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Aberrant reprogramming of metabolism has been considered a hallmark in various
malignant tumors. The metabolic changes of amino acid not only have dramatic effects
in cancer cells but also influence their immune-microenvironment in gliomas. However, the
features of the amino acid metabolism-related and immune-associated gene set have not
been systematically described. The expression level of mRNA was obtained from The
Cancer Genome Atlas database and the Chinese Glioma Genome Atlas database, which
were used as training set and validation set, respectively. Different bioinformatics and
statistical methods were combined to construct a robust amino metabolism-related and
immune-associated risk signature for distinguishing prognosis and clinical pathology
features. Constructing the nomogram enhanced risk stratification and quantified risk
assessment based on our gene model. Besides this, the biological mechanism related to
the risk score was investigated by gene set enrichment analysis. Hub genes of risk
signature were identified by the protein–protein interaction network. The amino acid
metabolism-related and immune-associated gene signature recognized high-risk
patients, defined as an independent risk factor for overall survival. The nomogram
exhibited a high accuracy in predicting the overall survival rate for glioma patients.
Furthermore, the high risk score hinted an immunosuppressive microenvironment and a
lower sensitivity of immune checkpoint blockade therapy and also identified PSMC5 and
PSMD3 as novel biomarkers in glioma. In conclusion, a novel amino acid metabolism-
related and immune-associated risk signature for predicting prognosis in glioma has been
constructed and identified as two potential novel biomarkers.

Keywords: gliomas, gene signature, amino acid metabolism, prognosis, microenvironment, immune
Abbreviations: PD-L1, programmed cell death 1 ligand; IDO, indolamine 2,3-dioxygenase; TGF-b, transforming growth
factor b; TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas; ssGSEA, single-sample Gene Set
Enrichment Analysis; WGCNA, weighted gene co-expression network analysis; LASSO, least absolute shrinkage and selection
operator; ICI, immune checkpoint inhibitor; PPI, protein–protein interaction; WBC, white blood cell; ICB, immune
checkpoint blockade; OS, overall survival; IDO, indoleamine-2,3-dioxygenase; TDO, tryptophan-2,3-dioxygenase.
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INTRODUCTION

Metabolic reprogramming is critical for maintaining the survival
of cancer cells and defined as a hallmark of cancer, which might
be the consequence of oncogenic mutations (1). Amino acid
metabolism also emerges as an important role in the metabolic
reprogramming of cancer cells because of its function in redox
balance, energy regulation, biosynthesis support, and so on (2).
Amino acids and their derivatives can not only regulate cancer
cells but also modulate the surrounding microenvironment,
which enhances the malignancy and immunosuppression of
tumors (3), for instance, arginine derivations could change the
chromatin structure to regulate gene expression, which promotes
the proliferation of cancer cells (4). Kynurenine, which is the
catabolic product of tryptophan, induces the invasion of cancer
cells and the immunosuppression of a tumor microenvironment
(5) by binding to transcription factor aryl hydrocarbon receptor
(AHR) (6). Moreover, the activation of AHR hampers the
performance of dendritic cells and T cells, which play a role in
anti-tumor (7). The metabolism of amino acid is varied in
tumors and plays a significant role not only in the biological
process of tumor cells but also in the tumor microenvironment,
particularly the modulation of the immune. All these indicate a
better understanding of the metabolism of amino acids, which
will offer potentially effective targets for cancer therapy (8).

In our study, we focus on glioma which is a group of highly
heterogeneous neurocutaneous tumors, accounting for about
26% of all intracranial tumors, and is the most deadly primary
malignant type of brain tumor in adults (9). Although combined
therapy has been developed, including precise surgical resection,
adjuvant radiotherapy, and temozolomide chemotherapy, the
overall survival remains poor and has not been significantly
improved. Furthermore, long-term survival is rare (10).
Although immunotherapy has made a breakthrough progress
in the treatment of a variety of solid tumors, the specific effect of
immunotherapy in glioma is still not clear (11). It has been found
that the expression level of immunosuppressive factors such as
PD-L1 and IDO/TDO were dramatically elevated in gliomas. As
is well known, PD-L1 could limit the function of effect T cells,
and the metabolite mediated by IDO/TDO promotes the
development of an immunosuppressive microenvironment (12,
13). In addition, the upregulation of Treg cells could exhausting
cytotoxic T cells to reduce the damage of tumor cells and
enhance the immunosuppressive effects in the glioma
microenvironment (14). However, how amino acid metabolism
influences prognosis and the immune process in glioma
progression needs further systematic research.

In our study, the amino acid metabolism-related and
immune-associated risk signature was defined as an
independent risk factor for the prognosis of glioma patients.
The decision tree strongly verified the risk-dependent subgroups,
and the nomogram showed an extremely high accuracy. In
addition, a high risk score hinted an immunosuppressive
microenvironment and lower sensitivity of ICB therapy, and
PSMC5 and PSMD3 were identified as novel biomarkers in
glioma. In summary, we demonstrated a novel amino acid
metabolism-related and immune-associated risk signature for
Frontiers in Oncology | www.frontiersin.org 2
predicting prognosis in patients with glioma and identified two
potential novel biomarkers.
MATERIALS AND METHODS

The workflow of our analysis is shown in Figure 1, and specific
details are explained in the following sub-sections.

Data Preparation and Collection
The expression of mRNA and the clinical information of patients
were collected from 698 patients in the cancer genome atlas
database. Consistently, 413 samples were collected from 693
samples in the Chinese Glioma Genome Atlas, part B, as a
validation set. Moreover, the mRNA data of normal brain tissue
was collected from the Genotype–Tissue Expression
Project (GTEx).

Obtaining Amino Metabolism-Related
Genes
Amino acid metabolism-related gene sets (REACTOME_
METABOLISM_OF_AMINO_ACIDS_AND_DERIVATIVES)
were obtained from the Molecular Signatures Database, v5.1
(MSigDB) (http://www.broad.mit.edu/gsea/msigdb/).

Determination of the Immune Status
Through Single-Sample Gene Set
Enrichment Analysis
Using the single-sample Gene Sets Enrichment Analysis
(ssGSEA) algorithm based on the transcriptome profiling data
and corresponding immunity-related gene sets retrieved from
MSigDB (15, 16) and using ESTIMATE algorithm, we analyzed
the estimation of stromal and immune cells in tumor tissues (17),
which has been developed to measure stromal level (stromal
score), cyto-infiltration degree (immune score), and
tumor purity.

Construction of Amino Metabolism-
Related and Immune-Associated
Signatures
The R package “WGCNA” was used to construct a scale-free co-
expression network to verify a gene module that is mostly related
to amino metabolism and immune in glioma. To explore the
most robust genes, the LASSO regression model was performed
(18). Furthermore, the risk scores were calculated by multiplying
gene expression by the regression coefficient acquired upon
Lasso regression. Based on the median risk score, all cases were
divided into high- or low-risk groups.

Prognostic Value and TIC Profile of the
Risk Model
The prognostic significance of the risk signature was evaluated by
Kaplan–Meier survival curves. Independent prognostic factors,
including the risk score in glioma, were investigated by
univariate and multivariate Cox regression analyses.
Subsequently, we investigated the specificity and sensitivity of
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risk score in the prediction of 5-year overall survival (OS) by
analyzing the receiver operating characteristic (ROC) curve (19).
Next, a nomogram according to related prognostic factors was
constructed to quantitatively predict the 1-, 2-, and 3-year
survival rate in glioma patients. The CIBERSORT package in R
was used to evaluate differences in the frequencies of 22 immune
cell types (including Tregs and CD4+ cells) in glioma. The
CIBERSORT is widely used in evaluating the type of immune
cell in the microenvironment through estimating relative subsets
of known RNA transcript (CIBERSORT) software (https://
cibersort.stanford.edu/) (20). The computational method was
used in the low- and high-risk groups to explore the correlation
of the TICs in different groups.

Gene Set Enrichment Analysis
In the Molecular Signatures Database, Hallmark and C7 gene
sets were downloaded, which were used as the target gene sets to
investigate the gene sets associated with risk score in the whole
transcriptome of all glioma samples in the TCGA performed by
Frontiers in Oncology | www.frontiersin.org 3
the software GSEA-3.0. (NOM p < 0.05 and FDR q <0.05 were
considered significant).

Functional Annotation for Genes of
Interest and Construction of PPI
To explore the gene ontology (GO) of selected genes, R package
cluster Profiler package was used to explore the functions among
genes of interest, with a cutoff criterion of adjusted p <0.05. The
GO annotation that contains the three sub-ontologies—
biological process, cellular component (CC), and molecular
function—can identify the biological properties of genes and
gene sets for all organisms (21). The Online tool Search Tool for
the Retrieval of Interacting Genes (STRING) was used to predict
protein–protein interactions (PPI) and construct a PPI network
of selected genes. Using the STRING database, genes with a score
of 0.4 were chosen to build a network model visualized by
Cytoscape (v3.7.2) (22). In a co-expression network, Maximal
Clique Centrality (MCC) algorithm was reported to be the most
effective method of finding hub nodes (19). The MCC of each
A B
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C

FIGURE 1 | Schematic diagram of the study design. (A) Identification of amino acid metabolism-related and immune-associated gene module in glioma patients
among various hallmarks of cancer. (B) WGCNA and least absolute shrinkage and selection operator Cox algorithms were combined to develop an amino acid
metabolism-related and immune-associated gene signature for prognosis. (C) The prognostic and predictive capacities were validated in different cohorts and
methods. (D) Comprehensive analyses of enriched pathways, immune cell infiltration, and therapeutic responses in different risk groups. (E) Identification of hub
genes and biomarkers from gene signature for glioma.
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node was calculated by CytoHubba, a plugin in Cytoscape (23).
In this study, the genes with the top 10 MCC values were
considered hub genes.

Verification of the Expression Patterns and
the Prognostic Values of Hub Genes
To explore the potential reliability of the hub genes, the
expression level of each hub gene between cancer and normal
tissue was plotted as a box plot graph. Based on the TCGA
database, Kaplan–Meier univariate survival analysis was
performed by using the survival package in R software to
explore the relationship between overall survival and disease-
free survival with hub genes in patients. In the study, all the
patients selected for survival analysis should be with complete
clinical information. Consequently, based on the median
expression value of hub genes, these samples were divided into
two subgroups. The survival-related hub genes with log-rank
p <0.05 were regarded as statistically significant.

Human Tissue Samples
Normal brain tissues were collected from patients who suffered
from a serious brain injury. The glioma samples were obtained
from the Department of Neurosurgery, Renmin Hospital of
Wuhan University, Wuhan, China. The clinical glioma
specimens were examined and diagnosed by pathologists at
Renmin Hospital of Wuhan University. This study was
approved by the Institutional Ethics Committee of the Faculty
of Medicine at Renmin Hospital of Wuhan University [approval
number: 2012LKSZ (010) H]. Informed consent was obtained
from all patients whose tissues were used.

RNA Extraction and Quantitative
Real-Time PCR
Total RNA of glioma tissues was extracted using Trizol reagent
(G3013-100ML, Servicebio, Wuhan, China), and cDNA was
synthesized by SweScript RT I First Strand cDNA Synthesis
Kit (G3330-50; Servicebio, Wuhan, China). Quantitative real-
time PCR (qPCR) for PSMC3 and PSMD5 mRNA levels were
performed using SYBR qPCR SuperMix (E096-01B,
Novoprotein, China) according to the instructions of the
manufacturer and performed in Bio-Rad CFX Manager 2.1
real-time PCR Systems (Bio-Rad, Hercules, CA, USA).

GAPDH was set as internal control, and the relative Ct
method was used to analyze the data. The sequences of
primers are listed in Supplementary Table S3.
RESULTS

Construction of Weighted Gene
Co-expression Modules
First, combining the mRNA data in TCGA glioma and GTEx
database, 10,550 differentially expressed genes between glioma
and normal brain tissue were detected. Among these genes,
260 amino acid metabolism-related genes were ensured
(Supplementary Figure S1A). The KEGG and GO analyses
Frontiers in Oncology | www.frontiersin.org 4
confirmed that these nods were mainly related to the biological
function and pathway of amino acid metabolism. The PPI
network showed a strong co-expressed correlation among the
genes (Supplementary Figures S1B–D). Then, the samples in
the training set were hierarchically clustered in the immunity-
high (immunity-H) or immunity-low (immunity-L) group by
ssGSEA (Supplementary Figures S2A, B). The box plot of the
fraction of immune cells in glioma tissues was significantly
different among immunity-H and immunity-L groups
(Supplementary Figure S2C). Consistently, the stromal scores,
immune scores, and ESTIMATE scores of glioma samples in the
immunity-H group remarkably increased compared with those
in the immunity-L group (Supplementary Figures S2D, F).
Meanwhile, the tumor purity in the immunity-H group was
significant ly lower than in the immunity-L group
(Supplementary Figure S2G). Besides this, patients in the
immunity-H group had a significantly poorer prognosis than
those in the other groups (Supplementary Figure S2H).

To find the correlation between amino acid metabolism-related
genes and immune infiltration in TCGA glioma, gene co-
expression networks were constructed from the TCGA glioma
datasets with the WGCNA package. Two modules in the TCGA
glioma were recognized, and a different color was assigned for each
module (Figure 2A). Then, we created a heat map of module–
immune relationships to evaluate the association between each
module and different immune scores (high and low). The results of
the module–immune relationships showed that the gray module
had the highest association with the immune-high group (pink
module: r = 0.27, p < 0.001) in TCGA glioma (Figure 2B). The
module membership and gene significance were highly correlated
in the gray module (Figure 2C).

Identification of a 12-Gene Risk Signature
Associated With Amino Acid Metabolism
and Immune in Glioma
To identify the amino acid metabolism-related and immuno-
associated risk signature, the univariate Cox regression analysis
was used to select 30 genes in the training set, which were related
to the prognosis of patients (Figure 3A). Thereafter, the most
relevant biomarkers for prognosis were identified through the
LASSO Cox regression model, and overfitting was counteracted
by 10-fold cross-validation. As a result, the group of 12 genes
(PSMC5, GLUD1, DHTKD1, OGDH, PSMF1, PSMD3, PSMB8,
PSMB9, PSMD5, PSMD12, PSMC1, and PSMD6) was extracted
according to LASSO coefficients (Figures 3B, C). The median
risk score was defined as the cutoff value to divide the training set
into two subgroups, including high- and low-risk groups, and a
significant difference was found in both the molecular and
clinical characteristics between these subgroups (Figure 3D).

At the same time, there were significant differences according
to the risk signature values of age-stratified and WHO-grade-
stratified clinical samples in both the TCGA and CGGA cohorts
(Figures 4A, B, E, F). The molecular pathological diagnosis of
glioma has been put forward in clinical practice. IDH wild type
and 1p19q non-codeletion gliomas were all the poor prognostic
factors and had an inadequate response to traditional
November 2021 | Volume 11 | Article 774332
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radiotherapy or chemotherapy of glioma patients (24). Such
being the case, the distribution of the 12-gene signature was
explored based on IDH status-stratified clinical samples
(Figures 4C, G) and 1p/19q codeletion status (Figures 4D, H).
Overall, these results indicated that the risk score based on the
gene signature was significantly associated with clinical features.
Frontiers in Oncology | www.frontiersin.org 5
Development of the Risk Score
Signature and Assessment of the
Predicting Capacity
Based on the groups with high and low risk scores, Kaplan–Meier
analysis was performed, and it showed that patients with high
risk scores had dramatically reduced overall survival compared
A

B C

FIGURE 2 | Identification of modules associated with the immunity in the Cancer Genome Atlas glioma dataset. (A) The cluster dendrogram of co-expression
network modules was ordered by a hierarchical clustering of genes based on the 1-TOM matrix. Each module was assigned different colors. (B) Module–immune
relationships. Each row corresponds to a color module, and each column corresponds to immune score (high and low). (C) Module membership vs. gene
significance in gray module.
November 2021 | Volume 11 | Article 774332
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FIGURE 3 | Identification of 12-gene risk signature for overall survival (OS) by least absolute shrinkage and selection operator regression analysis in the Chinese
Glioma Genome Atlas datasets. (A) Thirty genes associated with OS of patients with glioma by univariate Cox regression analysis. (B) Red dots represent average
partial likelihood deviances for every model with a given lambda, and vertical bars indicate the upper and lower values of the partial likelihood deviance errors. The
vertical black dotted lines define the optimal values of lambda, which provides the best fit. Survival curves of patients in the high-risk group and the low risk group of
The Cancer Genome Atlas glioma cohort. (C) The selection of the tuning parameter (lambda) in the least absolute shrinkage and selection operator model by 10-fold
cross-validation based on minimum criteria for OS; the lower X axis shows log (lambda), and the upper X axis shows the average number of OS genes. The Y axis
indicates partial likelihood deviance error. (D) Heat map showing the association of risk scores and clinical pathology features based on the 12-gene risk signature.
*P < 0.05, ***P < 0.001.
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with patients with a low risk score in both TCGA and CGGA
datasets (Figures 5A, B). Besides this, as far as the 1-, 3-, and 5-
year overall survival is in question, the values of the area under
the curve (AUC) of the ROC curve for the TCGA glioma cohort
were 0.875, 0.933, and 0.854. Consistently, concerning 1-, 3-, and
5-year overall survival, the values of AUC for the CGGA cohort
were 0.641, 0.678, and 0.687, respectively (Figures 5C, D).
Furthermore, the plots were listed to show the distribution of
gene expression, risk score, and survival status basing on the
amino acid metabolism- and immune-related signature in TCGA
and CGGA (Figures 5E, F). To further explore the significance of
our model in evaluating prognosis independently, we performed
a univariate analysis as well as a multivariate analysis, which
showed that the value of the risk score might be defined as an
independent factor to evaluate the prognosis of glioma patients
in both TCGA and CGGA (Table 1).

Combination of the Risk Signature and
Clinicopathological Features Improves
Risk Stratification and Survival Prediction
To better enhance the risk stratification of prognosis, we
constructed a decision tree through patients with different
grades of glioma from TCGA. As a result, the difference in
overall survival was observed in subgroups with different risk
scores (Figure 6A). Developing individualized treatment for
individual glioma patients is necessary. Consistently assessing
the potential risk and prognosis for individual glioma patients is
also important. Consequently, we built a nomogram with risk
Frontiers in Oncology | www.frontiersin.org 7
score as well as clinical pathology features, including IDH
mutation and 1p19q (Figure 6D). Besides this, the calibration
analysis was performed to elevate the accuracy of our nomogram.
The results showed that the prediction line of the nomogram was
extremely close to the ideal performance (45° dotted line)
(Figures 6B, C).

The Differences in Immunocyte Infiltration
Degree and Enrichment Plots of Immune-
Related Gene Sets From Gene Set
Enrichment Analysis Between High-
and Low-Risk TCGA Cohorts
Next, to explore whether our risk score partly assessed the
immune status of the tumor microenvironment, the
relationship of amino acid metabolism- and immune-related
gene signature with the immunocyte infiltration degree was
explored in gliomas. Interestingly, our results indicated that M2
(Cor = 0.31; p = 8.8e−6) and Tregs (Cor = 0.169; p = 0.0093) were
obviously positively related to risk score (Figures 7A, B).
Furthermore, NK cells (Cor = -0.39; p =1.9e−08) and CD4+ T
cells (Cor = -0.24; p = 0.00058) (Figures 7C, D) showed a
negative correlation with the risk score.

Immunotherapy is increasingly becoming an important part
of tumor therapy and can significantly improve the prognosis of
cancer patients in a variety of solid tumors (25). Hence, we
detected the expression of immune checkpoints in subgroups
with a high or low risk score. According to our gene model, the
expression level of PD- L1, PD-1, and CTLA-4 was lower in
A B D

E F G H

C

FIGURE 4 | Associations between the amino acid-related and immune-associated signature and other features in both the TCGA and CGGA datasets. Distribution
of the amino acid-related and immune-associated gene signature in patients stratified by age (A, E), WHO grade (B, F), IDH1 status in each grade (C, G), and 1p/
19q status (D, H); ***P < 0.001. IDH, isocitrate dehydrogenase; TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas; Codel, codeletion; GBM,
glioblastoma; WHO, World Health Organization.
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glioma patients with a high risk score (P < 0.05) (Figures 7E, F).
This result showed that the high-risk-score group may be less
sensitive to immunotherapy. Furthermore, glioma with a high
risk score was obviously enriched in the downregulation of the
effect immunity pathway. We found that high risk score had a
negative relationship with T cell migration (Figure 7G). It is well
known that enhancing T cell infiltration in glioma may increase
the response rates to immunotherapy and increase survival.
Consistently, high risk score had a negative relationship with
Frontiers in Oncology | www.frontiersin.org 8
tumor necrosis factor function (Figure 7H). These results
indicated that risk score could predict an immunosuppressive
micro-environment.

Identification of Hub Genes From Risk
Signature as Biomarkers in Glioma
The PPI network among the overlapped genes was established by
using the STRING database and performing GO and KEGG
(Supplementary Figure S3). MCC algorithm of CytoHubba
A B

D
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C

FIGURE 5 | Development of the risk score signature and assessment of the predicting capacity. (A, B) Survival curves of patients in the high-risk group and the
low-risk group of The Cancer Genome Atlas (TCGA) glioma and Chinese Glioma Genome Atlas (CGGA). Patients in the high-risk group suffered shorter overall
survival. (C, D) Survival-dependent receiver operating characteristic (ROC) curves validation at 1, 3, and 5 years of prognostic value of the prognostic index in the
two databases (TCGA and CGGA, respectively). (E, F) The distribution of risk score, overall survival (OS), gene expression in TCGA, and CGGA databases is also
shown. The distribution of risk score, OS, and heat map of the expression of 12 genes in the low- and high-risk groups are shown in the picture from top to bottom.
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plugin was used to select hub genes of the PPI network, and the
hub genes are listed in Supplementary Table S1. Basing on the
MCC scores, we selected the top 10 highest-scored genes from
hub genes, including ODC1, OAZ2, PSMD2, PSMD12, PSMC1,
PSMC5, PSMD3, PSME3, PSMD10, and PSMD5. The expression
levels of these genes were verified according to the TCGA
database. Kaplan–Meier plotter and the expression level of the
top 10 genes were performed as shown in Supplementary Figure
S4 and Supplementary Figure S5. Then, we performed a
multivariate Cox analysis to evaluate the prognostic value of
these genes in gliomas (Figure 8A and Supplementary Table S2).
In addition, we performed RT-PCR in our clinical samples which
include six normal brain tissues, 24 WHO grade II, and 55 GBM
samples. Consistently, we found that the expression level of
PSMD3 was positive with the grade of glioma. Inversely, the
expression level of PSMC5 was negative with the grade of glioma
(Figures 8B, D). Moreover, the results of the Kaplan–Meier
analysis indicated that PSMD3 was significantly associated with
worse overall survival of the glioma patients (P < 0.05)
(Figure 8C). Conversely, PSMC5 was significantly associated
with better overall survival of the glioma patients (P < 0.05)
(Figure 8E). All the results confirmed that PSMD3 and PSMC5
can be identified as potential biomarkers in glioma patients.
DISCUSSION

The reprogramming of amino acid metabolism in gliomas has
been reported to contribute to the malignancy biological process
of glioma, including proliferation, migration, and so on. A
previous study has constructed an amino acid-related risk
signature for gliomas, which could predict the survival and
clinical features of patients (26). However, more and more
studies revealed that amino acid metabolism is not only caused
by oncogene alterations but also changed the surrounding tumor
microenvironment (27).

In our study, we focused on the amino acid metabolism and
immune status which was explored by ssGSEA and ESTIMATE
and confirmed the differential expression of genes in gliomas.
Then, WGCNA was performed to identify amino acid
metabolism and immuno-related gene modules based on the
data from TCGA, and an amino acid metabolism and immune
signature was constructed by LASSO Cox regression model.
Frontiers in Oncology | www.frontiersin.org 9
Subsequently, the prognostic value of the gene signature was
validated in CGGA cohorts. Our risk score system could
distinguish high-risk patients, indicating that it can act as a
confidential risk factor in the complex subgroups of patients. In
addition, a decision tree has been constructed to enhance risk
stratification on the basis of WHO grade and risk score, which
showed that risk score could act as a major determinant.
Moreover, the generation of the nomogram was used to
quantify risk assessment and survival probability, which could
show higher accuracy and discrimination in survival prediction
compared with the traditional characteristics.

Furthermore, our risk score could also provide valuable
information on immune cell infiltration in a tumor
microenvironment and reflect the effects of immunotherapy.
In the high-risk-score subgroup, the infi l tration of
immunosuppressive cells like Tregs is higher than in the low-
risk-score subgroup. Conversely, effect immune cells are
decreased in the high-risk-score subgroup. Consistently, a
recent study has shown that amino acid metabolism can
regulate immune cells in cancer (3, 28, 29). Our gene model
might provide a clue of how the microenvironment was
influenced by amino acid metabolism. In addition, immune
checkpoint therapy has shown a great potential for treatment
in diverse solid tumors (30). However, the therapeutic efficacy
has not lived up to expectations in gliomas, and the specific
mechanisms for the problem still need more research. Different
genomic subtypes or molecular profiles are the main challenges
in the response to PD-1/PD-L1 checkpoint blockades (31). In
addition, the amino acid derivatives could promote the
immunosuppressive microenvironment and even affect the
expression of immune checkpoints in glioma (32, 33).
Interestingly, the expression of PD-L1 and CTLA-4 in the
high-risk group was significantly lower than in the low-risk
group in our study. These results might indicate better efficacy
and greater sensitivity of anti-PD1 therapy in low-risk
glioma patients.

In our study, we identified two biomarkers by estimating
amino acid and immune status in gliomas on the basis of the
expression of mRNA. PSMD3, also known as P58 or RPN3, is
one of the members in the proteasome subunit S3 family, which
acts as the non-ATPase subunit of the 19S regulator lid (34).
PSMD3 is widely expressed in most tissues and defined as an
oncogene in various cancers. WBC and neutrophil counts are
TABLE 1 | Univariate and multivariate Cox regression analyses of clinicopathologic characteristics associated with overall survival in TCGA dataset and CGGA dataset.

Variables TCGA Dataset CGGA Dataset

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

HR 95%CI P-value HR 95%CI P-value HR 95%CI P-value HR 95%CI P-value

Grade 4.987 3.873–6.421 <0.001 2.059 1.530–2.772 <0.001 2.635 2.353–2.952 <0.001 2.079 1.820–2.374 <0.001
Gender 1.011 0.747–1.368 0.944 0.974 0.710–1.336 0.870 1.022 0.870–1.202 0.787 1.020 0.866–1.200 0.815
Age 4.863 3.391–6.975 <0.001 2.296 1.465–3.596 <0.001 1.922 1.638–2.256 <0.001 1.227 1.033–1.457 0.020
IDH mutation status 0.090 0.063–0.129 <0.001 0.553 0.306–1.001 <0.051 0.367 0.315–0.428 <0.001 0.657 0.558–0.773 <0.001
1p19q codeletion status 0.217 0.128–0.370 <0.001 0.543 0.287–1.025 0.060 0.527 0.447–0.621 <0.001 0.781 0.661–0.923 0.004
Risk score 9.425 6.355–13.978 <0.001 2.672 1.510–4.729 <0.001 2.448 2.076–2.887 <0.001 1.364 1.131–1.646 0.001
November 202
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related to the expression of PSMD3 (35). Additionally, PSMD3 is
also related to the glucose-related features of carbohydrates and
fatty acids from the diet (36, 37). Besides this, the higher level of
PSMD3 mRNA predicts a worse prognosis of acute myeloid
Frontiers in Oncology | www.frontiersin.org 10
leukemia patients, and PSMD3 promotes the progression of
chronic myeloid leukemia by stabilizing NF-kB (38, 39).
Consistently, PSMD3 is upregulated in breast cancer compared
with normal tissue, and patients with a higher expression level of
A B

D

C

FIGURE 6 | The combination of risk signature and clinicopathological features improves risk stratification and survival prediction. (A) A decision tree was constructed
to improve risk stratification. (B) Decision curve analysis of the nomogram and contrast system for predicting the 1-, 3-, and 5-year survival rate of patients. (C) The
calibration analysis indicated a high accuracy of survival prediction. (D) A nomogram was constructed to quantify risk assessment for individual patients.
November 2021 | Volume 11 | Article 774332

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xu et al. Amino Metabolism Immune Prognosis Glioma
A B D
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FIGURE 8 | Identification of hub genes of amino metabolism-related risk signature. (A) Forest plot of the multivariable Cox regression analysis of the effect of 10 hub
genes and clinicopathological variables on the overall survival (OS) of glioma patients. (B) The relative expression level of PSMD3 in normal, low-grade glioma (LGG),
and glioblastoma (GBM) tissues according to the rt-PCR results. (C) The OS survival analysis of PSMD3 in TCGA glioma. (D) The relative expression level of PSMC5
in normal, LGG, and GBM tissues according to the rt-PCR results. (E) The OS survival analysis of PSMC5 in TCGA glioma. *P < 0.05, ***P < 0.001, ****P < 0.0001.
A B D

E F G H
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FIGURE 7 | The differences in immunocyte infiltration degree and enrichment plots of immune-related gene sets from Gene Set Enrichment Analysis (GSEA)
between the high- and low-risk TCGA cohorts. (A–D) The correlation with immunocyte infiltration was performed by using Pearson correlation analysis. M2; Tregs;
NK cells; CD4+T cells. (E, F) Correlation with immune-checkpoint expression. PD-1; CTLA4. (G, H) GSEA analysis revealing immune-related biological processes
correlated with the signature. ***P < 0.001.
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PSMD3 are related with worse survival. PSMD3 is strongly
associated with the expression of HER2, which can stabilize
HER2 from degradation (40). PSMC5 is defined as a 19S
regulatory component, and it could identify and transform
ubiquitin-labeled proteins into the form of degradation which
can be mediated by 20S complex (41). Interestingly, PSMC5
directly regulates transcription, for instance, it can influence the
activity class II trans-activator to regulate the transcription of
MHC class II (42). Besides this, it can also recruit p53 to the
promoter of p21 to upregulate its expression, which can decrease
the DNA damage mediated by ultraviolet (43), yet the specific
functions of both biomarkers in gliomas remain unclear. More
research are needed for further study.

Finally, several limitations of our work should be mentioned,
namely: (1) although two biomarkers have been identified, the
potential function of these genes still remains unclear and should
be explored in a future study, and (2) tumor heterogeneity is one
of the most important features in gliomas (44), which also means
different microenvironment features exist among diverse tumor
sites, yet all of the data and information are collected from public
databases, which makes it impossible to detect the immune status
in the same or diverse tumor regions. As a result, this gene
signature should be better validated in well-designed,
multicenter, prospective studies.
CONCLUSIONS

In summary, the construction and validation of 12 amino acid
metabolism- and immune-related genes have been defined as a
prognostic signature. This prognostic signature can predict the
prognosis of patients and help to select individualized
therapeutic strategy in clinical practice, which provides a
comprehensive perspective for clarifying the underlying
mechanisms that determine the prognosis for glioma. In
addition, our risk score model is associated with the immune
status of glioma patients, which may imply the potential effect of
immuno-therapy. Besides this, we also have identified PSMC5
and PSMD3 as new biomarkers in glioma.
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Supplementary Figure 1 | Identification of differentially expressed amino
metabolism-related genes among glioma and normal brain tissues. (A) The Venn
plot shows the intersecting genes between differentially expressed genes among
glioma and amino metabolism-related genes. (B) The Gene Ontology and (C) Kyoto
Encyclopedia of Genes and Genomes analysis of the intersecting genes. (D) The
protein–protein intersection analysis of the intersecting genes.

Supplementary Figure 2 | Identification of immune subtypes in The Cancer
Genome Atlas (TCGA) glioma by single-sample gene set enrichment analysis.
(A) Hierarchical clustering of glioma yields two subtypes (immune-high group and
immune-low group) in the TCGA database. (B) Different immune status of the two
groups. (C) A comparison of the abundance of tumor-infiltrating immune cells
between immune-high and immune-low groups is shown. A comparison of (D)
immune score, (E) stromal score, (F) estimate score, and (G) tumor purity among
immune-high and immune-low groups is shown. (H) Survival analysis of overall
survival between patients in the immune-low and immune-high groups. *P < 0.05,
**P < 0.01, ***P < 0.001.

Supplementary Figure 3 | Screened out top 10 hub genes of differentially
expressed amino metabolism-related genes. (A) The colors of the hub genes were
ranked by Maximal Clique Centrality (MCC) value, calculated through Cytoscape
plug-in Cytohubba; the depth of the color represents the MCC value. (B) Gene
Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of the amino
metabolism-related genes.

Supplementary Figure 4 | The expression level of these 10 hub genes in normal,
low-grade glioma (LGG), and glioblastoma (GBM) tissues in the training set. The
mRNA expression level of (A) PSME3, (B) PSMD3, (C) PSMD10, (D) PSMD5, (E)
OAZ2, (F) PSMD12, (G) PSMD2, (H) PSMC5, (I) PSMC1, and (J) ODC1 in normal,
LGG, and GBM tissues in the training set.

Supplementary Figure 5 | The prognostic value of these 10 hub genes in glioma.
Kaplan–Meier survival analysis of (A) PSME3, (B) PSMD3, (C) PSMD10, (D)
PSMD5, (E) OAZ2, (F) PSMD12, (G) PSMD2, (H) PSMC5, (I) PSMC1, and (J)
ODC1 was performed for overall survival in The Cancer Genome Atlas glioma.
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