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ABSTRACT

The potentially lethal infection caused by the novel Severe Acute Respiratory Disease Coronavirus-2 (SARS-CoV-2) has evolved
into a global crisis. Following the initial viral infection is the host inflammatory response that frequently results in excessive secre-
tion of inflammatory cytokines (e.g., IL-6 and TNFa), developing into a self-targeting, toxic “cytokine storm” causing critical pul-
monary tissue damage. The need for a therapeutic that is available immediately is growing daily but the de novo development of
a vaccine may take years. Therefore, repurposing of approved drugs offers a promising approach to address this urgent need.
Inhaled furosemide, a small molecule capable of inhibiting IL-6 and TNFa, may be an agent capable of treating the Coronavirus
Disease 2019 cytokine storm in both resource-rich and developing countries. Furosemide is a “repurpose-able” small molecule
therapeutics, that is safe, easily synthesized, handled, and stored, and is available in reasonable quantities worldwide.

Key Indexing Terms: COVID-19; SARS-CoV-2; Furosemide; Cytokine storm; IL-6. [Am J Med Sci 2020;360(3):216–221.]
INTRODUCTION
Over the past 20 years, 2 previous coronavirus
infections, Severe Acute Respiratory Syndrome
(SARS-CoV) and Middle Eastern Respiratory

Syndrome (MERS-CoV), emerged as potential epidem-
ics. More recently in December 2019, the novel Severe
Acute Respiratory Disease Coronavirus-2 (SARS-CoV-2)
appeared in Wuhan, China, causing the previously
unknown and potentially lethal Coronavirus Disease
2019 (COVID-19) infection; it has subsequently spread
worldwide.1,2 Over the first 4 months of 2020, COVID-19
has evolved into a global crisis, far exceeding the impact
of SARS-CoV and MERS-CoV. As of April 27 2020, there
have been over 3 million infections reported worldwide,
stressing not only healthcare systems but also the global
economy. An effective curative treatment for COVID-19
has not been identified.3,4

As evidenced by the word pandemic, COVID-19 is a
global problem requiring a globally available solution.
Although mesenchymal stem cell approaches, biologics
and other complex molecules need to be studied, they
do not represent a global solution, especially in the short
term. Moreover, even in developed countries, equitable
access to expensive therapies may not be readily avail-
able to all socioeconomic groups. COVID-19 is not only a
disease of individuals, it is a disease affecting our global
healthcare system and our global economic stability.
Accordingly, a truly effective therapeutic must address
this full societal and socioeconomic hierarchy, from the
single individual in a developed country, to the many peo-
ple in developing countries. As presented in this review,
inhaled furosemide might be an agent that can address
some of the needs in both resource-rich and developing
countries.
PATHOGENESIS OF COVID-19
Clinically, COVID-19 is characterized by fever, cough,

myalgia and dyspnoea, sometimes evolving into fulminant
respiratory failure.5 Though the pathogenic mechanisms
are diverse, there are 2 major processes that lead to the
morbidity and mortality of this disease: initially the viral
infection, followed by a host inflammatory response that
frequently results in excessive secretion of inflammatory
cytokines (e.g., IL-2, IL-6, IL-8, IL-10 and TNFa). This
immune response can develop into a self-targeting toxic
“cytokine storm” in which the lungs fill with inflamma-
tory secretions causing critical damage to pulmonary
tissue.6-9 Accordingly, the development of therapeutics
for COVID-19 can be divided into 2 groups: antiviral and
anti-inflammatory. Even though the search for a vaccine
and antiviral agents has already been initiated, the de
novo development of a safe, COVID-19 specific solution
and its worldwide distribution may take several years;
regrettably, the need for a therapeutic that is available
immediately is growing daily. Therefore, repurposing an
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already approved drug may offer a promising approach
to address this urgent need.

RATIONALE FOR A SMALL MOLECULE
APPROACH

Multiple recent clinical studies have been evaluating
different biological agents (“biologics”) that target spe-
cific cytokines. Therapeutics under consideration include
tocilizumab and sarilumab, both monoclonal antibodies
inhibiting the IL-6 pathway, as well as the TNFa targeting
agent adalimumab.10-13 A study from China reported
results showing that treatment with tocilizumab
improved the condition of 21 patients: fever in all patients
was reduced on the first day of treatment and oxygen
intake was improved significantly within 5 days in 15 of
21 patients.11 While these and other promising data are
developing around the inhibition of cytokine production
by biologics, these therapeutics come with multiple
drawbacks for their application to COVID-19. Not only is
the production of such large molecules time consuming
and expensive and their storage may require facilities not
always available in developing countries, but also their
penetration into pulmonary tissue may not be sufficient;
moreover, they target only one of the several cytokine
pathways implicated in the immunopathic diseases pro-
cesses of COVID-19. Finally, there is also the paradoxical
concern that they may make patients prone to secondary
infections or other toxicities (hepatotoxicity) when admin-
istered systemically.14 For all these reasons, the applica-
tion of biological agents in a global pandemic, which also
affects developing countries lacking the same resources
as developed countries, has its limitations. Consequently,
FIGURE 1. Chemical structures of the loop diuretics furosemide (A), pireta
thranilic acid.

Copyright © 2020 Southern Society for Clinical Investigation. Published by Elsev
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small molecule therapeutics are an attractive alternative,
especially potentially “repurpose-able” known drugs that
are safe, available in reasonable quantities worldwide,
easily synthesized at low cost and easily handled and
stored − such agents should be explored for their thera-
peutic utility in both developed and developing countries
immediately.

MATERIAL CONTENT
A molecule that fulfils all the abovementioned cri-

teria is the loop diuretic furosemide (4-chloro-5-sulfa-
moyl-N-furfuryl-anthranilate), which has previously
been reported to show significant inhibition of the
cytokine production associated with activation of the
innate immune system.15 Structurally, furosemide is
related to the tryptophan metabolite 3-hydroxyan-
thranilic acid (3-HAA) which, among other various
tryptophan metabolites, acts as endogenous modula-
tor of innate immunity exhibiting anti-inflammatory
properties by suppressing production of pro-inflam-
matory cytokines;16 moreover, analogous to furose-
mide, other loop diuretics also share this anthranilate
structural motif (see Figure 1).
PHARMACOKINETICS AND DIURETIC EFFECT
Furosemide is a commonly used diuretic listed on the

WHO’s List of Essential Medicines which comprises the
safest and most effective drugs readily available world-
wide. It is a weak organic acid with low lipophilicity
(logP = 2.03).17 It is 98.6 § 0.4% bound to plasma protein
due to its sulfonamide and carboxylic acid moieties which,
together with a relatively short half-life of 1.3 § 0.8 hours
nide (B), azosemide (C) and bumetanide (D); 3-HAA = 3-hydroxyan-
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and a low volume distribution of 0.13 § 0.06 L kg�1,
results in low tissue distribution.17 Clearance of furose-
mide is conducted predominantly in the kidneys (85%)
with about half of it being metabolized to glucuronic acid
and half being secreted unchanged.18

To achieve a diuretic effect, furosemide is adminis-
tered orally or intravenously, typically at doses of 40-
80 mg.19 Furosemide blocks sodium (Na+), potassium
(K+) and chloride (Cl�) reabsorption in the proximal and
distal tubules as well as in the ascending limb of Henle’s
loop and thereby causes diuresis peaking 60-90 min
after administration with enhanced excretion of sodium,
potassium and chloride.20-24 This diuretic effect is
achieved by inhibition of the Na+/K+/Cl� cotransporters
in the nephron, reducing Na+-transport from the luminal
side into the basolateral side for reabsorption.25
ANTI-INNATE IMMUNE SYSTEM PROPERTIES
OF FUROSEMIDE

In 1988, Bianco et al noted that exercise-induced
bronchoconstriction in asthmatic patients was alleviated
by inhaled furosemide, but not by orally administered
furosemide.26 Since then, furosemide has been investi-
gated as a possible treatment for symptomatic dyspnea,
initially based on the assumption that the size of edema-
tous airway mast cells would be reduced by cellular
diuresis thereby improving airway patency.27,28 However,
multiple mechanistic studies have reported that furose-
mide’s effects on dyspnea is not related to a local
diuretic activity mediated via the Na+/K+/Cl� cotrans-
porter;29 instead, current evidence indicates that this
therapeutic effect arises from reduced secretion of pro-
inflammatory cytokines, specifically IL-6, IL-8 and TNFa.
In two studies by Yuengsrigul et al (1996, 1999) periph-
eral blood mononuclear cells (PBMCs) from healthy sub-
jects were isolated, stimulated with lipopolysaccharide
and treated with furosemide. It was found that levels of
IL-6, IL-8 and TNFa from furosemide treated cells were
significantly reduced compared to PBMCs not treated
with furosemide.30 Similar results by Xu et al (2006)
report reduced production of the pro-inflammatory cyto-
kines IL-6 and TNFa in pre-eclamptic placentas and
PBMCs.31 Also, our group has recently shown inhibition
of pro-inflammatory cytokine production as well as pro-
motion of anti-inflammatory markers by furosemide in
multiple macrophage cell lines of the human innate
immune system (manuscript submitted). These findings
are supported by multiple clinical trials studying the
reduced secretion of pro-inflammatory cytokines in
patients with bronchopulmonary dysplasia,32 tachyp-
noea,33,34 and chronic lung disease35,36 upon adminis-
tration of inhaled furosemide.

Other clinical studies have reported beneficial anti-
inflammatory and symptomatic effects of inhaled furose-
mide in experimentally induced air hunger and breathing
discomfort. In a double-blind, placebo-controlled clinical
trial by Grogono et al, the effect of 40 mg inhaled
218
furosemide was tested on the sensation of experimen-
tally induced air hunger and work effort. It was found that
air hunger in healthy individuals is significantly relieved
by inhaled furosemide, while this was not the case with
inhaled saline control.37 These results support the study
of Moosvai et al who had conducted a similar trial on the
air hunger sensation; they, too, reported that air hunger
is relieved by inhalation of 40 mg furosemide.38 Yet
another study reporting that furosemide alleviates the
sensation of dyspnea was conducted by Nishino et al: in
12 healthy subjects, severe dyspneic sensation was
induced by breath holding and loaded breathing with a
combination of inspiratory resistive load and hypercap-
nia. It was found that after inhalation of furosemide (and
compared to the inhalation of a placebo), total breath
holding time was prolonged and respiratory discomfort
during loaded breathing developed more slowly.39 Multi-
ple other studies have reported the positive effects of
inhaled furosemide in attenuating bronchoconstriction
and asthma attacks, presumably via an anti-inflammatory
mechanism.40-44

In contrast, a single study by Banzett et al reported
that in 11 healthy volunteers the reduction of breathing
discomfort by 80 mg inhaled furosemide was only
slightly greater than that of an inhaled saline solution; in
fact, both furosemide and saline placebo aerosols allevi-
ated the breathing discomfort to a very similar, clinically
relevant extent.45
ANTIVIRAL PROPERTIES OF FUROSEMIDE
Besides its anti-inflammatory properties and posi-

tive effects in dyspnea, furosemide has also been
shown to exhibit anti-viral properties. Voss et al con-
cluded that furosemide inhibited the Na+/K+/2Cl�

cotransporter and thereby blocked the cytopathic
effects of alterations in intracellular cation concentra-
tion induced by the human immunodeficiency virus
(HIV), a single-stranded, positive-sense, enveloped
RNA virus member of the genus Lentivirus, part of the
family Retroviridae.46 In cells infected with a cyto-
pathic strain of HIV-1, the activity of the Na+/K+/2Cl�

cotransporter was significantly increased, leading to
a higher Na+ and K+ concentrations and thereby to an
increased cell volume. This pathological swelling can
then lead to membrane disruption and ultimately cell
death. Inhibition of the Na+/K+/2Cl� cotransporter by
furosemide, however, was able to reduce this patho-
logical process, prolonging the survival of cells by 2-4
weeks.46

Ulug et al studied the influence of cation gradients in
the release of Sindbis virus, a positive-sense, single-
stranded RNA virus, from infected cells.48 The cell vol-
ume of Sindbis virus infected cells is reduced and the
activity of the Na+/K+ ATPase is decreased, presumably
to maintain a higher, intracellular concentration of mono-
valent cations. Especially in low salt media, but also, with
reduced extent, in isotonic media, the treatment of
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infected cells with furosemide inhibited the release
of Sindbis virus from these cells through the inhibition of
the Na+/K+/2Cl� cotransporter.47 In another study by
Hartley et al, the effect of furosemide-induced inhibition
of the Na+/K+/2Cl� cotransporter in DNA and RNA
viruses was explored. According to these authors, DNA
viruses are dependent upon K+ for replication,48 thus
stopping K+ influx by inhibition of the Na+/K+/2Cl�

cotransporter would have broad-spectrum antiviral
effects. While reduced replication was indeed observed
for DNA viruses, the replication of the RNA virus was not
inhibited.49 These multiple studies all conclude that the
pathologic alteration of intracellular cation concentrations
mediated by viral action can be blocked by furosemide
through inhibition of the Na+/K+/2Cl� cotransporter.

Finally, it is important to note that furosemide’s anti-
viral activities do not require systemic administration of
the drug. Indeed, topical and locally administered furose-
mide gel has demonstrated efficacy against warts
caused by the human papillomavirus.50
OTHER DIURETICS AS INHALED ANTI-
INFLAMMATORY AGENTS

Loop diuretics
In addition to furosemide, other diuretics with struc-

tural similarities to furosemide’s anthranilate molecular
core are reported to exhibit analogous anti-inflammatory
properties. Hung et al showed that bumetanide reduced
the production of pro-inflammatory cytokines upon
direct pulmonary administration, lowered levels of TNFa
in mice and showed anti-inflammatory activity in
RAW264.7 cells stimulated by pro-inflammatory lipopoly-
saccharides.51 In another study investigating lung injury
induced by ischemia-reperfusion, bumetanide showed a
similar effect. Compared to a control group, mice given
bumetanide during the reperfusion period were reported
to have a lower level of TNFa production.52 Although
bumetanide failed to inhibit sodium metabisulfite-
induced bronchoconstriction in asthmatic subjects,53

another loop diuretic, piretanide, is reported to have pro-
tective effects against metabisulfite-mediated broncho-
constriction. The protective effect, however, did not
correlate with the diuretic properties of piretanide.54

These findings are supported by work from Bianco et al
in which piretanide was as effective as furosemide in pre-
venting bronchoconstriction induced by ultrasonically
nebulized distilled water.55 Yet another loop diuretic that
exhibits effects on cytokine production is azosemide
(Hampel et al).56
FIGURE 2. Chemical structure of the osmotic diuretic mannitol.
Osmotic diuretics
Although not structurally related to furosemide (see

Figure 2), other diuretics have also been suggested to
have inflammatory properties targeting pulmonary disor-
ders. Mannitol is an osmotic diuretic sometimes used to
reduce increased intracranial pressure. Inhaled dry
Copyright © 2020 Southern Society for Clinical Investigation. Published by Elsev
www.amjmedsci.com � www.ssciweb.org
powder mannitol has been evaluated as a therapeutic for
cystic fibrosis and bronchiectasis.57,58 Nijs et al have
shown that the therapeutic effect of inhaled mannitol
against chronic obstructive pulmonary disease is
reflected by favorable alterations in IL-8 and eosinophil
biomarkers.59
SUMMARY AND DISCUSSION OF INHALED
FUROSEMIDE IN COVID-19

Since the morbidity and mortality of COVID-19 infec-
tions arise in part from the toxic overproduction of pro-
inflammatory cytokines, the application of anti-inflamma-
tory agents is a mechanistically-sound strategy for treat-
ment development. Furosemide not only inhibits the
secretion of multiple cytokines implicated in COVID-19, it
has also been shown to provide relief of dyspnea via
direct inhalation. Due to its wide-spread use as diuretic,
it is well studied, commonly available globally, and, since
it is a small molecule, it can be produced and stored at
low cost. When given by inhalation, furosemide is simply
dissolved in normal saline solution; therefore, the distri-
bution of furosemide to COVID-19 patients in developed
and developing countries will be fast and facile.

However, the administration of furosemide to COVID-
19-afflicted people also has several potential drawbacks
that need to be considered. First, hypokalemia and elec-
trolyte depletion have been found to be consequences of
SARS-CoV-2 induced pathology.60,61 Since one of furo-
semide’s main adverse effects is hypokalemia (3.6%),
this may lead to exacerbating potassium depletion.62 On
the other hand, hypokalemia is a side effect of systemi-
cally given furosemide. The diuretic effect is anticipated
to be very small or even absent upon nebulized inhaled
administration.37 Waskiw-Ford et al have reported that
diuresis does not occur upon inhalation of furosemide
except possibly at doses exceeding 100 mg.63 Neverthe-
less, patients should also be monitored closely for
enhanced production of urine which would accompany
the risk of hypokalemia. Another potential problem may
arise from the procedure of administering inhaled furose-
mide − will the resulting aerosols enhance the spread of
the SARS-CoV-2 virus to close bystanders. Whilst intu-
bated patients can be given furosemide with reduced
risk to those nearby, inhalation by nebulizer mask will
cause aerosol development and may thereby promote
viral spread if done without physical distancing. This risk,
however, can easily be mitigated by appropriate personal
protecting equipment in nearby people or simply by hav-
ing designated inhalation sites that are physically sepa-
rated from other individuals. Furthermore, since cough is
a primary mechanism of disease spread, and since
ier Inc. All rights reserved. 219
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inhaled furosemide decreases coughing, once initiated,
inhaled furosemide may contribute to decreased disease
spread.

Arguably, inhaled furosemide could be administered
at any stage of the COVID-19 disease presentation,
from the early phases involving cough, fever and short-
ness of breath, to the late stages requiring endotracheal
intubation. In the early stages, it is possible that furose-
mide might prevent disease progression to pulmonary
failure; in the late stages, it is possible that furosemide
might reduce the number of days of required ventilator
support.

Administering drugs to any severely ill individual person
is not without risk.64 The potential side effects of furose-
mide, including hypokalemia and dehydration, will be mini-
mized by administration through inhalation; nevertheless,
these are-side effects that must be considered. In addition,
even though cytokine storms are known to play a major
role in severe viral pneumonias, the detailed mechanism of
hypercytokinemia in COVID-19 is not yet fully delineated.65
CONCLUSIONS
Furosemide is a globally available, inexpensive, well-

studied drug that can be readily given by inhalation.
Unlike biologics targeting a single cytokine, furosemide
has broad spectrum anti-pro-inflammatory activities, tar-
geting IL-6, IL-8 and TNFa. It may also have anti-viral
effect when given locally, but the relevance of this to the
SARS-CoV-2 virus is unproven and purely speculative at
this time.

COVID-19 is currently in 210 countries across our
planet, in both resource-rich and developing countries.
On balance, therapies that are available worldwide for
COVID-19 are needed, now − it is a global problem
requiring a globally available solution. Inhalation of furo-
semide has been investigated in the past for a variety of
pulmonary disorders, and was found to be safe. There-
fore, we suggest an evaluation of inhaled nebulized furo-
semide in COVID-19 patients as a potential disease
modifying therapeutic via a primarily anti-inflammatory
mechanism of action.
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