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A B S T R A C T   

Art designs exhibit different principles, textures, color combinations, and creative skills for vivid 
thinking visualizations. Art exhibits are far from ages, periods, and creators finding their digital 
patterns in recent years for resurrection. Degraded periodic artworks are digitally handled for 
reviving their legacy using digital image processing. This article introduces Textural Restoration 
Technique (TRT) using Deep Feature Processing (DFP) to augment such innovations. The pro-
posed technique analyses the tampered image for its textures, and available features are 
extracted. The textures are expected to be sequential based on gradient distribution; the missing 
gradients are identified from the available features near the region of interest (ROI). The ROI is 
marked by combining missing and available features from which textural edges are sketched. In 
this process, recurrent learning is employed for verifying the gradient substitutions for even 
textures. The texture patterns are classified using high and low accuracy features exhibited be-
tween two successive ROIs. First, the learning model is trained using gradient distribution ac-
curacy pursued by the texture completion edge. The second training is pursued by the first 
distribution, achieving the maximum restoration. The filled features and their gradient positions 
are marked by moving the ROIs for distinguishing textures. The restoration ratio is computed with 
high accuracy based on the filled edges.   

1. Introduction 

Computer image processing is done in digital computers to process images using algorithms. The actual goal of image processing is 
to identify the patterns and characteristics of an image [1–3]. Computer image processing technique is used for art design, improving 
design capabilities. Image processing reduces the complexity ratio in the art designing process. Art designing requires proper data and 
features gathered from various databases and networks [4]. In art design, digital image processing (DIP) technology identifies an 
image’s important patterns and scene values. DIP technique detects the exact content required for the art designing process [5]. DIP 
uses machine learning algorithms that improve the efficiency of image processing systems. Visual communication is a part of arts that 
first analyses the features and factors for design [6]. Computer image processing is used in visual communication, which uses an 
analysis technique that identifies the key elements and types of patterns. Computer image processing also detects the color, feature, 
space, words, and factors for art design [7–10]. 
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Art design pattern analysis is a process that analyzes the patterns for art design. Design pattern analysis is a complicated task in 
every art designing system. Heterogeneous features are widely used for pattern recognition and analysis [11,12]. Heterogeneous 
features are commonly used for multimedia analysis and designing systems. Pattern analysis identifies key values, dimensions, 
high-quality features, and details [13,14]. Heterogenous features use transfer learning algorithms that characterize the sources and 
domains based on features and functions. Heterogenous features are calculated using the feature selection method [15–17]. The se-
lection method assimilates the necessary features that provide accurate data for the art design pattern detection process. The feature 
selection method increases the accuracy of pattern analysis, enhancing the efficiency and performance ratio in art designing processes 
[18,19]. An automatic pattern detection method is also used for the art design pattern analysis process. Heterogenous features reduce 
the latency and energy consumption range in pattern analysis and detection processes. The heterogeneous features-based detection 
method predicts the actual and accurate features for design patterns [20,21]. 

Machine learning (ML) algorithms and techniques are widely used for detection and prediction processes. ML algorithms maximize 
the overall accuracy of the detection process. ML algorithm is used for the art image pattern detection process [22]. Convolution neural 
network is common in identifying patterns from heterogeneous images. CNN algorithm uses a feature selection method that extracts 
the important features from the image [23]. The CNN algorithm detects the patterns and features presented in images and pictures. 
CNN algorithms collect the relevant data from the database, reducing the latency in classification and identification processes [24]. A 
deep reinforcement learning algorithm (DRL) based method is also used for image pattern detection. The DRL algorithm uses the 
detection method to evaluate the sophisticated features presented in an image [25]. The DRL-based detection method achieves high 
accuracy in image pattern detection. The DRL algorithm recognizes the factors and patterns from the images that produce relevant data 
for further analysis [26]. The prime highlights of the article are listed below:  

❖ Introducing a texture-based old artistic image restoration technique by identifying the region of interest and gradient distribution 
process.  

❖ Including a deep learning-based classification process for identifying different textural patterns and feature analysis for mitigating 
false positives.  

❖ Performing a comparative analysis using specific metrics and methods for validating the proposed techniques’ performance. 

The rest of the article has been prepared: section 2 discusses the related works, section 3 proposes the TRT-DFP model, section 4 
deliberates the results and discussion, and section 5 concludes the research article. 

2. Related works 

Hatir and Ince [27] proposed a stone heritage mapping model using a region-based convolutional neural network (R–CNN). The 
main aim of the proposed model is to prevent human errors in cultural heritage properties. The exact stone types and classes are 
detected from the historic building, reducing the error ratio in the analysis processes. The r-CNN technique reduces the energy con-
sumption range in the computation process. The proposed mapping model maximizes the lithology determination of prevention 
processes. 

Jin et al. [28] introduced a deep convolutional neural network (CNN) framework for image restoration. CNN framework identifies 
the important values and characteristics of artifacts from the given images. Residual learning is implemented here to train the datasets 
for further processes. Training parameters and variables are also detected from the database, reducing the restoration process’s la-
tency. The introduced CNN framework improves flexibility and maximizes the performance range of image restoration systems. 

Yuan and He [29] designed a randomized image transformation method using an adversarial deep neural network (DNN) for 
attacked image restoration. The actual goal is to recover the original image from the attacked images. A target classifier is used here to 
classify images’ important patterns and pixels. The DNN detects the noises presented in the image and eliminates the unwanted data 

Table 1 
Summary of references [32–36].  

Author Title Process Results 

Farajzadeh and 
Hashemzadeh 
[32] 

A deep artificial neural network (ANN) 
based image inpainting approach for 
image restoration. 

Irregular structures and unwanted noises which 
are presented in the images are removed by 
ANN. 

ANN predicts the exact colors and 
restores the damaged images. 

Li et al. [33] A non-convex hybrid regularization 
model for blurred image restoration. 

Both multiplicative and addictive noises are 
removed from the images. 

Maximizes accuracy and reduces the 
error in the blurred image restoration 
process. 

Chen et al. [34] An L0 regularized cartoon-texture model 
for blurred and corrupted image 
restoration. 

Image deblurring technique is used here to 
deblur the corrupted image, reducing the 
latency in the restoration process. 

Impulsive noises are also removed from 
the image, enhancing the image 
restoration efficiency ratio. 

Wang et al. [35] An optimization method for motion blur 
image restoration 

Texture mapping is used here to deblur the 
image, providing relevant data for further 
processes. 

Reduces the latency ratio in ringing 
artifacts, which maximizes the 
robustness of the systems. 

Wu et al. [36] A systematic approach to the image 
restoration process. 

Iterative regularization is used here as a strategy 
to restore the damaged and attacked images. 

The proposed approach achieves high 
accuracy in the image restoration 
process.  
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from the attacked image. Experimental results show that the introduced method achieves high accuracy in the image recovery process. 
Xue et al. [30] developed a local transformer with a spatial partition restore network (SPRLT-Net) for hyperspectral image clas-

sification (HIC). The main aim of the proposed method is to obtain the spatial partition presented in the images. The transformers 
detect the original patches and pixels of the images, reducing the energy consumption ratio in the computation process. Compared with 
other methods, the developed SPRLT-Net maximizes the accuracy in image classification, enhancing the generalization performance 
efficiency. 

Wan et al. [31] proposed a novel triplet-domain translation network for image restoration. Variational autoencoders (VAEs) are 
used here to transform the old photos and to clean the damaged parts of the photos. A deep latent space translation is used here to 
identify old photos’ patterns and pixel rates. VAE compares the old photo with the new one, which produces the necessary information 
for the image restoration process. The proposed network increases the old image restoration process’s overall quality and effectiveness 
range. references [32–36] are shortly summarized in Table 1 for ease of similar method understanding. 

Lee and Kang [37] proposed a sparse representation-based variational model for blurred image restoration. The actual goal of the 
model is to recover the blurred images with Cauchy noises. Cauchy noises and blurriness presented in the images are eliminated from 
the given images. An optimization scheme is used to identify the exact features and key values from the images. Experimental results 
show that the proposed model outperforms the image restoration process. 

Kang and Jung [38] introduced a non-convex total variation for image restoration. The introduced method is a proximal alternating 
minimization approach that solves optimization problems. An alternating minimization algorithm is used here to detect the illumi-
nation content from the images. The noises and blurriness of the images are identified and removed during the image restoration 
process. The introduced method increases the overall accuracy of image restoration systems. 

Zamir et al. [39] developed an efficient transformer model for high-resolution image restoration. A convolutional neural network 
(CNN) algorithm is used in the model to detect the prior features from the image patterns. The CNN algorithm analyzes the information 
from large-image pixels, enhancing restoration tasks’ effectiveness. The developed model improves the performance range of the 
image restoration process. 

Wang et al. [40] proposed a U-shaped transformer (uformer) for image restoration systems. The main aim of the model is to restore 
the core details from low-resolution images. The images’ spatial and temporal features are selected for the restoration process. It also 
evaluates the gap between the features and provides accurate information for further processes. The proposed former model increases 
the accuracy level of image restoration. 

Kumar and Gupta [41] introduced a generative adversarial network-based image restoration method for damaged artworks. A 
unique image restoration method restores the images using complex features. The adversarial network generates physical changes to 
damaged artworks. The introduced method reduces both time and energy consumption levels in the computation process. The 
introduced method improves the performance ratio of the image restoration process. 

The proposed technique differs from the texture-based approaches in Refs. [34,35] by preventing unnecessary mapping for the 
extracted features. Region-dependent methods, as in Ref. [27], and irregularity-suppressing methods, as in Refs. [28,32], cause more 
complexity due to uneven distributions. Considering the variations mitigation of some optimization methods [35,38], this proposed 
technique aims to reduce the mean error due to summed variations. This feature is the motivating factor wherein the textural con-
sistency of the portraits varies with multiple semantics. The tampered rate thus possesses either edge or gradient or both variations that 
must be addressed. The proposed processing technique addresses this problem through independent analysis using deep learning. 
Therefore, the deep learning paradigm is trained at the low and high levels of its gradient distribution and availability. 

3. Textural restoration technique (TRT) using deep feature processing 

The design goal of TRT using DFP is to handle and process the degraded periodic artworks through new digital technology for 
resurrection. The textures and available features of the tampered images are processed, and their gradient distribution is also analyzed 
based on sequential edge detection for identifying missing gradients. In this textural restoration technique, the missing and available 
features in the tampered images are considered to improve the textural restoration ratio with filled edges. This technique removes 
noise by blurring neighboring pixels with similar intensities and outputs in the remaining edges sharp for better reconstruction. Fig. 1 
presents the proposed techniques’ process in a diagrammatic format. 

Fig. 1. Proposed TR Technique using Deep Feature Processing Representation.  
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As presented in Fig. 1, the proposed technique relies on textural features and their gradient distribution from any tampered input. 
The edges of the textures are identified using their maximum distribution range. From the edge conceded regions, the region of interest 
(ROI) is extracted upon which the learning operations are pursued. This learning operation provides accurate region detection and 
texture completion pixels. Besides, the missing distributions are also identified from these regions. As different tampered image 
processing, the input image textures, features, filled gradients, and missing gradients are varied. However, to retain the ROI from the 
available features and textures, the proposed technique provides features to fill the gradient for gaining even textures. This textural 
restoration technique aims to maximize gradient distribution for the unfilled and partial regions using texture pattern classification. 
The high and low accuracy features are classified and computed between two successive ROIs, resulting in a partial completion edge 
problem such that this problem reduces gradient distribution and time of filling features, respectively. 

Problem Definition: Assume {1,2,…, tamim} ∈ TAMIM indicate the set of the tampered images processed in a given time interval 
tint ∈ (Fr − UnFr + Pr). The variables Fr, UnFr and Pr the filled, unfilled and partial regions are identified from the extracted features 
near the ROI for gradient distribution. For degraded image processing, the missing gradient MG is identified using edge detection that is 
defined in Equation (1): 

∀(Fr − UnFr + Pr), argminMG

∑tint

i=1
(GD − TFex)i, tint ∈ [Fr + 1,UnFr,Pr ]

such that

GD =
TFex

EdgD = maximum in any(Fr − UnFr + P)

and

argminMG

∑TFex

i=1
(Fr)i,∀{1, 2,…, tamim} ∈ TAMIM ,Fr ≤ tint ≤ UnFr,Pr

(1)  

in Equation (1), the variable TFex indicated the textural feature extraction from the input tampered image and (GD − TFex) is the 
condition for identifying missing gradients in any region tint ∈ [Fr + 1,UnFr,Pr]. This increases the sketching of textural edges from the 
available features near the ROI in different time intervals, reducing the unfilled edges in those images. The process of TRT using DFP- 
based digital image processing acquires gradient distribution for restoring the unfilled textural features through edge detection (EdgD)

in the given input image. The ancient artworks are processed based on texture pattern classification using recurrent learning (RL) for 
verifying the gradient substitutions for even textures. The classification output is used for identifying the missing gradients through 
texture pattern correlation from the ROI, where the combination of missing and available features is initially verified. From the input 
degraded image, assume k denotes the blur kernel, LImg be the latent image and ⊕ indicate the convolution operator. The proposed TRT 
corresponds to reviving their legacy using digital image processing, and the latent image is expressed in Equation (2) 

LImg =
1
tint

∑tint

k
(GD(k)) ⊕ tamim(k) (2)  

where, 

tint
(
GD)

X =
1

2π

∫∞

− ∞

Xk(tint)

MG(tint)
dtintk− 1

tint(tamim)Y =
1

2π

∫∞

− ∞

Yk(tint)

MG(tint)
dtintk− 1

(3)  

Fig. 2. Gradient distribution and filling process illustration using TFex.  
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in Equation (3) (GD)X and (tamim)Y used to indicate the phase shift in degraded periodic artworks for the gradient variation in X and Y 
planes. The variables k and MG represents the number of blur kernel gradients and missing gradients. In X or Y plane, the rising and 
falling edges are detected for time t for resurrection, then X ∈ [0,∞] and Y ∈ [− ∞, 0] and hence, 

tint
(
GD)

X = argmin

{
∑tint

i− 1

(
tamim − k ⊗ LImg

)

i

2N2 +GD
∑

gf
ρ(TFex)max, tint ∈ [Fr + 1,UnFr,Pr] (4)  

in Equation (4)N2 denotes the noise variance observed from the input image, gf indicates gradient filters, and ρ(TFex)max means the 
probability of maximum textures and available feature extraction. Based on the above instance, the initial noise observation is sup-
pressed using the condition (tamim − k⊗LImg) for the digital image processing to reconstruct and recover ancient artworks and images 
based on changing X and Y wavelets at given time intervals (N2 × tint). Here gfn is the total indexes gradient filtering process performed 
in this article. The gradient distribution and filling process are illustrated in Fig. 2. 

The GD distribution and filling require the detection of precise overlapping and non-overlapping ROIs. If the regions are over-
lapping, then GD distribution is eased using the pixel concentration. In this process, the features extracted and their concentration are 
maximized through tint . If MG or tint∀k is identified, then it is partial/has missing gradients. Therefore, the distribution is required by 
identifying (moving) ROIs (Fig. 2). The gradient Filtering process controls the noise occurrence in input-tampered images. Noise 
variance occurs due to the additive spectrum observed in the processing phases regardless of its gradient distribution in any t. This 
normalization process follows high and low accuracy features based on gradient substitutions through recurrent learning for gaining 
even textures to reconstruct the tampered image is given in Equations (5) and (6) 

tint
(
GD)

X =
Xk(tint)

MG(tint)
∗ 2TC2

2 ∇i

[
gfn × tint − 2TC2

]

tint(tamim)Y =
Yk(tint)

MG(tint)
∗ 2TC2

2 ∇j

[
gfn × tint − 2TC2

] (5)  

where, 

∇i = f (tint)

⃒
⃒
⃒
⃒
TC2

2

⃒
⃒
⃒
⃒f (tint)MG− 1

∇j = f (tint)
− 1
⃒
⃒
⃒
⃒
TC2

2

⃒
⃒
⃒
⃒f (tint)MG− 1

(6) 

As per Equations (5) and (6), the features ∇i and ∇j are transformed based on high and low accuracy texture gradient distribution 
for degraded image reconstruction function. The variable f(tint) and f(tint)

− 1 used to indicate the direct transform and inverse transform 
functions for ∇i and ∇j. Based on the occurrence of the partial and unfilled wavelets (region) X or Y is used for the direct/inverse 
transform. Such transforms identify the missing gradient to fill the region with high distribution accuracy. The variable TC used for 
identifying texture completion edge in both X and Y wavelet. Now, the normalized wavelet-based LImg is represented in Equation (7) 

LImg[f (tint)] =
2

TC
2

[
(N2 × tint) − 2gf ]

tint
×
(
∇i − ∇j

)

such that,

LImg[f (tint)] =
2

TC
2
t

⎡

⎣
∫∞

0

∇i
[
(N2 × tint) − 2gf ]

tint
dtint −

∫0

− ∞

∇j
[
(N2 × tint) − 2gf ]

tint
dtint

⎤

⎦

(7) 

This is the normalized wavelet function with less noise variation observed LImg[f(tint)] after applying gradient substitutions by 
moving the ROI. From this condition, the textures and the color combination are extracted for pattern classification. Therefore, the 
color combination (cb) and texture (Te) is computed in Equation (8) 

cb =
1

2π
(
N2 × tint

)

{
∑t

k=1
(Xk − Yk)MG

}

, ∀j = i + 1, i ∈ gf

and

Te =
∑θh

i=θl
Δlog (cb)i

(8)  

where, Δ is the normal plane mapping observation in digital image processing, θh and θl are the high and low-frequency color 
combinations observed from the input degraded image. The log normalization output of observing color combination generates Te for 
LImg[f(tint)] as per Equation (9): 

G. Chen et al.                                                                                                                                                                                                           
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Te[f (tint)]=

⎛

⎜
⎜
⎝

Te

log
[

tint
θh − θl

]

⎞

⎟
⎟
⎠ (9) 

This log normalization for sequential gradient distribution is performed to fill the features in any instances and time intervals. The 
ROI edge detection processes are illustrated in Fig. 3. 

The ROI is identified between θl and θh in the consecutive tint. The ∇i and ∇j are convolutional such that it is used for ROI ∈ UnFr 

and Pr extraction. The [f(tint)] and [f(tint)]
− 1 are concurrently used over ∇i, ∇j and (∇i ⊕∇j) for θh and θl differentiation. This is used for 

LImg identification from UnFr and Pr across the ROI (unidentified GD) observed (Fig. 3). The texture pattern classification is processed 
based on available features and Te[f(tint)] using recurrent learning. This pattern classification helps to differentiate the true and false 
positives in the degraded image or both wavelets. In this classification process, the textures and available features are independently 
analyzed at each level for texture completion edge detection, followed by performing joint classification for texture restoration. First, 
the input and learning model is trained using gradient distribution accuracy and processed to detect the texture completion edge from 
the input image. It relies on the cb and Te[f(tint)] is computed as: 

DFP[cb, tint, f (tint)] = −
∑k

i=1
tintk −

∑k

j=1
tintk −

∑k

i=1

∑k

j=1
tintkedgi

and

I[cb, tint] =
(MG)

DFP[cb ,tint ,f (tint )]

∑N2×tint

t=1
(MG)

DFP[cb ,tint ,f (tint)]i

(10)  

in Equation (10), DFP[.] denotes the deep feature processing of cb and I[.] is the initial training model at t interval. Where, edgi is the 
texture completion edge identified between two successive ROIs. Similarly, the learning model is initially trained using the analysis of 
gradient distribution to fill the missing region is given as: 

FP

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Te

⎡

⎢
⎢
⎢
⎢
⎢
⎣

f (tint)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, cb =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑t

t=1
tintkedgi

1
∇i

, if Xk(tint) ∈ [0,∞]

∑t

t=1
tintkedgi∇j, if Xk(tint) ∕∈ [0,∞]

I[Te[f (tint)]] =
(MG)

DFP[Te [f (tint )],cb ]

∑t

t=1
(MG)

DFP[Te [f (tint)],cb ]

(11)  

in Equation (11) the missing gradient and joint visible are analyzed through recurrent learning such that DFP[Te[f(tint)], cb] is computed 
for both the accuracy gradient distribution/wavelets. This process helps to differentiate the transform and frequency of the degraded 
image in t to facilitate possible texture pattern classification from the instances. The RL for accuracy classification is presented in Fig. 4. 

The above representation is different from conventional recurrent learning using the classification process. The classification is 
distinct from multiple gradient layers for the available K. However, this differs from the conventional feedforward network by per-
forming classifications of identified and missing. The first classification is performed for (Xk,Yk) identification through f(tint) alone. 
Here, ∇i and (∇i ⊕∇j) are cumulatively processed using f(tint) for precise identification. Different from this, if Te is the achievable 
output at any k, then f(tint)

− 1 generates Yk alone stating that GD is missing in some ROI (Refer to Fig. 4). The missing gradient is 
separated by ROI, and available feature processing relies on LImg[f(tint) ∈ [ − ∞,∞] for the wavelets Xk ∈ [0,∞] or Yk ∕∈ [0,∞]. In this 
case, Xk ∕∈ [0,∞] is used to achieve a gradient of [− ∞,0] that indirectly indicates Yk at any instance. Therefore, the gradient of the input 
image is independently analyzed using I[.], whereas in the learning model is training I[.]∗ for the missing texture restoration, and hence, 

Fig. 3. ROI edge detection process using GD.  
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the previous I[.] does not handle further processing and verification. From the sequence, Xk ∕∈ [0,∞] is detected as the false positives/ 
partial region, whereas Yk ∕∈ [0,∞] is fulfilled gradient region, here Xk ∈ [0,∞] and Xk ∕∈ [0,∞] is considered for identifying gradient 
missing region. These false positives FP are computed with the direct and inverse transform to require the final result (∃). Hence, the 
sequential computation of the gradient missing region is represented as {MG1 to MGN2×tint

} for both the high and low gradient dis-
tribution, accuracy inputs are estimated. The missing gradient identification along with texture completion edge detection edg is 
computed as: 

MG1 = LImg[f (1)]

MG2 = LImg[f (2)] −
edg1

(MG)
DFP[cb ,tint ,f (tint)]1

⋮

MGN2×tint
= LImg[f

(
N2 × tint

)]
−

edgN2×(tint − 1)

(MG)
DFP[cb ,tint ,f (tint)]N2×tint

,∀tamim = tint
(
GD)

X + tint
(
GD)

Y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12) 

Such that, 

(13) 

Based on Equations (12) and (13), ∇ is the point at which the texture pattern classification is distinguished with the condition 
tamim = tint(GD)X + tint(GD)Y for X or Y plane. In this point of separation of ROI, the time and missing gradient are the important factors 
in identifying the precise gradient distribution accuracy. This is because, of the variation in available features and the combination of 
missing ones, the ROI is marked for sketching accurate textural edges in different time instances based on texture pattern classification. 
The point on X and Y plane indicates the varying gradient distribution accuracy such that if MGN2×tint

∕∈ tint(GD)X or MGN2×tint
∈ tint(GD)X ≤

∇ < MGN2×tint
∈ (X+Y) is the precise output for classification. If the current instance does not satisfy the above condition, then the false 

positive increases by one, and the ROI moves to fill the missing gradient. In other words, the condition MGN2×tint
∕∈ tint(GD)X is observed 

in any instance, if FP = FP + 1 is achieved else, true positive TP = TP + 1 is achieved. The RL for missing GD classification is presented 
in Fig. 5. 

The classification ∀MGN relies on edgi identified under Δ = 0 and Δ = 1 such that (X,Y), (X), and (Y) are the individual outputs. The 
MGN identified from Δ = 1 is the precise FP due to which the classification is split. In this splitting [(X,Y)|(X)] and [(Y)] are inde-
pendently handled for identifying ROI displacements (Fig. 5). In texture pattern classification, it is necessary to improve the true 
positives other than the texture and available features. For this computation, independent and joint gradient distribution is induced for 
all the texture completion edge detection. The deviation between the direct/inverse transform analysis helps to compute the identi-
fication of FP and TP to fill the missing edges. If any overlap occurs in this iteration, then FP = FP + 1, and this computation is 
consolidated for the time interval. In this TRT model, digital image processing is used to verify the gradient distribution accuracy 
considering the missing gradient positions, achieving maximum restoration. The analyses of UnFr and Pr classification throughout edgi 
under the varying features are presented in Fig. 6(a) and (b) 

The UnFr and Pr vary with the detected edgi and TF. This is due to the improvements in I[.] from various iterations using θh and θl. 
This forms LImg by increasing the chances of (Xk,Yk) (alone) detection. Therefore the new I[.] imposes f(tint) alone for identifying ROIs 
across multiple GD. Regardless of the missing GD, the gln estimated from the previous t are used for Te balancing. This aids in identifying 
Yk between successive iterations. The instances where Yk is alone identified causes FP and therefore Pr is extracted (Fig. 6(a) and (b)). 
Pursued by the (Xk,Yk), (Xk), and (Yk) alone, the FP analyses for the increasing iterations are discussed in Fig. 7. 

Fig. 4. RL for accuracy classification between “identified” and “missing” gradients.  
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The false positives are confined at a high rate ∀Xk compared to (Xk,Yk) and (Yk). This is due to the k mitigation by distributing f(tint)

and f(tint)
− 1 outputs in Pr other than EdgD regions. Based on the available combinations of Xk and Yk the FP reduction is performed. In 

case of Δi and Δj based analyses, the FP is less for (∇i ⊕∇j) for ROI ∈ UnFr and Pr alone. This is used for I[.] where Δ = 0 and Δ = 1 are 
comparatively used for identifying FP. If such FP is identified, then the nearest ROI is moved across for GD, reducing the FP (Refer to 
Fig. 7(a) and (b). 

4. Experimental assessment 

The experimental assessment considers the stored tampered and original images from the source “https://www.kaggle.com/ 
datasets/saurabhshahane/cg1050” [42]. This source provides 730 original images for training and validation. Another variant pro-
vides 314 images for training and testing. The first provides images with 80–240 pixels, and the second provides 180 to 720 pixels. One 
sample image from the above dataset is analyzed using MATLAB experiments. The results are presented in Tables 2–4. 

The comparative assessment considers the metrics of accuracy, sensitivity, restoration ratio, mean error, and classification time. 
The ROI varied between 1 and 11, and the features varied between 2 and 28 for their impact analysis. The analysis is performed 

Fig. 5. RL for missing GD classification using different edges.  

Fig. 6. (a) UnFr and (b) Pr classification analysis.  
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alongside the existing methods: ADNL [29], SASL [36], and NCTVM [38]. 

4.1. Accuracy 

The deep feature processing of degraded ancient artworks and images is reconstructed to gain accurate images. It satisfies high 
gradient distribution accuracy using the proposed TRT (Refer to Fig. 8(a) and (b)). The missing gradient and false positive occurred in 
image processing due to noise variations in degraded image processing at different time intervals. The textures and available features 
are extracted in these ancient image reconstruction processes to revive their legacy. The identified features provide a wide knowledge 
of their patterns and gradients. The textural pattern classification is performed using recurrent learning and processing the final output 
image for X and Y plane for separating filled and unfilled gradients from the input image. The precise degraded image processing relies 
on texture and available feature extraction using high and low accuracy features separated for reducing partial gradient distribution. 
The textural features are extracted through deep feature processing to verify the gradient substitutions for even textures based on the 
normalized wavelet finding unfilled regions in a given input, preventing error. Therefore, the gradient feature accuracy is less in this 
proposed technique. 

Fig. 7. Fp analyses for tint.  

Table 2 
Gradient distribution. 
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4.2. Sensitivity 

This proposed technique satisfies a high sensitivity rate for reliable degraded image processing based on restoring the textural 
feature extraction to denote the missing gradients is reduced to speed up the decision-making for pattern classification is depicted as 
(Refer to Fig. 9(a) and (b)). The ROI near missing gradient is identified from the available features and controlling unfilled edges and 
then distribute gradient to that region through moving ROI. The missing problem is mitigated from their gradient for both wavelets 
with precise feature selection to optimize the extracted textural features. The orientation, color combination, and texture of degraded 
images are increased with the help of deep feature processing for training the learning model. Based on the image processing, the high 
and low filtering features are exhibited and compared with an existing dataset to easily identify missing gradients for moving ROI. This 
continuous degraded image processing maximizes sensitive information handling at a similar time of training the learning model. If 
any false positive occurs in image processing, it is continuously monitored to achieve maximum sensitivity. Hence, the textural 
completion edge satisfies high accuracy features for gradient distribution, reducing error in those regions. 

4.3. Restoration ratio 

In this proposed technique, the textural edges are sketched for moving the ROI based on gradient distribution to that region, which 
is analyzed through recurrent learning and comparing current degraded image-sensitive data with an existing image for similarity 
analysis (Refer to Fig. 10(a) and (b)). The initial learning model is trained for verifying the gradient distribution and achieves high 
textural feature restoration ratio in this article compared to the other factors. In this technique, the sequential feature orientation is 
analyzed and verified; the gradient is substituted in the unfilled region to generate a gradient-filled region for X, or Y is used for 
functions of the transform. This transform analysis is performed to identify missing gradients from the available features with high 
accuracy of gradient distribution for restoring even textures. By training the learning process, the partial/unfilled region is reduced 
using Equations (8)–(10) computation. This proposed technique separates the high and low accuracy features to identify false positives 
and prevent errors. Therefore, this false positive is controlled by the sequential gradient distribution, and it achieves maximum 

Table 3 
Edge detection. 

Table 4 
Restoration. 
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Fig. 8. Accuracy comparisons for (a) ROI and (b)Features.  

Fig. 9. Sensitivity comparisons for (a) ROI and (b) features.  
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Fig. 10. Restoration ratio comparisons for (a) ROI and (b) features.  

Fig. 11. Mean error comparisons for (a) ROI and (b) features.  
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restoration. 

4.4. Mean error 

In Fig. 11(a) and (b), the mean error identified in the proposed technique during textural pattern classification is considerably less 
than the gradient distribution and texture completion edge detection. The edge detection at the first level is used for identifying the 
missing gradient based on stored input analysis for the initial image processing output. This gradient distribution is performed for even 
texture arrangement, and modifying color combination, brightness, and textures helps to process accurate pattern classification and 
edge detection. After the classification process, the gradient-filled, partially filled, and unfilled region is verified based on the texture 
pattern classification, and its edge detection is performed for the single or multiple images, preventing mean errors. The variations in 
textural features are identified using accurate and appropriate pattern classification with a combination of missing for marking ROI. 
This classification is performed using recurrent learning for training the learning model for textural completion edge detection. This 
classification helps to reduce the false positive with an increasing true positive ratio for all the sequences, reducing mean error in this 
proposed technique. 

4.5. Classification time 

In this proposed technique, the textures and available features are independently analyzed at each level for detecting the texture 
completion edge, followed by performing joint classification for restoration. Through learning model training and texture, the 
completion edge does not change its color combination, texture, and orientation. The noise variation relies on the texture pattern 
classification based on LImg[f(tint) ∈ [− ∞,∞] for the wavelets Xk ∈ [0,∞] or Yk ∕∈ [0,∞]. The above condition is analyzed for the first 
gradient distribution for maximum restoration. From the sequence, the textural edge is detected as the false positives/partial region, 
whereas the maximum accuracy feature is fulfilled by the gradient region for preventing errors. For both the high and low gradient 
distribution accuracy identified from the instance, the feature changes and noise variation are compared with the existing dataset for 
TRT. Hence, in this proposed technique, the filled textural features and their gradient positions are marked for moving the ROI to 
precisely distinguishing textures through recurrent learning and achieving less classification time, as represented in Fig. 12(a) and (b). 
Tables 5 and 6 present the comparative analysis summary of the ROIs and features. 

In addition, the efficiency of the system is evaluated using different metrics such as Peak Signal Noise Ratio (PSNR), Structural 
Similarity Index Metrics (SSIM), and Frechlet Inception Distance (FID). The obtained results are illustrated in Table 7. 

Table 7 illustrates that the proposed TRT-DFP method attains high PSNR value, SSIM, and minimum FID, which indicates that the 
system attains effective image restoration while analyzing various ROI regions compared to other methods. 

Fig. 12. Classification time comparisons for (a) ROI and (b) features.  
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5. Summary 

This article discussed the process and functions of textural restoration techniques using deep feature processing for leveraging the 
quality of tampered art designs. This technique relies on textural feature extraction and classification at the pre-initial steps. In the later 
processing, the region of interest is identified and classified based on gradient distribution. Deep recurrent learning is used for clas-
sifying accurate distributions for restoration and missing gradient regions. The different region of interest combinations using the 
textural features are used for detecting the internal edges of a tampered old image. The edges are filled with pixel gradients by reducing 
the noise. The textural patterns are classified as low and high-accuracy gradients for which substitutions and moving are validated 
using the learning paradigm. Further gradient distribution and edge completion are recommended depending on the learning output. 
Similarly, if the distributed gradients are enough to fill the partial or non-distributed edges, the completion is pursued with the 
previous positions’ gradients. This improves the restoration ratio with a marked region of interest under different textures. The 
proposed technique improves accuracy, sensitivity, and restoration ratio by 8.49 %, 11.06 %, and 8.5 %. This proposed technique 
reduces mean error and classification time by 7.69 % and 10.9 %. Though the proposed technique is better at improving the classi-
fication accuracy, the problem of descendant gradients remains unresolved in the edge detection process. This requires texture 
completion verification using reference pixels. Additionally, when the texture data to be processed is complicated the texture data 
resulting from the algorithms is comparatively blurred and fails to reflect the texture structure of the originalimage. This is because of 
the limitations in matching block searching and texture dispersion during large-area restoration. Blurring of the corrected area and 
insufficient texture information in areas with complex texture and substantial missing texture are two limitations of the present study. 
Therefore, future work will incorporate single/multi-reference pixels for precise edge descendant detection. 
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Table 5 
Comparative analysis summary (ROI).  

Metrics ADNL SASL NCTVM TRT-DFP 

Accuracy 0.697 0.762 0.824 0.9268 
Sensitivity 0.645 0.732 0.834 0.9523 
Restoration Ratio 69.46 70.08 78.04 81.917 
Mean Error 0.304 0.204 0.165 0.1279 
Classification Time (ms) 128.03 89.71 57.35 30.595 

The proposed technique improves accuracy, sensitivity, and restoration ratio by 8.29 %, 10.77 %, and 9.39 %. This proposed technique reduces mean 
error and classification time by 9.64 % and 11.11 %. 

Table 6 
Comparative analysis summary (features).  

Metrics ADNL SASL NCTVM TRT-DFP 

Accuracy 0.698 0.755 0.831 0.9312 
Sensitivity 0.653 0.733 0.809 0.9528 
Restoration Ratio 69.96 74.81 79.24 83.169 
Mean Error 0.231 0.158 0.102 0.0868 
Classification Time (ms) 124.08 83.14 52.64 29.954 

The proposed technique improves accuracy, sensitivity, and restoration ratio by 8.49 %, 11.06 %, and 8.5 %. This proposed technique reduces mean 
error and classification time by 7.69 % and 10.9 %. 

Table 7 
Comparative analysis summary (ROI).  

Metrics ADNL SASL NCTVM TRT-DFP 

PSNR 45.3 48.99 53.78 65.33 
SSIM 0.673 0.734 0.823 0.967 
FID 0.56 0.468 0.328 0.124  
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