anomalous network 
conditions. Ref. [7] applied particle swarm algorithm and 
gravitational search algorithm to optimize random forest for 
intrusion detection. Furthermore, many solutions have been 
investigated by supervised learning [8–12]. Unsupervised 
learning uses unlabeled samples to train the model and is a 
better solution in the absence of sufficient prior knowledge 
and labels [13, 14]. Ref. [15] adopted clustering methods for 
anomaly detection in networks and proposed the data-driven 
distance metric to deal with clustered network anomalies. 
Ref. [16] utilized a sample of log files of the network for 
unsupervised learning to monitor the network in real time. 
In Ref. [17], an unsupervised deep learning framework was 
constructed to monitor and visualize network anomalous 
discrete sequences such as payload and SYSCALL traces. 
Semi-supervised approach is based on a mixed strategy, 
striving to enrich an unlabeled set with some labeled data, 
so as to improve the feature selection phase [5]. For example, 
Ref [18] proposes the SemiADC model for semi-supervised 
anomaly detection in dynamic communication networks, and 
experimental evaluation on real-world datasets demonstrates 
the effectiveness of SemiADC. Unsupervised and the semi-
supervised approaches exhibit the drawback of neglecting 
potential correlations among features, resulting in the loss 
of crucial (as well as deterministic) piece of information. 
On the other hand, a supervised approach can offer optimal 
results, provided that the data are correctly labeled. This 
case typically occurs in a controlled network environment, 
where, with the help of network analyzers, it is possible 
to automatically label the type of passing data traffic [5]. 
Therefore, this paper uses supervised learning for anomaly 
detection.

In recent years, work on network traffic (a kind of KPI in 
communication network) prediction has attracted the atten-
tion of researchers. Hanyu Yang et al. [19] utilized the (sim-
ulated annealing) SA-optimized (autoregressive integrated 
moving average model) ARIMA-BPNN (back propagation 
neural network) model to predict network traffic with some 
improvement in accuracy over the traditional network traf-
fic prediction model. Guo et al. [20] designed a dynamic 

modification neural network model to select different neural 
networks and predict network traffic, which decreased the 
prediction value error and time skew of the inflection points. 
ARIMA model is a classical forecasting model, and many 
investigations have indicated that it has good performance 
in stationary sequence forecasting. For instance, Kim et al. 
[21] applied an ARIMA model for dynamic bandwidth pro-
visioning in prior prediction of traffic. Salman [22] adopted 
ARIMA to weather forecasting tasks with excellent results. 
Extensive investigations have confirmed the excellent perfor-
mance of LSTM models for nonlinear and seasonal data pre-
diction, especially for time series prediction. Luo et al. [23] 
long short-term memory (LSTM) combined with XGboost 
to predict the number of COVID-19 infections in the United 
States. Song et al. [24] utilized (convolutional neural net-
works) CNN-LSTM to predict the heating load of smart dis-
trict heating system, the CNN was used to extract the spatial 
characteristics of the heating load and the LSTM was used 
to extract the temporal characteristics of the heating load, 
which has evident accuracy advantage. In addition, LSTM 
has been applied to the prediction of power generation [25], 
remaining engine life [26], and coal mine safety [27] with 
excellent results. The above literature review demonstrates 
that both ARIMA and LSTM have unique advantages in time 
series processing. References [28–30] proved that hybrid 
methods could effectively improve forecasting accuracy and 
complement each other and disadvantages of previously pro-
posed models, enabling the actual data to be captured and 
the forecasting accuracy to be improved [31]. In this paper, 
the advantages of ARIMA and LSTM were combined to 
predict the network KPIs.

The rest of this paper is organized as follows: The second 
part introduces the algorithmic models used in this paper, 
including new communication network anomaly detection 
methods, LSTM, ARIMA and combined models. In the third 
part, the hybrid model and the proposed anomaly detection 
method are experimented and analyzed. Our paper closes 
with summary of the researches methods in the article.

2  Model description

2.1  LSTM

Recurrent neural networks (RNN) are able to connect previ-
ous information to the current task and have a unique advan-
tage in dealing with time series. However, when the time 
interval becomes large, RNN will have problems such as 
gradient disappearance and explosion. Long and short-term 
memory network (LSTM) solves such problems by using 
long and short-term memory units, and the principle of 
LSTM is described below.
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Figure 1 shows the structure diagram of LSTM. The LSTM 
is consisted of a cell state and three gates, where the forget-
ting gate, shown in Fig. 1a, is responsible for discarding some 
information from the cell state Ct−1, it will read the informa-
tion from ht-1 and xt, output a number from 0–1 to the cell state 
Ct−1, and decide how much information to keep. As in Eq. (1):

where, ft is the output of the forgetting gate, Wf  is the weight 
matrix of the forgetting gate, bf  is the bias, �(x) is the activa-
tion function, which is generally a sigmod function, ht−1 is 
the input of the cell at the previous moment, and xt is the 
input of the cell at the current moment.

The input gate, shown in Fig. 1b, is responsible for allowing 
a certain amount of information from the current moment to 
be added to the cell state. It determines the updated informa-
tion it through the function σ, and forms the alternative update 
message C̃t via tanh. As in Eqs. (2) and (3):

where, Wi and WC are the input gate weight and the weight 
matrix of the tanh activation function, and bi and bC are the 
bias vectors.

(1)ft = �
(
Wf ⋅

[
ht−1, xt

]
+ bf

)

(2)it = �
(
Wi ⋅

[
ht−1, xt

]
+ bi

)

(3)C̃t = tanh
(
WC ⋅

[
ht−1, xt

]
+ bC

)

The updated cell state Ct is obtained from Eqs. (2) and (3) 
as:

The output gate determines what information will be out-
put, and its equation is shown in Eqs. (5) and (6):

where, Wo is the output gate weight matrix and bo is the bias 
vector.

2.2  ARIMA

ARIMA is a typical time series model consisting of three 
components, AR (auto-regression), MA (moving average), 
and differencing degree d [19, 32]. It is suitable for dealing 
with stable time series problems and can be expressed as:

where, p represents the auto-regression parameters, q rep-
resents the moving average parameters, yt represents the 
model parameters to be estimated, ai is the autocorrelation 

(4)Ct = ftCt−1 + itC̃t

(5)ot = �
(
Wo

[
ht−1, xt

]
+ bo

)

(6)ht = ot ∗ tanh
(
Ct

)

(7)yt =

p∑
i=1

aiyt−i +

q∑
j=1

�j�t−j

Fig. 1  Structure diagram of LSTM
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coefficient and �t−j is the white noise. When the sequence 
is unstable, the sequence should be stabilized by data dif-
ferencing, d is the number of times the sequence becomes 
stable by differencing.

Seasonal ARIMA (SARIMA) [33] adds seasonal compo-
nents (P, D, Q) to ARIMA, and this paper uses the SARIMA 
model for rolling forecasts [34, 35].

2.3  Model of LSTM‑SARIMA combination based 
on residual assignment

For time series forecasting of multiple indicators, a single model 
often does not predict multiple indicators well, so we apply a 
hybrid model to solve this problem. In this paper, we applied 
a hybrid model based on residual weighting to predict network 
performance metrics. The residual weighting gives the corre-
sponding weight to the model at that moment based on the mag-
nitude of the predicted residuals of a single model at the previous 
moment, the calculation formulation is:

where, �i(t − 1) is the weight of the i-th model at moment 
t-1, �l(t − 1) the squares of the prediction errors of the i-th 
model at moment t-1, and n is the number of models.

2.4  Anomaly detection method

In the field of communication networks, the fixed-thresh-
old method is often used for anomaly detection of network 
KPIs. Although the process is simple, the fixed-threshold 
method often leads to unsuitable thresholds for detection 
of time-series data with obvious periodicity in communica-
tion networks, such as traffic and uplink PRB utilization. 
As shown in Fig. 2: threshold 1 selects the maximum value 
of the workday’s KPI, which causes most of the data from 
the week days and festivals to be mistakenly assumed to 
be abnormal. Threshold 2 selects the maximum value for 
festivals, which also leads to detection of no abnormalities 
and is also unrealistic.

In this paper, we adopt the anomaly detection approach of 
prediction-then-detection. As shown in Fig. 3, historical data 
is used to predict KPIs for future period, and the predicted 
value is compared with the actual value, when the status is 
far apart from the predicted status at one timestamp, it is 
considered an anomaly. Process chart of anomaly detection 
is shown in Fig. 4. This method solves the shortcoming that 

(8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

f
�
xt
�
=

1

n

n∑
i=1

�i(t − 1)fi
�
xt
�

�i(t − 1) =

1

�l (t−1)∑n

i=1

1

�l (t−1)

s.t.

n∑
i=1

�i(t − 1) = 1,�i(t − 1) ≥ 0.
the fixed-threshold method cannot handle periodic problems, 
while the accuracy of anomaly detection depends on the 
performance of the prediction model. Specifically:

1. Data pre-processing, including outlier processing and nor-
malization, is used to predict KPI data in the absence of 
anomalies.

2. The LSTM and SARIMA models were used to predict 
the pre-processed data, respectively.

3. The hybrid model was obtained using the residual 
assignment method. Use the hybrid Model to predict 
the pre-processed data.

4. Calculate the error and anomaly level of each point com-
pared with the real data.

5. The anomaly classification model is constructed using 
random forest to obtain the weights of each indicator.

6. The weights are multiplied with the anomaly level of 
each indicator to get the anomaly level of the communi-
cation network.

3  Experiments and analysis

3.1  Data processing

The experimental data in this paper are obtained from 
Huainan City China Mobile. It is cell-level network history 

Fig. 2  Fixed-threshold method

Fig. 3  Prediction-then-detection method
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performance for the time period of March 10, 2020–June 
11, 2020, with data collected at a granularity of 1 h, i.e., 24 
times per day, and the moment of collection is every hour 
on the whole hour. The main KPIs are RRC connection suc-
cess rate, handover success rate, traffic, wireless connection 
rate, RRC reconstruction rate, uplink PRN utilization, etc., 
as shown in Fig. 5.

From Fig. 5, we observed that the traffic has the same 
trend as the uplink PRB utilization, and the RRC connection 
success rate has the same trend as the wireless connection 
rate, showing that we only need to select four of these KPIs 
for anomaly quantitative evaluation. In this paper, RRC con-
nection success rate, handover success rate, RRC reconstruc-
tion success rate, and uplink PRB utilization were selected 
as inputs for anomaly evaluation.

Before forecasting, we need to process the outliers in the 
original data to better predict the KPIs in the normal state. 
Given the periodicity and tendency of the KPI time series, 
outliers were handled in the following manner:

After outlier processing, four KPIs were obtained as illus-
trated in Fig. 6.

In order to eliminate the increase in model training time 
caused by anomalous sample points and to make the model 

(9)

{
y(t) =

y(t−1)+y(t+1)

2
y(t) ii outlier, y(t − 1) and y(t + 1) is normal

y(t) = y(t − 24)y(t) is outlier, y(t − 1) or y(t + 1) is also outlier

learn the laws of time series better, the normalization method 
was used as follows:

where, x1 is the normalized data, x is the sample data, and 
max(x) and min(x) are the maximum and minimum values in 
the sample data. The normalized data is divided into training 
set and test set according to the ratio of 7:3.

3.2  Predcition

For the four KPIs mentioned in Sect. 3.1, a single model 
does not predict each KPI well. Take the example of PRB 
utilization and wireless success rate. Experiments founded 
that LSTM is suitable for the prediction of uplink PRB uti-
lization, On the contrary, the SARIMA rolling prediction 
model has better performance in handover success rate. 
Rationale is that SARIMA rolling regression is suitable for 
data with excellent stationarity, and LSTM is suitable for 
nonlinear data with prominent temporal characteristics. The 
stationarity of the handover success rate is better than that of 
the uplink PRB utilization, while the time periodicity of the 
uplink PRB utilization is more obvious. Figure 7 illustrates 
the prediction effect of the two prediction models on the 
uplink PRB utilization and handover success rate.

(10)x1 =
x − min(x)

max(x) − min(x)

Fig. 4  Process chart of anomaly 
detection
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Fig. 5  KPI data

Fig. 6  KPIs after outlier processing
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Aiming at the problem that the single model cannot be 
applied to the prediction of four types of KPIs. In this paper, 
a hybrid model based on residual weighting LSTM-rolling 
SARIMA is proposed. Various parameters of both models 
need to be determined before the hybrid model predictions 
to be made.

A stationarity test is required before using SARIMA, 
after which the values of p, d and q are determined based on 
ACF and PACF plots. The following is a stationarity analysis 
using the handover success rate as an example. As indicated 

in Fig. 8, the stationarity of the handover success rate data is 
not satisfactory. After performing the first-order difference 
for the handover success rate to have a better prediction by 
SARIMA, the results are shown in Fig. 9. The ADF test 
and white noise test (Ljung-Box test) were performed after 
the first-order difference of the data, the results are shown 
in Table 1. As can be seen from Table 1, T value are less 
than 1% value, 5% value and 10% value, P value < 0.05, so 
there is no unit root and it is a stationary data. All LB_P 
value < 0.05 means that the data is not white noise data.

Fig. 7  Prediction effect of LSTM and SARIMA for two KPIs

Fig. 8  Smoothness test chart of handover success rate
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As indicated in Fig. 9, the data after first-order differ-
encing is stable with d = 1. Then the trailing and ending of 
the ACF and PACF graphs show that p = 0 and q = 1. Both 
ACF and PACF have anomalous changes at lag = 24, and 
both are positive, then it is given that P = 1, Q = 0, and the 

period is 24, and generally D is chosen to be 1. The model 
can be derived as SARIMA (0,1,1) (1,1,0)24. The follow-
ing parametric significance test residual white noise test 
were performed on the model and the results are shown 
in Tables 2 and 3. From the P >|z| column in Table 2, 
the P value of each variable is less than 0.01, so the plus 
hypothesis is rejected at the significance level of 0.01, and 
the coefficient of each variable in the model passes the 
significance test, and it can be considered reasonable to 
include these variables in the fitted model. From the test 
results in Table 3, it can be seen that the p-values of the 
Q-statistics are greater than 0.05 at the delayed order 1–12 
of the residual series, and the original hypothesis is not 
rejected at the significance level of 0.05, which means 
that the residuals are white noise series, indicating that the 

Fig. 9  Smoothing test chart after first-order differencing

Table 1  The results of ADF test and white noise test

ADF test White noise test

T value − 3.962659 LB_P value1 1.73806130e−170
P value 0.001619 LB_P value2 6.52940306e−175
1% value − 3.340311 LB_P value3 1.70124017e−177
5% value − 2.863166 … …
10% value − 2.567635 LB_P value 1.35309266e−199

Table 2  Parameter significance 
test

Coef Std error z P >|z| [0.025 0.975]

ma. L1 − 0.7367 0.027 − 26.997 0.000 − 0.790 − 0.683
ar.S.L24 − 0.6461 0.014 − 44.937 0.000 − 0.674 − 0.618
sigma2 4.073e−06 1.41e−07 28.907 0.000 3.8e−06 4.35e−06

Table 3  Residual white noise 
tests

Lag AC Q Prob(< Q) Lag AC Q Prob(< Q)

1 − 0.061219 2.193142 0.151131 7 − 0.002974 5.93314 0.648524
2 0.016337 2.423013 0.282142 8 − 0.030623 6.52314 0.70324
3 − 0.036942 3.532142 0.302156 9 0.007131 7.31565 0.73654
4 0.023654 3.992541 0.412301 10 0.029412 8.74152 0.63214
5 0.013516 4.135683 0.536113 11 0.039412 9.10335 0.56414
6 0.007351 5.394511 0.61564 12 − 0.016032 9.98354 0.53101
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fluctuations of the residual series no longer have any statis-
tical pattern. Therefore, it can be considered that the fitted 
model has sufficiently extracted the information in the time 
series. In addition, it is also illustrated from the Q-Q plot 
in Fig. 10 that the residuals obey a normal distribution.

From the afore mentioned method, the parameters of 
SARIMA for the four KPIs are obtained in the Table 4.

The LSTM model parameters are as follows (Table 5):
The experiments of the hybrid model were conducted 

with the uplink PRB utilization rate as an example, and a 
comparison of the predicted results is shown in Fig. 11.

It is illustrated in Fig. 11 that the combined model com-
bines the advantages of both LSTM and rolling SARIMA. 
It is able to predict the uplink PRB utilization smoothly as 
LSTM model, and it can also predict the spikes well which 
cannot be predicted by LSTM. Table 3 presents the error 
comparison of the combined model with other models.

In this paper, RMSE and MAPE are used as the evalua-
tion indexes of the prediction model. The loss function of 
the model is MSE. The formulas are as follows:

where, ŷi is the predicted value, yi is the true value, and n is 
the number of samples.

(11)RMSE =

√√√√1

n

n∑
i=1

(
yi − ŷi

)2

(12)MAPE =
100%

n

n∑
i=1

|||||
ŷi − yi

yi

|||||

(13)MSE =
1

n

n∑
i=1

(
yi − ŷi

)2

It is illustrated in Table 6 that the residual weighting 
hybrid model has the best performance in both RMSE and 
MAPE, providing a reliable basis for anomaly detection.

3.3  Anomaly detection

Following is the example of handover success rate for 
anomaly detection, the predicted value of the hybrid model 
is compared with the true value. From our empirical stud-
ies of our data center environment, we found that when the 
single point average error is higher than 2 times MAPE, we 
can predict all the outliers, and we set the following scoring 
criteria.

where, Ei is the absolute value of the error at point i and 
Level is the anomaly level.

The final anomaly of the handover success rate is obtained 
as shown in Fig. 12.

The data in Fig. 12 is the handover success rate from May 
23 to June 9, 2020, in which there are 9 known anomalies, 
which are points 1, 3, 4, 5, 7, 8, 9, 10, 11. The algorithm in 
this paper detects 11 anomalies, and considers the common 
points 2 and 6 as anomalies, which shows that precision is 
9/(9 + 2) = 81.82%, Recall is 9/(9 + 0) = 100%.

We compare the method of this paper with the fixed 
threshold method and the unsupervised learning method, 
and the results are shown in Table 7. It can be observed 
from Table 7 that although the other three have higher pre-
cision, Recall is too much lower than the method proposed 
in this paper. In this paper, the proposed method detects all 
the anomalies by reducing a small number of Precision. In 

(14)level =

⎧
⎪⎪⎨⎪⎪⎩

0
Ei

MAPE
< 2

1 2 ≤
Ei

MAPE
< 3

2 3 ≤
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≥ 4
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Fig. 10  Q–Q plot of handover success rate

Table 4  Parameters table of SARIMA for KPIs

KPIs 参数

Handover success rate SARIMA (0,1,1) (1,1,0)24

Uplink PRB utilization SARIMA (1,1,0) (0,1,1)24

RRC connection success rate SARIMA (1,0,0) (0,1,1)24

RRC reconstruction success rate SARIMA (1,1,0) (0,1,1)24

Table 5  Parameters of LSTM

Layers Learning rate Epochs Batch

5 0.001 50 64



3168 International Journal of Machine Learning and Cybernetics (2022) 13:3159–3172

1 3

addition, with the increasing of data, the gap between the 
Precision of this paper's method and the other three methods 
will become less.

The abnormality level of each anomaly can be obtained 
from Eq. (14) as shown in Table 8.

The anomaly detection of the other three KPIs by the 
above method gives the following Tables 9, 10 and 11.

Following we need to consider the anomalies of each 
KPIs together to determine the anomaly status of the net-
work. The weights of each KPIs need to be available first.

Fig. 11  Comparison of model prediction results

Table 6  Error comparison table of prediction models

LSTM SARIMA Equivalent weighting Residual weighting

RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%)

Uplink PRB utilization 0.002098 5.458 0.002680 7.181 0.001982 5.093 0.001869 4.787
Handover success rate 0.002345 6.761 0.001992 5.743 0.001004 4.089 0.000824 2.371
RRC connection success rate 0.002893 5.063 0.002848 4.689 0.002633 4.269 0.002035 3.496
RRC reconstruction success rate 0.002698 5.100 0.003057 5.935 0.002356 4.796 0.002035 4.069

Fig. 12  Anomaly point chart of 
handover success rate



3169International Journal of Machine Learning and Cybernetics (2022) 13:3159–3172 

1 3

We noticed that not only it is necessary to build an accu-
rate model in machine learning, but the interpretability of 
the model is equally important. For example, determining 
the importance of input features to the model can help under-
stand the logic of the model and select features more ration-
ally, which is the same as the sense of indicator weights. In 
the random forest, the output of feature importance achieves 
this capability.

Random forest is an algorithm that integrates multiple 
decision trees through the idea of ensemble learning. The 
principle is that a certain number of samples are randomly 
selected (Bootstrap) on the basis of the original data to 
form a sub-sample, and the base classifier (decision tree) is 
constructed respectively, the results of each base classifier 
are assembled by voting or finding the mean value. After 
constructing the random forest, variable importance meas-
urement (VIM) can be applied to each feature by permuta-
tion. Traditional VIM methods are divided into two main 
categories, Gini impurity-based and permutation-based 
methods [36]. In this paper, the Gini impurity method is 
used to score the importance of the characteristic variables 
with the following formula.

where GIn denotes the reduction in feature impurity for ran-
dom forest nodes, K is the number of nodes, and Pnk is the 
proportion of features.

Construct data using four metrics (handover success 
rate, uplink PRB utilization, RRC connection success 
rate, and RRC reconstruction success rate) as input and 
anomaly status as output (where the abnormal status is 
labeled as 1 and the normal status label is 0). Construc-
tion of a classification model for communication network 
anomalies by random forest. The model parameters of 
the random forest are n_estimators = 45, max_depths = 8, 
max_features = 3.

We obtain a random forest classification accuracy of 
97.89%, and keep in mind that the more accurate the model 
is, the more reasonable the feature importance is. Then the 
importance of each KPI for the classification is obtained 
from the Feature_importance parameter as the weight 
of the KPI. The results are: w1 = 0.5151, w2 = 0.1792, 
w3 = 0.1347, w4 = 0.1710.w1、w2、w3, and w4 are the 
weights of handover success rate, uplink PRB utilization, 
RRC connection success rate, and RRC reconstruction 
success rate, respectively. After that, the anomaly score 
of the network is calculated according to the Eq. (16).

(15)GIn =

K∑
k=1

∑
k
�
≠k

PnkPnk
�

= 1 −

K∑
k=1

P2nk

Table 7  Comparison of anomaly detection methods

Fixed-threshold method Unsupervised 
learning [15] 
(%)

Proposed 
method 
(%)Threshold1 

(work day) 
(%)

Threshold2 
(week day) 
(%)

Precision 83.33 80.00 85.71% 81.82
Recall 55.55 44.44 66.67 100

Table 8  Handover success rate anomaly level table

Anomaly points Anom-
aly level

Anomaly points Anomaly level

Point 1 (5-26 5:00) 3 Point 7 (6-2 4:00) 3
Point 2 (5-26 6:00) 1 Point 8 (6-2 5:00) 3
Point 3 (5-27 3:00) 3 Point 9 (6-4 2:00) 3
Point 4 (6-1 3:00) 3 Point 10 (6-4 3:00) 3
Point 5 (6-1 4:00) 3 Point 11 (6-6 12:00) 2
Point 6 (6-1 5:00) 3

Table 9  Uplink PRB utilization anomaly level table

Anomaly points Anomaly 
level

Anomaly points Anomaly level

5-25 12:00 3 6-8 11:00 3
5-26 6:00 2 6-8 12:00 3
5-27 13:00 2 6-8 13:00 3
6-1 11:00 1 6-8 14:00 3
6-1 12:00 1
6-3 13:00 1

Table 10  RRC connection 
success rate anomaly level table

Anomaly points Anom-
aly 
level

5-30 12:00 2
6-3 13:00 1
6-8 11:00 1
6-8 12:00 1

Table 11  RRC reconstruction 
success rate anomaly level table

Anomaly points Anom-
aly 
level

5-24 12:00 2
5-24 15:00 2
6-8 11:00 1
6-8 14:00 1
6-9 1:00 1
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where, score is the anomaly score of a single point, wi 
is the weight of the KPI, leveli is the anomaly level of each 
KPI, and m is the number of KPIs.

The network anomalies from 10:00 on May 23, 2020 to 
5:00 on June 9, 2020 were obtained by combining the four 
indicators as shown in Tables 12 and 13.

The obtained network anomaly score quantifies the net-
work anomalies, which can help operators take different 
measures according to different situations, rationalize the use 
of network resources and do a proper resource scheduling.

4  Conclusion and discussion

Real-time anomaly detection for communication networks 
is conducive to improving communication service quality, 
resource utilization, and network reliability. However, the 
traditional communication network reported alerts cannot 
meet the function of active detection and real-time alarm. 
The paper applied a prediction-then-detection approach 
to anomaly detection in communication networks. The 
accuracy of prediction directly affects the effectiveness of 
subsequent anomaly detection, so the paper combines the 
LSTM and SARIMA models with better prediction on the 
KPI's data by residual weighting. The experimental results 
illustrate that the hybrid model performs optimally on all 

(16)score =

m∑
i=1

wi ⋅ leveli

four KPIs, providing a reliable basis for subsequent anomaly 
detection. Next, we use the error between predicted data and 
real-time data to detect anomalies, and quantify and classify 
the anomaly status into four levels. Finally, we use random 
forest to calculate the weights of KPIs to evaluate the whole 
network performance and give specific treatment measures 
for each anomaly state, which provides a new idea for com-
munication network anomaly detection and quantification.

In this paper, we try to implement anomaly detection 
using the method of prediction before detection. Combin-
ing LSTM and SARIMA models to detect multiple commu-
nication indicators is essentially considered as a supervised 
learning. Unsupervised learning is also a way of anomaly 
detection [37], in the absence of sufficient prior knowledge 
and presence of labeling problems, unsupervised learning 
is a better solution. In addition, semi-supervised learning 
and reinforcement learning have been gradually applied to 
anomaly detection tasks in recent years. Constructing multi-
ple use-case anomaly detectors requires especially analyzing 
the characteristic of the full data or making strong assump-
tions, e.g., the training data is anomaly-free which is yet 
unrealistic in most real datasets [38]. Reinforcement learning 
follows the incremental self-learning process that the agent 
autonomously learns a generic framework from interactions 
with the environment without any assumption and constraint 
[39]. Hence, it provides a novel way of solving the anomaly 
detection problem.

Table 12  Network anomaly conditions

Table 13  Anomaly handling measures
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