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Abstract: The illicit use of the psychostimulant methamphetamine (METH) is a major concern, with overdose deaths increasing 
substantially since the mid-2010s. One challenge to treating METH use disorder (MUD), as with other psychostimulant use 
disorders, is that there are no available pharmacotherapies that can reduce cravings and help individuals achieve abstinence. The 
purpose of the current review is to discuss the molecular targets that have been tested in assays measuring the physiological, the 
cognitive, and the reinforcing effects of METH in both animals and humans. Several drugs show promise as potential pharma-
cotherapies for MUD when tested in animals, but fail to produce long-term changes in METH use in dependent individuals (eg, 
modafinil, antipsychotic medications, baclofen). However, these drugs, plus medications like atomoxetine and varenicline, may be 
better served as treatments to ameliorate the psychotomimetic effects of METH or to reverse METH-induced cognitive deficits. 
Preclinical studies show that vesicular monoamine transporter 2 inhibitors, metabotropic glutamate receptor ligands, and trace 
amine-associated receptor agonists are efficacious in attenuating the reinforcing effects of METH; however, clinical studies are 
needed to determine if these drugs effectively treat MUD. In addition to screening these compounds in individuals with MUD, 
potential future directions include increased emphasis on sex differences in preclinical studies and utilization of pharmacogenetic 
approaches to determine if genetic variances are predictive of treatment outcomes. These future directions can help lead to better 
interventions for treating MUD. 
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Introduction
Methamphetamine (METH) is a synthetic and potent psychostimulant drug that increases attention and arousal, 
suppresses appetite, and produces euphoria.1–3 Although these effects are often reinforcing, METH can cause life- 
threatening hyperthermia and heart arrythmias,4,5 and it can produce symptoms that mimic schizophrenia.6,7 Another 
major problem associated with METH is the development of tolerance with repeated administration and the 
emergence of aversive withdrawal symptoms such as depressed mood and lethargy upon cessation of use.8–10 Long- 
term METH use can negatively impact one’s health,11 as individuals that use METH are at risk for dental problems 
(“meth mouth”), heart disease, stroke, and contraction of a sexually transmitted infection (STI).12–15 Some of the 
adverse health effects of METH are compounded by its manufacturing process. METH can be synthesized from 
pseudoephedrine, a nasal decongestant, or from phenyl-2-propanone (P2P), a precursor to pseudoephedrine, using 
hazardous chemicals like lye and camping fuel.16 Some clandestine labs now synthesize ephedrine and P2P using 
commercially available materials, which introduces additional impurities,17 thus increasing the risk of adverse health 
effects.

There are several routes of administration associated with METH: oral, intravenous, intranasal, and inhalation. When 
ingested orally, peak subjective effects occur approximately 3 h after use; other routes of administration lead to rapid onset 
of subjective effects, occurring less than 15 min when injected or used intranasally and occurring within 20 min when 
smoked.18 Because METH is lipophilic, it quickly crosses the blood-brain barrier, where it can exert its psychoactive 
effects.19 METH also enters most organs, with high concentrations observed in lungs, liver, and kidneys.20 METH is 
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metabolized primary by the hepatic cytochrome P450 2D6 enzyme,21 leading to 4-hydroxymethamphetamine and amphe-
tamine (AMPH) as major metabolites,22,23 before being eliminated from the body through urine.24 Compared to other 
stimulants like cocaine, the half-life of METH is considerably longer, approximately 7–12 h depending on the dose and the 
route of administration.18,25–27

METH increases extracellular concentrations of the monoamine neurotransmitters dopamine, norepinephrine, and 
serotonin via several mechanisms. METH is a vesicular monoamine transporter 2 (VMAT-2) reverser, causing mono-
amine concentrations to increase in the presynaptic terminal button of neurons.28 Depending on the dose used, METH 
can reverse the direction of monoamine transporters, inhibit dopamine transporters, and/or inhibit the enzyme mono-
amine oxidase (MAO).29,30 Regardless, excess monoamine levels in the cytoplasm are released into the synapse, 
resulting in METH’s wide-ranging physiological and subjective effects.18 Increased dopaminergic activity in the 
mesocorticolimbic pathway underlies the reinforcing effects of METH,31 although reduced dopamine release is observed 
in brain regions associated with reward (eg, nucleus accumbens) after chronic use, which may explain why tolerance 
develops to the reinforcing effects of METH.32

Since the 2010s, METH use has increased significantly throughout the world.33–36 More problematic is the increase in 
methamphetamine use disorder (MUD) and corresponding increase in overdose deaths.34 MUD, like other substance use 
disorders (SUDs), is characterized by several criteria according to agencies like the American Psychiatric Association37 

and the International Classification of Diseases.38 Included in these criteria are using larger amounts of METH or using 
METH for longer periods of time than intended; persistent desire or unsuccessful efforts to control METH use; spending 
increasing amounts of time trying to obtain METH, use METH, and/or recover from METH’s effects; craving to use 
METH; failing to fulfill other responsibilities due to METH use; continued use of METH despite negative consequences; 
developing tolerance to METH’s effects; and experiencing withdrawal symptoms upon cessation of use.37 Recurrence of 
substance use following abstinence (“relapse”) is another prominent feature of SUDs.39

The socioeconomic costs of MUD are high as lost productivity, increased crime and incarceration rates, and 
premature mortality are consequences of the increasing popularity of this drug.40–42 As MUD rates continue to increase, 
finding effective treatment strategies to help individuals reduce METH use is imperative, especially given that no 
pharmacological treatments currently exist for MUD. The purpose of the current review is to discuss the pharmacological 
treatments that have been screened in various assays related to METH dependence and MUD. The review is not limited 
to clinical studies using METH-dependent individuals. Instead, results of preclinical studies and human studies involving 
both dependent and nondependent individuals will be discussed to provide a comprehensive review of how certain 
treatments may be effective in (1) reducing METH intake in individuals, (2) decreasing the likelihood of resuming 
METH use following a treatment intervention, (3) ameliorating METH-induced cognitive impairments, and/or (4) 
serving as a complimentary treatment for other interventions (eg, cognitive-behavioral therapy).

Methods for Screening the Efficacy of Potential Pharmacotherapies for 
MUD
Animal research is valuable for screening potential pharmacotherapies to determine if they are (a) safe to administer and 
(b) efficacious at attenuating the behavioral effects of METH. Additionally, animal research allows one to isolate the 
neural mechanisms underlying treatment-induced alterations in METH’s rewarding properties. To this end, numerous 
assays are used to study the neurobehavioral actions of potential pharmacotherapies.

Although tolerance develops to the rewarding properties of METH, individuals show behavioral sensitization 
following repeated METH use. Particularly problematic is the emergence of stereotypies.43 In humans, common METH- 
induced stereotypies include excoriation, jaw clenching, and bruxism.44,45 Repeated METH exposure increases beha-
vioral sensitization and stereotypies in animals such as circling, biting, head bobbing, sniffing, and grooming.46–50 

Preclinical studies are primarily used to determine if a potential pharmacotherapy attenuates METH-induced locomotor 
sensitization and/or stereotypies. This research is valuable as behavioral sensitization is reported to be a risk factor for 
future drug taking in animals.51–53
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Conditioned place preference (CPP) allows one to measure the conditioned rewarding effects of a stimulus such as 
METH.54,55 Although CPP can be measured in humans,56 no current studies exist in which METH was used. As such, 
discussion of METH CPP is limited to animal subjects in the current review. In CPP, the potential pharmacotherapy can 
be administered before each METH treatment to determine if acquisition of METH CPP can be blunted. Alternatively, 
the putative pharmacotherapy can be administered before the posttest; this measures the ability of the treatment to 
attenuate the expression of METH CPP. Detailed discussion of CPP as a tool for screening pharmacotherapies is detailed 
elsewhere.57

Self-administration uses operant conditioning principles to measure the direct reinforcing effects of a stimulus.58 

There are numerous self-administration paradigms that model distinct aspects of addictive-like behaviors, including 
short-access models (eg, < 3 h)59–62 and extended access models (eg, 6+ h).63–65 Extended access to drug often leads to 
escalation of drug intake, a defining trait of SUDs.66 Progressive ratio schedules measure the reinforcing efficacy of 
METH by requiring the subject to emit more responses after each reinforcer delivery;67,68 a break point is calculated, 
indicating the highest response ratio completed by the subject.69 Self-administration can be assessed in humans that are 
not currently seeking treatment for their substance use.70,71

Individuals with a SUD have access to numerous reinforcers that compete with substances like METH. Choice 
procedures are useful for modeling preference for drug reinforcement over alternative reinforcers. In animal studies, 
subjects respond on one manipulandum to earn a drug infusion and respond on a separate manipulandum to earn an 
alternative reinforcer like food.72,73 Several methods can be used with human participants. Individuals can choose 
between drug and placebo or drug and an alternative reinforcer such as money.74,75 Choice procedures can also be used to 
compare preference for the same drug delivered via different routes of administration.76

In addition to using self-administration procedures, clinical pharmacology studies often have individuals rate their 
subjective experiences of a drug administered alone or in combination with a potential pharmacotherapy.77 Subjective 
effects of METH include perceived physiological changes (eg, feeling stimulated), and pleasurable/aversive feelings. 
Clinical trials recruit individuals with a confirmed MUD, giving some of the participants the potential pharmacotherapy 
while giving other participants a placebo.78 Variables such as drug-free urine samples and dropout rates are then 
compared between the drug treatment and placebo groups.

Preclinical research often models recurrence of substance use with the reinstatement paradigm. Reinstatement can be 
assessed with both CPP and drug self-administration following extinction training in which drug is no longer paired with 
a specific environmental context (CPP) or delivered after completion of each response requirement (drug self- 
administration).79–82 Incubation of craving is similar to the reinstatement paradigm, except that animals are not given 
extinction training; instead, they are given a single extinction session followed by a period of forced abstinence in which 
animals are kept in their home cage (eg, 30 days), followed by a second extinction session.83

Methodology for Literature Review
Between March and May 2024, multiple searches were conducted in PubMed, using combinations of terms, including 
those for the potential pharmacotherapies discussed in this review; “methamphetamine” and “methamphetamine use 
disorder” (including alterations to the word methamphetamine like “METH” and “methylamphetamine”); “withdrawal”; 
“subjective effects”; “self-administration”; “progressive ratio”; “conditioned place preference” or “CPP”; “reinstate-
ment”; “incubation of craving”; “relapse”; “locomotor activity”; “stereotypy” or “stereotypies”. Literature reviews and 
meta-analyses were excluded, and article titles and abstracts were screened for relevance. Additional articles were found 
by reviewing the reference sections of articles found during the literature search.

Potential Pharmacotherapies for MUD
Numerous drugs have been screened in assays measuring the physiological, the cognitive, and/or the reinforcing/ 
rewarding effects of METH. Many of the drugs discussed below are already approved to treat other psychological 
and/or physical conditions while some have been tested in animals only. The treatments reviewed in the current paper are 
organized by their mechanism of action.
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Pharmacotherapies for Attention-Deficit/Hyperactivity Disorder (ADHD)
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by increased hyperac-
tivity/impulsivity and/or inattention and is linked to hypoactive catecholamine neurotransmission.84 The primary treat-
ment options are the psychostimulants d-AMPH and methylphenidate (MPH). Like METH, AMPH causes monoamines, 
specifically the catecholamines norepinephrine and dopamine, to be released into the synapse through their respective 
transporters, inhibits VMAT-2 functioning, and blocks activity of MAO; instead of reversing the flow of catecholamine 
transporters, MPH inhibits the reuptake of dopamine and norepinephrine, but there is evidence that MPH leads to 
a redistribution of VMAT-2.85

Giving METH-dependent individuals AMPH or MPH is a form of substitution treatment.86 Substitution treatment is 
already used for other drugs (eg, tobacco)87 and is an important component of harm reduction.88 Ideally, providing 
METH-dependent individuals with a stimulant drug that can be taken in a safer manner than inhalation or injection can 
help minimize the health risks associated with these routes of administration (eg, contraction of an STI from sharing 
needles). However, caution is needed when providing individuals AMPH or MPH given that they have misuse potential 
and can be diverted (eg, dissolved and then snorted or injected).89,90

AMPH blunts some of the subjective effects of METH,77 but results from animal studies are not as promising. Neither 
AMPH nor MPH affect METH self-administration in monkeys,91,92 while self-administration of MPH potentiates the 
reinforcing effects of METH in rats.93 These findings suggest that individuals maintained on AMPH or MPH may self- 
administer more METH to counteract the diminished subjective effects experienced during substitution treatment. Instead 
of targeting both dopamine and noradrenergic systems, an alternative approach is to use atomoxetine, a selective 
norepinephrine transporter inhibitor and non-stimulant treatment for ADHD. Although atomoxetine does not alter the 
subjective effects of METH,94 it reduces METH craving and METH-positive urine samples in individuals receiving 
methadone maintenance therapy.95 Preclinical studies assessing cocaine self-administration are encouraging as atomox-
etine decreases relapse-like behavior in rodents.96–98

Modafinil
Modafinil is an anti-narcoleptic drug that acts as a weak dopamine transporter (DAT) inhibitor.99 Modafinil decreases 
METH self-administration and attenuates drug-seeking behavior in rodents.100–103 These effects may not be completely 
mediated by inhibition of DAT, as administration of the highly selective DAT inhibitor GBR 12909 potentiates METH- 
induced increases in locomotor activity and reinstatement of METH seeking.104,105 Indeed, modafinil increases glutamate 
and histamine levels and decreases GABA levels.106 Drugs targeting the glutamatergic and GABAergic systems will be 
discussed later in this review.

Modafinil somewhat blunts the positive subjective effects of METH and ameliorates METH-induced increases in 
systolic blood pressure,107,108; but see109 but it does not significantly reduce choice for METH in a self-administration 
paradigm nor reduce METH use, craving, attentional bias toward METH-paired stimuli, or severity of dependence in 
METH-dependent individuals.107–113 There is some evidence that modafinil can be used in conjunction with cognitive- 
behavioral therapy to reduce METH use.114 At the cellular level, modafinil protects against METH-induced neuroin-
flammation, dopamine toxicity, and cell death in the striatum,115 which is consistent with the inhibited dopamine release 
observed following selective blockade of DAT.116,117 The neuroprotective effects of modafinil may account for its ability 
to reverse working and verbal memory deficits observed in both METH-dependent individuals and rodents.112,118–120 

Modafinil also improves learning in an associative learning task in METH-dependent individuals and improves inhibitory 
control in individuals with higher baseline rates of METH use.121,122

Antidepressant Drugs
The primary mechanism of action of antidepressants is to increase serotonin and norepinephrine levels. MAO inhibitors 
(MAOIs) prevent the metabolism of monoamines.123 Tricyclics/tetracyclics prevent the reuptake of serotonin/norepi-
nephrine, but they interact with multiple molecular targets (eg, histamine receptors, cholinergic receptors, adrenergic 
receptors). Commonly prescribed today, selective serotonin reuptake inhibitors (SSRIs) and serotonin/norepinephrine 
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reuptake inhibitors (SNRIs) also prevent the reuptake of norepinephrine and/or serotonin, but they have fewer “off-site” 
targets.

Due to the side effect profile of MAOIs, with cardiovascular effects being particularly problematic, individuals treated 
with MAOIs need to maintain a restrictive diet to avoid a life-threatening hypertensive crisis.124 As such, MAOIs are 
rarely tested in individuals with MUD. Selegiline (ie, deprenyl), a MAO-B inhibitor, fails to attenuate the positive 
subjective effects of METH, instead potentiating individuals’ self-reported “bad effects” following METH 
administration.125 This is somewhat concerning as aversive experiences, in conjunction with the dietary restrictions 
associated with MAOIs, may lead to lower compliance in METH-dependent individuals.

The tricyclic antidepressant imipramine increases treatment retention rates, but it does not significantly alter drug 
craving, self-reported use frequency, or drug-positive urine samples in stimulant-dependent individuals.126 One important 
consideration is that most of the participants in this study were dependent on cocaine (151 out of 183 participants), with 
the rest (32/183) being dependent on METH. Similar results are obtained when a sample of METH-dependent individuals 
is used: increased treatment retention but no effects on drug craving or frequency of METH use.127 Preclinical research 
demonstrates that desipramine increases dopamine release following METH administration while decreasing dopamine 
levels following administration of other amphetamines.128 Additionally, imipramine, as well as clomipramine, potentiates 
METH-induced stereotypies in rats.129,130 These preclinical findings may provide an account for the inability of 
imipramine to reduce the reinforcing effects of METH in dependent individuals.

In contrast to tricyclics, tetracyclics block METH-induced increases in locomotor activity and locomotor sensitization 
in animals.131,132 The tetracyclic antidepressant maprotiline reduces METH-induced stereotypies in rodents.133 

Mirtazapine, when administered after a conditioning session, prevents the expression of METH CPP,134 and decreases 
cue-induced reinstatement in rats.135 Mirtazapine also decreases METH use in individuals with MUD,136,137 including 
cisgender men and transgender women who have sex with men,136 although it is ineffective in facilitating retention in 
a METH withdrawal program.138 This latter finding suggests that mirtazapine may not be beneficial for individuals 
actively going through withdrawal. Like MAOIs, using tetracyclic medications for long-term treatment of MUD is 
challenging given their side-effect profile. As tricyclic and tetracyclic antidepressants have multiple mechanisms of 
action, individuals can experience a wide range of side effects, including dry mouth, urinary difficulties, weight gain, 
drowsiness, and headaches.139

Similar to tetracyclics, SSRIs differentially alter locomotor responses to METH. Citalopram exacerbates locomotor 
activity following METH administration,140 with this effect appearing to be influenced by increased dopamine, but not 
serotonin, depletion in the nigrostriatal pathway.141 However, fluoxetine and paroxetine attenuate METH-induced 
locomotor sensitization,142,143 and they decrease METH CPP.143,144 Clinical trials with sertraline show that SSRIs can 
be contraindicated for individuals with MUD, as individuals treated with sertraline alone have lower treatment retention 
rates, experience more adverse events, and increase their METH use.145,146

Concerning SNRIs, duloxetine ameliorates METH-induced cognitive deficits,147,148 and venlafaxine blocks reinstate-
ment of METH CPP.149 Clinical trials have not tested the efficacy of SNRIs for the treatment of METH dependence, 
although trials for cocaine dependence have largely been unsuccessful.150–152; but see.153,154

Bupropion is a dual-purpose medication, prescribed to treat both depressive disorders and nicotine dependence; 
compared to other antidepressant drug classes, bupropion is unique in that it inhibits dopamine and norepinephrine 
transporters and upregulates VMAT-2 expression.155 The ability of bupropion to inhibit reuptake of dopamine and to 
target VMAT-2 may make it a promising pharmacotherapy for MUD. To this end, bupropion blunts the positive 
subjective effects of METH,156 and it decreases METH self-administration in monkeys.91; but see157 Unfortunately, 
bupropion also decreases self-administration of sucrose in rats,158–160 suggesting that long-term bupropion treatment may 
lead to increased anhedonia in individuals. Indeed, anhedonia is observed in healthy individuals given bupropion.161 

Bupropion can also lead to significant adverse events, including tachycardia, seizures, and suicidal ideations.162–164

VMAT-2 Inhibitors
Studies examining the efficacy of VMAT-2-selective drugs have been limited to animals. The plant-derived lobeline 
decreases METH self-administration and METH-induced stereotypies in rodents.165,166 Because lobeline is not entirely 
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selective for VMAT-2,167 lobelane, an analog of lobeline, was next tested.168,169 Like lobeline, lobelane decreases METH 
self-administration in rats, but tolerance develops following repeated lobelane treatment.170 Lobelane analogs now show 
promise in reducing dependence-like behavior in rodents, as they decrease METH self-administration, reinstatement of 
METH seeking, METH CPP, and METH-induced hyperactivity, with no tolerance observed following repeated 
administration.171–177

Altering Tyrosine Levels
Tyrosine is a non-essential amino acid synthesized from phenylalanine that serves as a vital precursor to dopamine. 
Decreasing tyrosine levels or preventing the conversion of tyrosine to L-DOPA (l-3,4-dihydroxyphenylalanine; immedi-
ate precursor to dopamine) limits METH-induced increases in dopamine release,178 thus diminishing the reinforcing 
effects of METH. Administration of the tyrosine hydroxylase inhibitor alpha-methyl-p-tyrosine protects against METH’s 
neurotoxic and hyperthermic effects,179–182 and attenuates METH-induced dopamine depletion.183,184 Only one study has 
examined the effects of tyrosine depletion on METH effects in humans, with subjective effects and METH-induced 
mania decreasing following tyrosine depletion.185 There is evidence that tyrosine depletion decreases cue- and drug- 
induced craving for cocaine, but fails to affect cocaine self-administration in non-dependent cocaine users.186 One major 
concern associated with tyrosine depletion is increased apathy and decreased contentment.187

Monoaminergic Receptor Ligands
By limiting tyrosine activity, dopamine is not the only neurotransmitter that is decreased; norepinephrine levels decrease 
following alpha-methyl-p-tyrosine administration,188 most likely because dopamine is the direct precursor of 
norepinephrine.189 Instead of targeting monoamine synthesis or metabolism, one approach is to use monoaminergic 
receptor ligands to block the effects of METH in individuals.

Each monoaminergic system has its own receptor types, with all but one coupled to a G protein (ie, metabotropic 
receptor).190–192 Dopamine D1-like (D1 and D5) receptors, all three noradrenergic beta receptor subtypes (1–3), and 
serotonin 5-HT4, 5-HT6, and 5-HT7 receptors are Gs-coupled, leading to increased adenyl cyclase activity in the neuron, 
resulting in increased neuronal excitation.190–192 Noradrenergic alpha-1 and serotonin 5-HT2 receptors are also excitatory, 
but they are coupled to a Gq protein, which activates a different intracellular signaling pathway involving phospholipase 
C and protein kinases.190,192 Dopamine D2-like (D2, D3, and D4), noradrenergic alpha-2, and serotonin 5-HT1 and 5-HT5 

receptors are inhibitory. Stimulation of these receptors leads to decreased activity of adenyl cyclase.190–192 Finally, the 5- 
HT3 receptor is ionotropic, consisting of five subunits surrounding an ion channel. When a ligand binds to the receptor, the 
ion channel opens, allowing sodium ions to enter the neuron.192

Buspirone
Buspirone is an anxiolytic that acts as a partial agonist at serotonin 5-HT1A receptors and as an antagonist at dopamine 
D2-like receptors.193 Buspirone decreases reinstatement of METH seeking in rats,194 but it fails to alter choice of METH 
over food in monkeys and fails to affect the subjective or the reinforcing effects of intranasal METH in humans.195,196 In 
fact, buspirone increases some positive subjective effects of oral METH.197 These results raise concerns about the use of 
buspirone as a treatment for MUD.

Antipsychotic Medications
Historically used to treat psychiatric conditions like schizophrenia, antipsychotic medications exert their effects by acting 
as dopamine D2 receptor antagonists, with atypical antipsychotics also acting as serotonin, specifically 5-HT2A, and 
noradrenergic receptor antagonists.198 Some antipsychotics, such as aripiprazole, act as partial agonists at dopamine D2- 
like receptors and 5-HT1A receptors in addition to antagonizing 5-HT2A receptors.199

Antipsychotics decrease METH-induced hyperactivity and block locomotor sensitization following repeated METH 
administration;200–211 but see.212 The atypical antipsychotic risperidone increases METH self-administration in 
monkeys.157 Aripiprazole produces biphasic effects when a fixed ratio schedule is used, decreasing self-administration 
when lower doses of METH are used, but increasing self-administration when a higher dose of METH is used.213 The 
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increased self-administration observed in monkeys and in rats may not necessarily indicate that antipsychotics increases 
the reinforcing effects of METH; instead, animals may increase their responding to achieve a hedonic set point that is 
similar to when pretreated with vehicle. When a progressive ratio schedule is used, aripiprazole decreases the reinforcing 
efficacy of METH.213

Neither haloperidol nor risperidone blunt METH’s stimulant effects in humans;214 yet, individuals maintained on 
risperidone decrease their use of METH,215,216 but these results are somewhat difficult to interpret due to the small 
number of individuals that completed treatment (eg, only 12 of 53 participants completed an 8-week treatment of 
risperidone injections).216 Aripiprazole blunts some positive subjective effects of METH and decreases METH self- 
administration in non-dependent individuals,217–219 but it fails to decrease METH use in dependent individuals.220,221 As 
aripiprazole increases treatment retention,221 it may be better served as a treatment given in addition to non- 
pharmacological-based interventions. However, evidence indicates that individuals given antipsychotics “off-label” 
may develop a hypersensitive dopaminergic system, which can increase drug cravings and worsen stimulant use 
disorder.222

One benefit of antipsychotics is they ameliorate the psychotomimetic-like effects of METH. Antipsychotics block 
behavioral disturbances in rodents that model schizophrenia-like behavior (eg, prepulse inhibition deficits) and abolish 
METH-induced self-injurious behavior in mice.223–225 Clinically, antipsychotics reduce METH-induced psychosis and 
sedate individuals experiencing METH toxicity.222,226–231 Related to METH toxicity, antipsychotics may be useful for 
reversing METH-induced hyperthermia.232

Dopamine Receptor Ligands
As dopaminergic dysfunction in the mesocorticolimbic pathway is heavily implicated in SUDs,233 blocking dopamine 
receptors represents a potential mechanism for attenuating the physiological and/or the reinforcing effects of METH. The 
mixed dopamine receptor antagonist levo-tetrahydropalmatine decreases METH self-administration and METH-induced 
reinstatement.234 The protective effects of levo-tetrahydropalmatine appear to be driven by blockade of D1-like receptors, 
as D1-like, but not D2-like, receptor antagonists decrease METH self-administration and reinstatement of METH-seeking 
behavior.105,235,236 However, both D1-like and D2-like antagonists block METH-induced hyperactivity and stereotypies, 
as well as the development of behavioral sensitization following repeated METH administration.131,209,224,237–241 

Likewise, blocking either dopamine D1-like or D2-like receptors attenuates the acquisition and the expression of 
METH CPP in rodents,242–248 although some work shows that D2-like receptors are uninvolved in the acquisition of 
METH CPP.243,248 Another seemingly paradoxical finding is that while a dopamine D2 receptor partial agonist decreases 
METH-induced hyperactivity,209 D2-like agonists increase METH seeking in a reinstatement model.249

Dopamine D1-like and D2-like receptors have complex interactions with one another in striatal pathways. Projections 
from striatal D2-containing medium spiny neurons (MSNs) to D1-containing MSNs are more common than projections 
from D1-like MSNs to D2-like MSNs, and synaptic connections formed by D2-like MSNs are stronger than those formed 
by D1-like MSNs.250 Upregulation of D2-like MSNs in nucleus accumbens also increases motivation for reinforcement 
via disinhibition of the ventral pallidum,251 which mirrors increased motivation for reinforcement following direct 
stimulation of D1-like receptors in nucleus accumbens.252 Thus, D2-like receptor antagonists can produce similar results 
as D1-like receptor antagonists by preventing the inhibition of inhibitory neurons that typically regulate the release of 
dopamine.

As D2-like receptor antagonists have fewer extrapyramidal side effects compared to D1-receptor antagonists,198 there 
is growing interest in targeting these receptors for SUDs, particularly the dopamine D3 receptor.253 Selective dopamine 
D3 receptor antagonists attenuate METH-induced behavioral sensitization,254 ameliorate prepulse inhibition deficits 
following METH administration,255 prevent METH-induced hyperthermia,256 blunt METH CPP,254 reduce intracranial 
self-stimulation following METH administration,257,258 decrease the reinforcing efficacy of METH,257,259–261 and block 
reinstatement of METH-seeking behavior.257,259,260,262 While dopamine D3 receptor partial agonists attenuate METH- 
induced intracranial self-stimulation and METH self-administration,245,261 one selective D3 receptor partial agonist has 
no effect on METH self-administration in monkeys in a choice procedure.195 Despite this last finding, the results with 
dopamine D3 receptor antagonists are promising and merit further testing.
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Currently, there is little work examining the effects of selective dopamine D4 receptor ligands on dependence-like 
behaviors despite evidence showing that this receptor may be an important target for preventing recurrence of stimulant 
use.263 A selective dopamine D4 receptor antagonist blocks METH-induced hyperactivity,264 but has no effect on the 
development of behavioral sensitization.265 There is recent evidence that D4 receptor partial agonists decrease cocaine 
self-administration in rats;266 thus, investigating how D4 receptor ligands influence MUD-like behaviors is warranted.

Noradrenergic Receptor Ligands
Alpha-1 receptor agonists are used as decongestants and hypotension medications,267,268 and beta receptor agonists are 
commonly prescribed for pulmonary-related conditions.269 Alpha-1 and beta receptor antagonists are used to decrease 
hypertension.270,271 Alpha-2 receptor agonists are used as sedatives in animal surgery,272 with clonidine and guanfacine 
used as ADHD medications.273 Alpha-2 receptor antagonists are often used to reverse the sedative effects of alpha-2 
agonists,274 with yohimbine being used to model stress-induced reinstatement of drug-seeking behavior, including for 
METH.275,276 As METH increases norepinephrine levels, one approach to blunting the physiological/behavioral effects 
of METH is to block alpha-1/beta receptors and/or to stimulate alpha-2 receptors.

Research examining the efficacy of noradrenergic receptor ligands is limited to animals. Alpha-1 and beta receptor 
antagonists ameliorate METH-induced hyperthermia and conditioned hyperactivity.179,277–279 Similarly, an alpha-1 
receptor inverse agonist attenuates conditioned hyperactivity following repeated METH treatments.280 Although the 
effects of alpha-1/beta receptor antagonists on the reinforcing effects of METH are unknown at this point, there is 
evidence that blocking alpha-1 receptors decreases cocaine self-administration;281–283 but see.284 Conversely, results with 
beta receptor antagonists are mixed, with some studies showing decreased cocaine self-administration,285,286 no change 
in cocaine self-administration,282 or increased cocaine self-administration.283 While ineffective on their own, combina-
tion treatment of an alpha-1 receptor antagonist and a beta receptor antagonist attenuates cue-induced reinstatement of 
cocaine seeking.287

Alpha-2 receptor agonists attenuate METH-induced hyperactivity and stereotypies,288 METH’s hyperthermic 
effects,289 and METH CPP,290 although they do not show much efficacy in blunting the direct reinforcing effects of 
psychostimulants;282,291 but see.292,293 Alpha-2 receptor agonists reduce cue- and stress-induced cocaine seeking,287,294–296 

suggesting they may be an important treatment for individuals with MUD that are currently or have recently completed 
a treatment intervention.

Serotonin Receptor Ligands
Similar to dopamine receptor antagonists and noradrenergic alpha-2 receptor agonists, administration of 5-HT1A agonists 
and antagonists, 5-HT2A receptor antagonists, 5-HT2C agonists, and 5-HT5A antagonists reduces METH-induced 
hyperactivity.131,209,297–299 METH-induced stereotypies are similarly blunted by 5-HT1A agonists.130 Conversely, 5- 
HT2C antagonists potentiate METH-induced locomotor activity.209 Concerning METH reward, a 5-HT1B agonist attenu-
ates the expression, but not acquisition, of METH CPP,300 and 5-HT3 antagonists block METH CPP.301

Psychedelic hallucinogens are receiving interest as potential pharmacotherapies for conditions like posttraumatic 
stress disorder and alcohol use disorder.302,303 The major psychedelic hallucinogens are naturally derived and include 
lysergic acid diethylamide (LSD), psilocybin, mescaline, and N,N-dimethyltryptamine (DMT). Psychedelic hallucinogens 
are agonists at 5-HT2A receptors, although they bind to multiple 5-HT receptor subtypes, with LSD also acting as an 
agonist at dopaminergic and noradrenergic receptors.304 Results from the few studies examining the efficacy of 
psychedelic hallucinogens are mixed. LSD fails to alter intracranial self-stimulation following METH injection.305 

Psilocin, an active metabolite of psilocybin, decreases METH-induced hyperlocomotion and CPP but does not affect 
reinstatement of METH CPP.306 Additional work further diminishes the idea of targeting the 5-HT2A receptor as 
a pharmacotherapy for MUD as the 5-HT2A inverse agonist/antagonist pimavanserin fails to reduce preference for 
METH over food in monkeys.307

Lorcaserin is a 5-HT2C agonist that was previously used as a weight-loss drug.308 Lorcaserin reduces stimulant use in 
METH-dependent individuals,309 but the appeal of lorcaserin as a viable treatment for MUD is reduced by the finding 
that individuals choose cocaine more frequently compared to money when treated with lorcaserin despite reporting 
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decreased drug craving.310 Additionally, results from a double-blind, placebo-controlled clinical trial show no benefits of 
lorcaserin for the treatment of cocaine use disorder.311 Finally, lorcaserin is no longer on the market in the United States 
due to its potential carcinogenic effects.312 Given that a 5-HT2C inverse agonist, but not 5-HT2C antagonists, attenuates 
METH-seeking in rodents,313 this may provide a novel approach to treating METH dependence as opposed to stimulating 
these receptors.

Ondansetron is a serotonin 5-HT3 receptor antagonist that is used as an antiemetic.314 Ondansetron potentiates 
METH-induced locomotor activity,131 which is interesting as a different 5-HT3 antagonist reduces METH-induced 
hyperactivity.315 Clinically, ondansetron is no more effective than placebo at reducing METH use, withdrawal symptoms, 
craving, or dependence severity.316 Ondansetron does reverse the anorexic-like effects of METH,317 which can be 
valuable for helping stimulate appetite in those with MUD.

Trace Amine-Associated Receptor Agonists
Trace amines are chemicals that are structurally related to monoamines and are derived from phenylalanine.318 For 
example, phenylalanine is converted to phenethylamine by aromatic L-amino acid decarboxylase, the same enzyme that 
converts L-DOPA into dopamine. Other trace amines include tyramine, octopamine, and synephrine. Trace amines bind 
to the trace amine-associated receptor 1 (TAAR 1), which regulates monoaminergic neurons. Specifically, trace amines 
modulate monoamine transporter function.319,320 Because METH acts as an agonist at TAAR 1,319,321–323 there is interest 
in determining if TAAR 1 agonists can act as a form of substitution therapy for MUD. This research is limited to 
preclinical models so far, but results are promising. TAAR 1 agonists reduce METH-induced dopamine release in nucleus 
accumbens, attenuate METH-induced locomotor sensitization, decrease METH drug self-administration, blunt the 
reinforcing efficacy of METH, and block drug-induced reinstatement of METH seeking.324–326 Another benefit of 
TAAR 1 agonists is that they can ameliorate motor impulsivity caused by acute METH administration and abrupt 
cessation of METH.327

Cholinergic Drugs
As numerous neurotransmitter systems are implicated in addiction,328 testing the efficacy of non-monoaminergic drugs 
for METH dependence is needed. Acetylcholine is an important neurotransmitter that regulates muscle contractions and 
is implicated in learning and cognition.329,330 Systemic administration of METH increase acetylcholine levels in ventral 
tegmental area and striatum of rodents,331,332 regions of the brain involved in the addiction process.333 Cholinergic 
receptors control dopamine release in nucleus accumbens when animals are presented with drug-paired cues,334 

suggesting that the cholinergic system may be an important target for preventing drug-seeking behavior.
There are two major types of cholinergic receptors: nicotinic and muscarinic. Nicotinic receptors are ionotropic and 

consist of five subunits; stimulation of nicotinic receptors leads to sodium influx into the neuron. Muscarinic receptors 
are metabotropic and can be excitatory (M1, M3, and M5) or inhibitory (M2 and M4).335

Nicotinic Receptor Ligands
Nicotine is an agonist at nicotinic receptors and is the primary psychoactive chemical in tobacco. One interesting finding 
is that as craving for nicotine increases, craving for and use of stimulants decrease.336 Similarly, cue-induced drug 
seeking is enhanced in animals following antagonism of nicotinic receptors.334 These results indicate that nicotine may 
be useful as a form of substitution treatment for MUD. Indeed, nicotine fully substitutes for METH in a drug- 
discrimination paradigm in animals while METH acts as a partial substitute for nicotine only.337

Repeated administration of nicotine during extinction training decreases reinstatement of METH seeking.338 Yet, 
other research raises concerns about the viability of long-term nicotine administration as a treatment for MUD. First, 
repeated nicotine exposure fails to alter the acquisition, the extinction, and the reinstatement of METH CPP.339 Chronic, 
but not acute, administration of nicotine augments locomotor activity following METH treatment.340,341; but see342 While 
acute administration of nicotine transiently decreases METH self-administration, repeated nicotine administration fails to 
alter METH self-administration.343 In fact, chronic nicotine treatment enhances METH self-administration in adult 
females.344 Acute nicotine administration potentiates reinstatement of METH-seeking behavior,343,345 although this 
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effect is not observed in rats treated with nicotine during adolescence.346 Nicotine may be beneficial for ameliorating 
cognitive deficits resulting from METH use. Nicotine administration reverses METH-induced deficits in novel object 
recognition, memory, and prepulse inhibition and attenuates METH-induced increases in risky choice.347–350

Varenicline is a partial agonist at ⍺4β2 and an agonist at ⍺7 nicotinic receptors and is used to for tobacco dependence 
as a form of substitution treatment.351 One concern is that varenicline decreases responding for both METH and saline/ 
food,174,352; but see353 suggesting that this treatment may increase anhedonia in individuals; furthermore, low doses of 
varenicline potentiate reinstatement of METH-seeking, although this effect may reflect an increase in general locomotor 
activity as responding increases on a manipulandum previously paired with saline,352,353 There is evidence that 
varenicline blunts the positive subjective effects of METH,354 but clinical research shows that varenicline is ineffective 
at decreasing METH use in dependent individuals.355 Like nicotine, varenicline may be useful for reversing cognitive 
impairments resulting from METH use, as it reverses METH-induced increases in risky choice in rodents.350 Instead of 
using an agonist or partial agonist at nicotinic receptors, one approach is to use a selective ⍺4β2 nicotinic receptor 
desensitizing compound. To this end, an ⍺4β2 nicotinic receptor desensitizing compound decreases METH self- 
administration in rats.356

Ibogaine is a naturally derived psychoactive substance found in certain plants that has high affinity for nicotinic 
acetylcholine receptors, adrenergic ⍺2 receptors, and the serotonin transporter.357 Ibogaine blocks METH-induced 
hyperthermia,358 but it increases METH-induced stereotypies.359 The ⍺3β4 nicotinic receptor antagonist 18- 
methoxycoronaridine (18-MC), a synthetic analog of ibogaine, decreases METH self-administration,61,360,361 but it 
increases locomotor activity in rats chronically treated with METH and potentiates METH-induced stereotypies like 
ibogaine.359 These results are concerning as they suggest that blocking nicotinic receptors can exacerbate problematic 
behaviors like skin picking in individuals with MUD.

Muscarinic Receptor Ligands
Benztropine is a non-selective muscarinic receptor antagonist used to treat tremors associated with Parkinson’s 
disease.362 More recent studies using benztropine analogs show that they decrease METH-induced locomotor activity, 
METH self-administration, and reinstatement of METH seeking.363–365 One caveat to these findings is that one 
benztropine analog increases the reinforcing efficacy of METH as measured in a progressive ratio schedule.364

Scopolamine, another non-selective muscarinic receptor antagonist used to prevent motion sickness,366 prevents the 
development of METH-induced behavioral sensitization and stereotypies.367–369; but see370,371 While scopolamine does 
not affect METH CPP, the muscarinic M1 receptor antagonist trihexyphenidyl (an antispasmodic) blocks METH CPP.369 

The selective muscarinic M1 receptor antagonist dicyclomine (an antispasmodic used to treat irritable bowel disease) 
does not alter the acute effects of METH on locomotor activity, but it potentiates behavioral sensitization.372

The muscarinic receptor agonist oxotremorine reverses both METH-induced hyperactivity and prepulse inhibition 
deficits,207 and the M1/M4 agonist xanomeline decreases METH-induced hyperactivity.373 Administration of muscarinic 
receptor agonists is difficult as they increase tremors and are used to model Parkinson’s disease.374,375 A potential future 
direction is to use partial agonists at muscarinic receptors. N-desmethylclozapine, a major metabolite of clozapine which 
acts as a partial agonist as muscarinic M1 receptors,376 prevents METH-induced psychotic-like effects.377 Whether 
muscarinic receptor partial agonists are efficacious in attenuating METH dependence-like behavior is currently unknown.

Acetylcholinesterase Inhibitors
A different potential cholinergic target is the inhibition of acetylcholinesterase, which metabolizes acetylcholine.378 

Acetylcholinesterase inhibitors are currently used to treat Alzheimer’s disease.379 Despite blunting cocaine-induced 
behavioral sensitization and cocaine CPP, the acetylcholinesterase inhibitor donepezil fails to blunt these behaviors 
following METH administration.380 Donepezil also fails to alter memory impairments resulting from METH adminis-
tration, but the weak acetylcholinesterase inhibitor galantamine attenuates METH-induced memory deficits.381 One 
positive findings is that both donepezil and galantamine decrease reinstatement of METH seeking.382,383 Rivastigmine 
modestly reduces some subjective effects of METH but is ineffective at reducing the direct reinforcing effects of METH 
and METH-induced deficits in cognition.384–387
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Opioid Receptor Antagonists
Consisting of endorphins, dynorphins, and enkephalins, endogenous opioids bind to Gi-coupled metabotropic receptors 
(mu, kappa, delta, respectively).388 Given the influence of the endogenous opioid system to addiction,389 opioid receptor 
antagonists may be a viable molecular target for MUD. Naltrexone is used to treat opioid use disorder and alcohol use 
disorder.390 Naloxone is similar to naltrexone, but is most commonly used to reverse the effects of opioid overdose.391 As 
such, there is little research examining naloxone’s efficacy in METH dependence. The preclinical studies that have been 
conducted show that naloxone decreases stereotypical biting in mice but potentiates stereotypical sniffing and locomotor 
activity,392 and exacerbates METH-induced stereotypies in rats.393

Research with naltrexone is more promising, as it attenuates METH-induced behavioral sensitization, METH CPP, 
and METH-seeking behavior.392,394–398 The naltrexone analog nalmefene also decreases reinstatement of METH-seeking 
behavior.399 In humans, naltrexone fails to diminish the subjective effects and the direct reinforcing effects of METH in 
a non-clinical sample;400,401 but see.71 but there is evidence that naltrexone reduces subjective cue-induced craving in 
individuals with MUD and reduces the number of METH-using days in individuals with MUD or in individuals that 
engage in higher METH use.401–403 Naltrexone also decreases the ability of cue-induced craving to predict positive 
subjective effects.404 Importantly, the ability of naltrexone to blunt the subjective effects of METH is enhanced in 
individuals with lower executive functioning,405 indicating that neuropsychological tests should be performed in 
individuals to determine if naltrexone treatment will be effective.

The ability of naltrexone to selectively decrease the reinforcing effects of METH in dependent individuals may be 
related to a dysregulated dopaminergic system observed in these individuals. Individuals with MUD have increased 
resting state functional connectivity between brain regions like ventral striatum, amygdala, and hippocampus, which is 
blunted by naltrexone treatment.402 Naltrexone also reduces functional connectivity of regions like dorsal striatum and 
VTA with sensory-processing and motor-control regions of the brain that are associated with cue reactivity.406

Like naltrexone administered alone, combining naltrexone with other pharmacotherapies is ineffective at altering the 
subjective or the reinforcing effects of METH in non-dependent individuals,71,407 but it increases the percentage of drug- 
free urine samples in dependent individuals relative to placebo treatment, although the overall rate of success is 
moderately low.78 Combination treatment of naltrexone and bupropion is significantly more effective in gay/bisexual 
men compared to heterosexual men,408 an effect that is not observed when naltrexone is administered alone.409 As 
METH use is higher in LGBTQ+ individuals,410 naltrexone/bupropion provides a novel approach for treating individuals 
at increased risk for developing MUD.

In addition to naltrexone, future research may want to consider using drugs that are highly selective for one opioid 
receptor to better determine how endogenous opioids mediate the effects of METH in individuals. The mu opioid 
receptor antagonist β-funaltrexamine attenuates METH-induced increases in self-biting in mice, an effect that is not 
observed following selective blockade of kappa or delta receptors.392 The kappa receptor antagonist norbinaltorphimine 
dihydrochloride (nor-BNI) decreases escalation of METH intake in rats,411 while the non-selective delta opioid receptor 
antagonist naltrindole and the delta-2 opioid receptor antagonist naltriben reduce METH CPP.412

GABAergic Receptor Ligands
GABA is the major inhibitory neurotransmitter in the nervous system and binds to two receptor types: GABAA and 
GABAB.413 GABAA receptors are ionotropic, consisting of five subunits, and allow chloride to enter the neuron when 
activated. GABAB receptors are metabotropic, coupled to a Gi protein. Dysregulation of the GABA system is implicated 
in addiction.414 Furthermore, METH impairs signaling of GABAB receptors,415 and decreases immunoreactivity of 
inhibitory neurons in nucleus accumbens.416 The inhibition of GABAergic neurons, in turn, leads to further increases in 
dopamine release in the mesocorticolimbic pathway. Increasing GABAergic neurotransmission may be an effective 
treatment option for those with a MUD.

Many anxiolytics potentiate activity of GABAA receptors by binding to the benzodiazepine site of the receptor.417 

Clonazepam prevents the acquisition, but not the expression, of METH-induced locomotor sensitization in rats, an effect 
that is blocked by co-administration of the GABAA receptor antagonist flumazenil.418,419 Oxazepam attenuates METH 
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CPP,420 and decreases METH-seeking behavior when combined with the steroidogenesis inhibitor metyrapone.421 

Anxiolytics can differentially affect METH self-administration, with oxazepam decreasing METH self-administration 
across various doses and alprazolam potentiating self-administration at low unit doses and decreasing self-administration 
at higher doses.422 One potential future direction is to use GABAA negative allosteric modulators. One such modulator 
reduces intracranial self-stimulation and nucleus accumbens dopamine release following METH administration in 
mice.423

Baclofen is a GABAB receptor agonist prescribed to treat muscle spasms. GABA inhibits dopamine release in striatal 
regions.424 Baclofen exacerbates METH-induced stereotypies in mice,425 but it attenuates the acquisition and the 
expression of METH CPP,426 facilitates extinction of METH CPP,427 and decreases METH self-administration.67 

Baclofen also reverses METH-induced impairments in prepulse inhibition and recognition memory.428–430 Overall, 
baclofen does not significantly alter METH use in individuals that are dependent on METH; however, there is some 
evidence that individuals that show better medication adherence decrease their use to a greater extent than placebo- 
treated individuals.431

Glutamatergic Targets
Glutamate is the major excitatory neurotransmitter in the mammalian brain. Like the GABAergic system, the glutama-
tergic system is composed of both ionotropic and metabotropic receptors.432 Kainate, AMPA (alpha-amino-3-hydroxy- 
5-methyl-4-isoxazolepropionic acid), and NMDA (N-methyl-D-aspartate) receptors consist of four subunits and allow 
sodium (and calcium in the case of NMDA receptors) into the neuron when activated. Metabotropic glutamate receptors 
(mGluRs) are divided into three groups: Group I (excitatory mGluR1 and mGluR5), Group II (inhibitory mGluR2, 
mGluR3, and mGluR4), and Group III (inhibitory mGluR6, mGluR7, and mGluR8).

Ionotropic Glutamate Receptor Ligands
The effects of selective kainate receptor ligands on METH-related behaviors are unknown in both animals and humans. 
However, riluzole, which non-selectively inhibits ionotropic glutamate receptors,433 prevents increased locomotor 
activity following acute METH administration and blocks METH-induced locomotor sensitization.434 The effects of 
riluzole do not appear to be influenced by antagonism of AMPA receptors, as an AMPA receptor antagonist fails to alter 
METH-induced behavioral sensitization or METH-induced stereotypies.46 Additionally, AMPA receptor antagonists do 
not alter METH self-administration or METH-seeking behavior.435,436

Memantine is an NMDA receptor uncompetitive antagonist (ie, channel blocker) that is used clinically to treat 
Alzheimer’s disease.437 Not surprisingly, memantine is efficacious in reversing memory impairments resulting from 
METH administration.438,439 However, memantine administration produces stereotypic sniffing and increases locomotor 
activity.440 While memantine decreases self-administration of higher doses of METH, it potentiates self-administration of 
a low unit dose of METH.441 Memantine also fails to alter the subjective effects of METH in non-dependent 
individuals,442 although the effects of memantine have not been tested in dependent individuals.

Like memantine, ketamine is an NMDA receptor channel blocker, but it is used as an anesthetic in animals and is now 
used as a rapidly acting antidepressant in humans.443,444 Specific to METH-dependence-like behavior, ketamine 
decreases self-administration in animals.445 Ketamine also decreases cocaine-induced hyperactivity in animals,446 and 
decreases cocaine self-administration in humans.447 One caveat to this latter finding is that preclinical research shows that 
ketamine attenuates the reinforcing effects of both cocaine and food,448 suggesting increased anhedonia. There is some 
evidence that ketamine blocks reinstatement of cocaine seeking in monkeys,449 but this study tested three subjects only. 
A recent clinical trial shows that combining a single ketamine infusion with mindfulness-based therapy helps improve 
abstinence.450

Beyond NMDA receptor channel blockers, drugs that selectively target NMDA receptors that contain a specific 
subunit provide a potential avenue for treating SUDs. NMDA receptors are composed of two GluN1 subunits and 
combinations of GluN2A, GluN2B, GluN2C, and GluN2D subunits. Glutamate binds to the GluN2 subunits while the 
co-agonist glycine binds to the GluN1 subunits.432 Rats prenatally exposed to METH have increased expression of 
GluN1 and GluN2B subunit, an effect that emerges during adulthood.451 METH treatment leads to differential GluN 
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subunit expression in regions of the dorsal striatum, with upregulated GluN1 and GluN2A expression observed in 
dorsolateral striatum, and downregulated GluN2A and GluN2B expression observed in dorsomedial striatum.452 METH 
CPP also upregulates GluN2B-containing NMDA receptors in hippocampus,453 and METH self-administration increases 
GluN2B expression in medial prefrontal cortex.454

The GluN2B subunit has received increased attention as GluN2B-selective antagonists prevent reinstatement of 
nicotine and heroin seeking in animals.455,456 While the contribution of GluN2B-containing NMDA receptors to METH 
relapse-like behavior has not been elucidated, antagonism of GluN2B-containing NMDA receptors fails to alter the rate 
of extinction of METH self-administration.457 However, GluN2B-selective antagonists attenuate METH-induced loco-
motor activity and the acquisition and the expression of METH-induced behavioral sensitization.458,459 Additionally, one 
GluN2B-selective antagonist blocks the acquisition, but not the expression of METH CPP in rats.460

Metabotropic Glutamate Receptor Ligands
Similar to ionotropic glutamate receptors, METH alters the expression of mGluRs. Specifically, extended access to 
METH leads to decreased expression of mGluR2/3 in nucleus accumbens and striatum.461 As these receptors are 
inhibitory, mGluR2/3 agonists should be efficacious in blunting the effects of METH. Direct stimulation of mGluR2 or 
administration of mGluR2 positive allosteric modulators decrease METH-induced hyperactivity.462,463 An mGluR2 

agonist selectively decreases the reinforcing efficacy of METH without altering food-maintained responding.464 

However, while an mGluR2/3 agonist blunts reinstatement of METH-seeking, it also decreases reinstatement of food- 
seeking behavior.465 In contrast to mGluR2 agonists, an mGluR2 antagonist ameliorates depressive-like behavior 
resulting from METH withdrawal.466

Although there is no evidence for mGluR1 involvement in the incubation of METH craving,467 selective mGluR1 

antagonists block METH-induced increases in locomotor activity and disruptions in prepulse inhibition,468,469 and 
decrease METH self-administration and choice for METH over food.470 Likewise, blocking mGluR5 selectively 
decreases METH self-administration.471 A positive allosteric modulator of mGluR5 reverses METH-induced deficits in 
recognition memory.472 However, negative allosteric modulators of mGluR5, but not mGluR1, attenuate the expression of 
METH CPP.473

N-Acetylcysteine
Instead of targeting a specific receptor, some research has focused on restoring glutamate homeostasis with 
N-acetylcysteine, a medication used to reverse acetaminophen overdose.474,475 Loss of glutamate homeostasis is 
proposed to be a major driving force of addiction.476 In animals, N-acetylcysteine blocks the development of behavioral 
sensitization induced by METH, which corresponds to the ability of N-acetylcysteine to prevent METH-induced 
depletion of dopamine in striatum.477 However, N-acetylcysteine fails to alter METH self-administration and drug- 
induced reinstatement of METH seeking in rats.158 Also, N-acetylcysteine, whether administered alone or in conjunction 
with naltrexone, is ineffective at reducing METH craving, METH use, or severity of dependence in those that are 
dependent on METH;478,479 but see.480

Anticonvulsant Drugs
Anticonvulsant drugs (ie, antiepileptics) decrease excitatory neurotransmission through several mechanisms: blocking 
sodium or calcium channels, blocking glutamatergic receptors, and/or stimulating GABAergic receptors.481 One com-
monly prescribed anticonvulsant is gabapentin, which is also used as a nerve pain medication.482 Gabapentin prevents 
membrane trafficking of the ⍺2δ subunit of voltage-gated calcium channels as opposed to blocking these channels 
directly.483 Gabapentin attenuates locomotor activity, locomotor sensitization, and CPP following METH 
administration.245,434,484 However, this drug fails to reduce METH use in dependent individuals.431 An early study 
reported that combination treatment of oral gabapentin and intravenous infusion of flumazenil, a GABA receptor 
antagonist, decreases drug cravings and METH use,485 but a later study did not replicate this initial finding.486

Topiramate has multiple mechanisms of action, blocking voltage-gated sodium channels and glutamate AMPA 
receptors, potentiating GABA transmission, and modulating L-type calcium channels.487 Topiramate has shown some 
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promise in treating individuals with cocaine dependence.488,489 Specific to METH, topiramate decreases the desire to use 
METH,490 and increases drug-free urine samples in METH-dependent individuals.491,492; but see490,493 Inconsistencies 
are reported concerning topiramate’s effects on cognition. Topiramate increases concentration but impairs perceptual- 
motor in a digit symbol substitution test.494 This finding is consistent with cognitive deficits observed in cocaine- 
dependent individuals receiving combination topiramate/methadone therapy.495

Gamma-vinyl GABA (vigabatrin) increases inhibition in the nervous system by inhibiting GABA transaminase, the 
enzyme that converts GABA into glutamate.496 As vigabatrin decreases METH-induced increases in dopamine,497 this 
drug has received some attention. Vigabatrin blocks reinstatement of METH CPP in rats.498 Although vigabatrin does not 
alter subjective effects of METH,499 it increases the rate of methamphetamine-negative urine samples in individuals that 
use stimulants, including METH.500,501 These results are promising and indicate that increasing GABAergic transmission 
is a viable target for treating MUD.

Calcium Channel Blockers
As discussed above, some anticonvulsants work by blocking voltage-gated calcium channels or by preventing membrane 
trafficking of these channels (eg, gabapentin). Calcium channel blockers are also used to treat hypertension.502 Acute 
METH administration inhibits L-type calcium channels, but chronic administration leads to an upregulation of such 
channels.503 Relatedly, L-type calcium channels are upregulated in regions such as frontal cortex and limbic forebrain 
following CPP of various drugs, including METH,504 with upregulation being dependent on activation of dopamine 
receptors.245 Voltage-gated calcium channel blockers reduce METH-induced neuronal damage,505 and they delay the 
onset of and reduce the severity of METH-induced stereotypies and self-injurious behavior.506–508 Voltage-gated calcium 
channel blockers also decrease METH CPP and attenuate cue-induced reinstatement.509–512

In humans, isradipine decreases positive subjective effects of METH and decreases craving for METH;513 however, 
isradipine’s effects are dependent on when it is administered. Specifically, isradipine alters the subjective effects of 
METH when it is administered after placebo, but not when it is administered first.514 Given the promising results 
obtained with animals, future studies examining other calcium channel blockers on the direct reinforcing effects of 
METH in dependent individuals are warranted.

Sigma Receptor Ligands
Sigma receptors were once proposed to be a type of opioid receptor, but are now known to be a type of chaperone protein 
located in the endoplasmic reticulum of cells.515 One important mechanism of sigma receptors is regulating calcium 
homeostasis.516 As calcium channel blockers show some efficacy in decreasing the reinforcing effects of METH (see 
above), some have investigated the role of sigma receptor ligands on METH-related behaviors. Sigma 1 receptor 
antagonists attenuate the locomotor stimulant, neurotoxic, and hyperthermic effects METH.517–519 A similar effect is 
observed with the sigma receptor ligand CM156.520 Low doses of sigma receptor agonists potentiate METH-induced 
hyperactivity, whereas higher doses blunt locomotor activity.521,522 More recent work shows that the sigma 1 receptor 
ligand PD144418 and the sigma 2 receptor ligand YUN-252 dose dependently decrease METH-induced hyperactivity.523 

Work is needed to determine if sigma receptors regulate the direct reinforcing effects of METH.

Cannabinoid Receptor Ligands
The endocannabinoid system has two receptor subtypes: CB1 and CB2, which are both coupled to Gi proteins; the most 
well-known exogenous cannabinoids are delta-9-tetrahydrocannibinol (THC) and cannabidiol (CBD), found in cannabis 
plants.524 Similar to psychedelic hallucinogens, there is increased interest in testing the efficacy of cannabinoids for 
multiple conditions, including fibromyalgia and chronic pain,525,526 mental disorders,527 and SUDs.528

While THC prevents METH-induced neurotoxicity,529 pretreatment with THC significantly potentiates locomotor 
activity in mice and ataxia and stereotypies in rabbits.530–532 THC attenuates drug-induced reinstatement but potentiates 
cue-induced reinstatement; however, when THC is administered repeatedly during extinction or 24 hours before the 
reinstatement test, reinstatement is blunted.533 Similarly, a CB1 positive allosteric modulator decreases reinstatement of 
METH seeking.534 Like THC, the full CB1 agonist WIN55, 212–2 prevents METH-induced neurotoxicity, but it also 
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blunts METH-induced hyperactivity.535; but see536 One concerning finding is that a CB1 agonist potentiates METH 
CPP.537

As CBD is non-intoxicating,538 there is growing interest in studying its efficacy in multiple conditions.539 CBD 
decreases METH-induced behavioral sensitization,540 the reinforcing efficacy of METH and reinstatement of METH- 
seeking behavior,541 and METH CPP.542,543 Currently, there are no published clinical trials testing CBD in METH- 
dependent individuals. However, CBD does not appear to be an effective treatment for cocaine use disorder.544,545

Cannabinoid receptor antagonists decrease METH-induced behavioral sensitization, METH self-administration, and 
reinstatement of METH seeking.533,534,546–548; but see549 Additionally, the CB1 antagonist rimonabant administered after 
each conditioning session prevents acquisition of METH CPP, and rimonabant prevents the expression and the 
reinstatement of METH CPP.550,551 Rimonabant also improves METH-induced deficits in novel object recognition 
memory.552 Unfortunately, CB1 antagonists like rimonabant are associated with increased suicidal ideation,553 which 
greatly limits their therapeutic use.

Endocannabinoids are metabolized by fatty acid amide hydrolase and monoacylglycerol lipase.554 The fatty acid 
amide hydrolase inhibitor URB597 blunts the anxiogenic and the depressive effects of METH withdrawal.555 Preventing 
the hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG) inhibits cue- and stress-induced reinstatement of 
METH seeking, an effect not observed following administration of URB597.556 As such, monoacylglycerol lipase 
inhibitors merit further examination as a treatment for MUD.

Angiotensin Receptor Antagonists and Angiotensin-Converting Enzyme (ACE) 
Inhibitors
Angiotensin is a hormone that primarily regulates blood pressure and promotes sodium retention in the kidneys; angiotensin 
I is converted to angiotensin II by angiotensin-converting enzyme (ACE).557 Angiotensin receptor antagonists and ACE 
inhibitors, like some calcium channel blockers, are used to treat hypertension.557 In the brain, there is evidence that the 
renin-angiotensin system influences dopamine release. Specifically, angiotensin II induces dopamine release while dopa-
mine depletion leads to an upregulation of angiotensin receptors.558 Therefore, there is recent interest in using angiotensin 
receptor antagonists or angiotensin-converting enzyme inhibitors to blunt the effects of METH, and early reports are 
promising thus far. The angiotensin-converting enzyme inhibitor perindopril attenuates METH-induced hyperlocomotion 
in animals, with a similar effect observed following selective blockade of angiotensin II type 1 receptors.559,560 Blocking 
angiotensin II receptors also reverses METH-induced increases in body temperature, rescues METH-induced deficits in 
memory and cognition, and decreases METH self-administration and reinstatement in rats.560–562 Perindopril also 
decreases subjective effects of METH, but interestingly, these effects disappear at a higher dose of perindopril.563,564 As 
argued previously, the inability of a higher dose of perindopril to alter subjective effects of METH may be due to inhibition 
of ACE in more brain regions compared to lower doses of perindopril.564

Oxytocin
Oxytocin is a hormone involved in various physiological processes (eg, milk let-down reflex) and maternal/social 
behaviors.565 METH is known to affect oxytocin levels, as repeated METH administration increases blood plasma 
oxytocin levels,566 and causes upregulation of oxytocin receptors in amygdala and hypothalamus, but not in nucleus 
accumbens or dorsal striatum.567 However, compulsive METH seeking leads to upregulated oxytocin gene expression in 
nucleus accumbens.568 Oxytocin inhibits METH-induced hyperactivity, METH self-administration, and reinstatement of 
METH seeking.569 Adolescent treatment of oxytocin attenuates the reinforcing efficacy of METH and reduces drug- 
induced reinstatement of METH seeking during adulthood.570 Repeated administration of oxytocin during extinction 
blunts reinstatement of METH CPP.571 The ability of oxytocin to decrease the addictive-like properties of METH may be 
related to attenuated glutamate release in medial prefrontal cortex and potentiated glutamate release in hippocampus 
following co-administration of METH and oxytocin.572 While oxytocin decreases reinstatement of METH seeking and 
incubation of craving in a self-administration paradigm,275,573–576 decreased reinstatement of sucrose seeking is also 
observed.564
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In a clinical setting, oxytocin increases group therapy attendance without significantly altering METH craving or 
METH use.577 However, there is evidence of decreased craving and anxiety in METH-dependent individuals receiving 4 
weeks of oxytocin treatment.578

Phosphodiesterase (PDE) Inhibitors
Phosphodiesterase (PDE) inhibitors are used to treat several health conditions, such as chronic obstructive pulmonary 
disease, pulmonary arterial hypertension, psoriasis, and erectile dysfunction.579 PDE is an enzyme that degrades cyclic 
nucleotides, including cyclic adenosine monophosphate (cAMP), an important second messenger involved in intracel-
lular signal transduction. Drugs are known to increase cAMP levels in brain regions associated with reinforcement,580,581 

but the degradation of cAMP by PDE is important mediator of the addiction process. Upregulation of cAMP is proposed 
to lead to tolerance to a drug’s reinforcing effects whereas the breakdown of cAMP promotes increased drug seeking.580 

As such, PDE inhibitors may be an effective treatment for reducing the reinforcing effects of METH and recurrence of 
METH use.

In rodents, PDE inhibitors attenuate METH-induced hyperactivity, stereotypies, and cognitive deficits;581–587 but see.588 

The non-selective PDE inhibitor ibudilast attenuates METH self-administration and drug- and stress-induced reinstatement 
of METH seeking,589,590 and the PDE 4 inhibitor roflumilast reduces incubation of METH craving following forced 
abstinence.591 While the PDE 4B inhibitor A33 decreases METH self-administration, it fails to block relapse-like 
behavior.592 This result suggest that PDE 4A inhibitors may be more efficacious in preventing recurrence of substance 
use. So far, only ibudilast has been tested in dependent individuals. Ibudilast does not facilitate METH abstinence,593 but it 
decreases peripheral markers of inflammation associated with METH use.594 This latter finding may partially account for 
the cognitive improvements observed in animals following administration of PDE inhibitors. More work is needed to 
determine if selective PDE inhibitors are a viable treatment for ameliorating cognitive deficits associated with long-term 
METH use.

Discussion
Summary of Findings
As covered in the current review, numerous molecular targets have been examined as putative treatments for MUD. 
Multiple treatments that blunt dopaminergic/noradrenergic neurotransmission reduce hyperactivity stemming from 
METH use (eg, antagonists at dopamine, muscarinic, and sigma receptors; agonists at GABA receptors; calcium channel 
blockers). Numerous pharmacological manipulations reduce the rewarding/reinforcing effects of METH in animals, but 
have little efficacy in treating MUD (eg, modafinil, antipsychotic medications, baclofen). However, there is potential that 
these treatments, plus medications like atomoxetine and varenicline, can be used to ameliorate the psychotomimetic 
effects of METH and/or reverse METH-induced cognitive deficits. Promising pharmacotherapies that have been tested in 
animals only include VMAT-2 inhibitors, mGluR ligands, and trace amine-associated receptor agonists.

Future Directions
In addition to continuing research with promising pharmacotherapies described above, there are important considerations 
that need to be taken into account when screening potential treatments for SUDs. These future directions will be 
discussed first.

Preclinical Screening Considerations
One major limitation to many of the drug self-administration studies highlighted in this review is the use of a fixed ratio 
(FR) schedules to measure the reinforcing effects of METH. Dissociating a drug’s locomotor effects from its reinforcing 
effects is difficult when FR schedules, as well as progressive ratio schedules, are used because animals may show 
increased responding for a drug like METH as they become more hyperactive. Similarly, if a potential pharmacotherapy 
decreases responding for METH, this effect becomes more difficult to interpret if the pharmacological manipulation 
suppresses METH-induced hyperactivity. This caveat may account for why some interventions decrease the reinforcing 
effects of METH in animals but fail to improve treatment outcomes in METH-dependent individuals (eg, gabapentin). To 
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avoid this limitation, schedules that control the rate of reinforcement, such as variable interval or second-order schedules, 
can be used.470,595

Another major weakness of preclinical models assessing METH-dependence-like behavior is the near exclusive use 
of male subjects as sex/gender are shown to modulate the effects of METH in an individual and modulate treatment 
responses for MUD.596 For example, adolescent male, but not female, rats exposed to repeated nicotine treatments self- 
administer more METH,344,346 and preadolescent exposure to nicotine enhances oral METH self-administration in 
female, but not male, adolescent rats.597 Also, oxytocin is more effective at reducing the reinforcing efficacy of 
METH and cue-induced reinstatement in females relative to males.573

Given the increased prevalence of METH use in pregnant women,598 increased work is needed to determine if 
pharmacotherapies are safe for these individuals and do not cause serious, long-term side effects in children. For 
example, mice prenatally exposed to modafinil display increased anxiety-like behavior and show greater METH- 
induced behavioral sensitization.599 These results suggest that in utero exposure to modafinil may put individuals at 
risk for future addictive-like behaviors. In addition, nicotine treatment may be problematic for pregnant women as rats 
exposed to nicotine in utero respond more for METH in both fixed ratio and progressive ratio schedules.600,601

Pharmacogenetic Approaches
Pharmacogenetics incorporates one’s genome when prescribing a medication. For example, some individuals prescribed 
amitriptyline may not respond well to treatment if they have specific alleles for cytochrome P450 enzymes.602 

Additionally, individuals that have a cytochrome P450-2D6 phenotype characterized by more efficient METH metabo-
lism show increased METH-induced neurocognitive impairment;603 conversely, individuals classified as low cytochrome 
P450-2D6 metabolizers are less likely to develop METH-related heart failure or to develop METH dependence.604,605 

Specific to treatments for psychostimulant use disorders, individuals with cocaine use disorder that have a single 
nucleotide polymorphism of the serotonin 5-HT3 receptor show a greater percentage of cocaine-free urine samples 
during ondansetron treatment.606 Additionally, individuals with genetically higher levels of DAT respond better to 
disulfiram (Antabuse) for cocaine dependence,607 and individuals with genetically lower levels of the dopamine 
metabolizing enzyme dopamine beta-hydroxylase are less likely to use cocaine during levodopa treatment.608

Currently, the only study examining pharmacogenetic approaches to treating MUD found that a single nucleotide 
polymorphism of the mu opioid receptor (A118G) does not predict response to naltrexone.609 A recent meta-analysis 
reported that two genes that are strongly related to MUD are those that encode fatty acid amide hydrolase and brain 
derived neurotrophic factor, a protein that is critical for neuron growth and plasticity.610 Considering one’s genetic 
makeup can allow for more tailored treatment options that can help an individual better manage cravings and enable them 
to maintain abstinence long term.

Conclusion
Currently, there is no single pharmacotherapy that prevents continuation of METH use or recurrence of METH use 
following abstinence. Given the numerous factors that influence the addiction process,328 such medication may not exist, 
but there appears to be pharmacological options that can be utilized in conjunction with other therapeutic approaches, 
leading to positive outcomes for the individual (eg, oxytocin to increase group therapy attendance). With increasing 
MUD rates, continued research is necessary to find treatment options that can (a) reduce METH use, (b) ameliorate 
adverse events associated with METH use (eg, psychotomimetic-like effects, cognitive disturbances), and/or (c) reduce 
the likelihood of recurrence of METH use following therapy.
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