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Abstract Phage–microbe interactions are appealing systems to study coevolution, and have also

been increasingly emphasized due to their roles in human health, disease, and the development

of novel therapeutics. Phage–microbe interactions leave diverse signals in bacterial and phage geno-

mic sequences, defined as phage–host interaction signals (PHISs), which include clustered regularly

interspaced short palindromic repeats (CRISPR) targeting, prophage, and protein–protein interac-

tion signals. In the present study, we developed a novel tool phage–host interaction signal detector

(PHISDetector) to predict phage–host interactions by detecting and integrating diverse in silico

PHISs, and scoring the probability of phage–host interactions using machine learning models based

on PHIS features. We evaluated the performance of PHISDetector on multiple benchmark datasets

and application cases. When tested on a dataset of 758 annotated phage–host pairs, PHISDetector

yields the prediction accuracies of 0.51 and 0.73 at the species and genus levels, respectively, outper-

forming other phage–host prediction tools. When applied to 125,842 metagenomic viral contigs

(mVCs) derived from 3042 geographically diverse samples, a detection rate of 54.54% could be

achieved. Furthermore, PHISDetector could predict infecting phages for 85.6% of 368

multidrug-resistant (MDR) bacteria and 30% of 454 human gut bacteria obtained from the

National Institutes of Health (NIH) Human Microbiome Project (HMP). The PHISDetector can

be run either as a web server (http://www.microbiome-bigdata.com/PHISDetector/) for general

users to study individual inputs or as a stand-alone version (https://github.com/HIT-

ImmunologyLab/PHISDetector) to process massive phage contigs from virome studies.
Introduction

Phages play key roles in shaping the community structure of
human and environmental microbiota, and provide tools for
the precise manipulation of specific microbes. Recent studies
ciences /
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have highlighted the influence of phage–microbe interactions
on mammalian health and disease, and their great potential
in the development of novel therapeutics, such as phage ther-

apy, to combat multidrug-resistant (MDR) infections. There-
fore, it is critical to identify and fully understand these
interactions [1]. The molecular and ecological coevolutionary

processes of phages and microbes leave various signals in their
genomic sequences that can be used to trace phage–host inter-
actions [2]. In addition to experimental methods, recent

advances in large-scale genomic and metagenomic sequencing
and computational approaches have deepened our understand-
ing of phage–microbe interactions, and advanced new chal-
lenges in investigating such phage–host interaction signals

(PHISs).
PHISs can be grouped into five categories based on their

means of detection. First, PHISs can be detected by identifying

putative prophage regions in bacterial genomes, defined as
integrated phages that insert their genomes into their bacterial
hosts. Several in silico tools for prophage detection in

sequenced genomes have been developed, including VirSorter
[3], PHASTER [4], Prophinder [5], Phage_Finder [6], Phage-
Web [7], and DBSCAN-SWA [8]. Recently, a microbe–phage

interaction database, Microbe Versus Phage (MVP), was
developed based on prophage inference [9]. Second, PHISs
can be detected by sequence composition analysis, a commonly
used alignment-free method, based on the observation that

phages share highly similar genomic signatures (such as
k-mer or codon usage) with their hosts, because phage replica-
tion is dependent on the translation machinery of its bacterial

host [10]. VirHostMatcher [11], WIsH [12], and PHP [13] are
such tools for predicting the hosts of viral genomes, or even
short viral contigs based on k-mer signals. Third, clustered reg-

ularly interspaced short palindromic repeats (CRISPR) spacer
sequences have been applied to infer phage–host interactions,
given that bacterial hosts incorporate spacer sequences from

phages that infect them [14–16]. Fourth, genetic homology
analysis, based on the homology between phage and bacterial
genes, can also be used to identify phage–bacterial relation-
ships [17–19]. Fifth, protein–protein interactions (PPIs) have

been applied to predict phage–host interactions because the
interactions between phages and microbes are dependent
mainly on the interactions between their encoded proteins

[20]. Recently, VirHostMatcher-Net and RaFAH have been
developed to predict phage–host interactions by integrating
multiple PHISs including CRISPR + k-mer and

CRISPR + tRNA + homolog signals, respectively [21,22].
Although various methods have been proposed to predict

phage–host interactions, these predictions usually use only a
single or a couple of limited in silico signal(s), and therefore

have limited accuracy and coverage [2]. Meanwhile, the num-
ber of viruses identified in virome studies is increasing expo-
nentially, and there is a massive demand for a tool that is

capable of incorporating all types of PHISs and conveniently
predicting the microbial hosts of viruses. However, to the best
of our knowledge, all currently available tools are limited to

certain interaction features, and there is no published web ser-
ver implementation or informed stand-alone software avail-
able to integrate all types of PHISs for comprehensive

prediction of global phage–host interactions. To meet this
urgent demand, we developed a novel integrative tool to pre-
dict phage–host interactions by detecting and integrating
diverse in silico PHISs, and scoring the probability of phage–
host interactions using machine learning models based on
PHIS features. Phage–host interaction signal detector
(PHISDetector) captures phage–host associations in a data-

driven manner, and is available as a software pipeline for
phage–host interaction identification, annotation, and analysis
in a comprehensive and user-friendly manner (Figure 1). The

PHISDetector can be run either as a web server (http://www.
microbiome-bigdata.com/PHISDetector/) or as a stand-alone
version on a standard desktop computer (https://github.com/

HIT-ImmunologyLab/PHISDetector).

Method

Creation of custom databases

Phage genome and protein database

The phage genome database contained 18,387 complete phage

genome sequences collected from Millardlab (https://millard-
lab.org/bioinformatics/bacteriophage-genomes/), which were
extracted from the GenBank (GBK) database on April 2021.

Open reading frames (ORFs) were annotated using
FragGeneScan. Phage sequences shorter than 1000 nt were
removed from the database. Finally, 1,255,004 non-
redundant phage protein sequences were clustered using

CD-HIT at a clustering cutoff of 100% identity over 100%
alignment of the shorter sequence [23], and were used to build
the phage protein database.

Bacterial genome and protein database

The bacterial genome and protein database (BGPD) contained
24,799 completely assembled bacterial genomes downloaded

from the National Center for Biotechnology Information
(NCBI) FTP site (https://ftp.ncbi.nlm.nih.gov/) on May 2021
and 22,662,539 non-redundant bacterial protein sequences

obtained according to the same processing steps as those used
for the phage genome and protein database (PGPD).

Sequence composition database

The sequence composition database (SCD) contained k-mer
(k = 6) frequency and codon usage calculated for each of
24,799 completely sequenced bacterial genomes and 18,387

phage genome sequences, as well as homogeneous Markov
models trained for each of the 24,799 bacterial genomes using
the WIsH method.

Prophage DNA and protein database

The prophage DNA database contained the DNA sequences
of 234,045 prophage regions identified in 21,032 bacterial gen-

omes using Phage_Finder or DBSCAN-SWA (our in-house
developed prophage detection tool). The prophage protein
database contained 1,182,233 protein sequences predicted
using FragGeneScan in these prophage regions.

CRISPR spacer database

We identified a total of 119,958 CRISPR arrays from bacterial

genome sequences in the BGPD using CRT, CRISPRFinder
[24], and PILER-CR [25], and collected 91,685 CRISPR arrays
from the CRISPRminer database (https://www.microbiome-
bigdata.com/CRISPRminer/) [26] and 11,767,782 spacers from

CrisprOpenDB (https://crispr.genome.ulaval.ca) [27]. By
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Figure 1 PHISDetector pipeline for prediction and evaluation of microbe–phage interactions

For candidate phage–bacterial sequence pairs, eighteen PHIS features belonging to five categories are calculated using sequence composition

similarity, CRISPR targeting, prophage, genetic homology, and PPI/DDI. Then, a two-stage procedure is performed to predict and evaluate

their interactions. In stage I, phage–host pairs with high reliability are detected using criterion 1 and returned directly as final predicted

results. In stage II, phage–host pairs with potential PHISs based on criterion 2 are retained and further evaluated using seven well-trained

machine learning models including RF, DT, LR, SVM-RBF, SVM-linear, Gaussian NB, and Bernoulli NB, and the phage–host pairs

distinguished by at least four models with a probability � 0.8 were returned. PPI, protein–protein interaction; DDI, domain–domain

interaction; RF, random forest; DT, decision tree; LR, logistic regression; SVM, support vector machine; RBF, radial basis function; NB,

naive Bayes; GBK, GenBank; PHIS, phage–host interaction signal; CRISPR, clustered regularly interspaced short palindromic repeats;

ORF, open reading frame; BLASTN, Nucleotide Basic Local Alignment Search Tool; BLASTP, Protein Basic Local Alignment Search

Tool; CSD, CRISPR spacer database; PDPD, prophage DNA and protein database; PGPD, phage genome and protein database; SCD,

sequence composition database; BGPD, bacterial genome and protein database; PPID, protein–protein interaction database.
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merging the CRISPR spacers from the aforementioned collec-
tions, 13,183,722 spacer sequences from 578,698 bacterial and

archaeal contig sequences were extracted to build the CRISPR
spacer database (CSD).

PPI database

To extract the PPIs that constitute the basis for phage–host
physical interaction prediction, 1) PPIs between bacterial and
phage proteins were inferred by examining the PPIs of their
homologous proteins in the IntAct Molecular Interac-

tion Database (https://www.ebi.ac.uk/intact/), and 2) the fre-
quencies at which these PPIs occur in the positive and
negative training sets (occur more than twice in the positive

compared with the negative training set) were compared.
Finally, 912 non-redundant PPIs that were correlated with
phage–host interactions were retained. In the same way, 318

https://www.ebi.ac.uk/intact/


Zhou F et al / PHISDetector for Phage–host Interaction Prediction 511
non-redundant Pfam domain–domain interactions (DDIs)
were selected and used for further evaluation of phage–host
interactions.

Phage–host interaction datasets

We totally collected three benchmark datasets with annotated
or known phage–host interactions from previous studies

[2,11,18] (Table S2). The combined dataset included 2511
phage–host pairs and were split into three mutually exclusive
sets at the strain level for model training and external valida-

tion. Briefly, the host information was extracted from the fields
‘‘isolate host=” or ‘‘host=”, which were annotated in each of
the phage GBK files. The dataset from Edwards et al. [2]

including 817 phage–host pairs was used as the positive train-
ing set. The 936 phage–host pairs exclusively occurred in the
study of Villarroel et al. [18], which originally included 1747

pairs, were used as the positive test set. An extra of 758
phage–host pairs got from Ahlgren et al. [11] after excluding
the shared phages with the aforementioned two datasets was
used as an independent benchmark dataset to validate the per-

formance of PHISDetector. The negative training and test
datasets were built artificially by matching phages with bacte-
ria from a species other than their known hosts in a degree-

preserving manner (using edge swaps but only for uniquely
connecting pairs).

Calculation of PHIS features

Diverse PHIS features in bacterial and phage genomes could
potentially impinge on host range determination. We con-

structed 18 features belonging to five categories in our frame-
work. A detailed definition of individual features is provided in
Table S2. 1) Sequence composition-related features, including
S�
2 similarity score, WIsH score, and codon usage score, were

used to evaluate the similarity of sequence composition of a
pair of phage–host genome sequences. The S�

2 similarity score

(S�
2 ¼ 1� 2d�2) was calculated to measure the similarity of the

oligonucleotide frequency pattern. WIsH score was calculated
based on estimated k-mer frequencies [11,12]. The codon usage
score was evaluated as the dissimilarity in codon usage profiles
of phage and bacterial coding regions. 2) CRISPR-related

features included CRISPRnum, CRISPRidn, and CRISPRcov,
representing the number of shared CRISPR spacers, the best
identity, and the coverage over all the hits between the host

spacers and the phage genome, respectively. 3) Prophage-
related features, including PROPphp, PROPidn, and PROPcov,
were defined to evaluate the similarity between bacterial

prophage region(s) and phage genomes based on homologous
protein comparison and nucleotide sequence similarity.
4) Genetic homology features, including ALNhpc, ALNidn,

and ALNcov, represent the sequence homology between phage
and bacterial genome regions. 5) PPI- or DDI-based features,
including PPInum, PPIbap, PPIphp, DDInum, DDIbap, and
DDIphp, were calculated to evaluate the interacting potential

for each phage–host pair based on the interactions between
their encoded proteins as follows: the number of PPIs or DDIs
between the bacterial and phage proteins (PPInum and

DDInum), the proportion of bacterial proteins involved in PPIs
or DDIs (PPIbap and DDIbap), and the proportion of phage
proteins involved in PPIs or DDIs (PPIphp or DDIphp).
General phage–host interaction prediction workflow

For candidate phage–bacterial sequence pairs, a two-stage
procedure, phage–host interaction evaluation (PHIE) mod-
ule, was performed to calculate the 18 PHIS features first

(stage I), and then to predict and evaluate their interactions
(stage II) (Figure 1). In stage I, phage–host pairs with high
reliability were detected using criterion 1 in Table S3. Crite-
rion 1 is defined as follows: 1) a strong prophage signal was

defined as � 80% overall sequence identity between the bac-
terial prophage region and phage genome with � 75%
prophage coverage, or � 70% of the prophage proteomes

are homology (� 40% overall amino acid identity and
� 70% overall coverage) with the phage proteomes; 2)
strong genetic homology signal was defined as � 80% over-

all sequence identity (ALNidn) between bacterial and phage
genomes with � 75% phage genome coverage (ALNcov), or
� 70% of the phage proteomes are homology (ALNhpc)

(� 40% overall amino acid identity and � 70% overall cov-
erage) with the bacterial proteomes; and 3) a strong CRISPR
signal was defined as mismatch � 2, spacer coverage
� 95%, and e-value � 1E�2 for CRISPR spacer and proto-

spacer matching. In stage II, phage–host pairs with potential
PHISs based on criterion 2 (defined in Table S3), which
denoted less stringent prophage, genetic homology, and

CRISPR signal requirements, were retained and further eval-
uated using trained machine learning models. Seven machine
learning models, namely, random forest (RF), decision tree

(DT), logistic regression (LR), support vector machine
(SVM) with radial basis function (RBF) kernels (SVM-
RBF), SVM with linear kernels (SVM-linear), Gaussian
naive Bayes (NB), and Bernoulli NB, were trained on the

training dataset with 18 PHIS features (Table S2). Ten-
fold cross-validation was used to determine the best config-
uration parameters. Trained models were used to predict

phage–host interactions, and the phage–host pairs discrimi-
nated by at least four models with a probability of at least
0.8 were returned (Figure 1). All analyses were carried out

using the Python package ‘scikit-learn’ [28]. Briefly, criterion
1 is used to screen out the phage–host pairs with high reli-
ability predicted only using single strong CRISPR, proph-

age, or genetic homology signals, but not guarantee a high
overall prediction score based on machine learning models
which consider the effects of all 18 PHIS features. Criterion
2 is used to screen out potential phage–host pairs with weak

single signal(s). And these candidate pairs will be further
evaluated using the machine learning models based on the
overall combination effects of all 18 PHIS features.

Integrated analysis tools

The PHISDetector tool is composed of seven independent

analysis modules that allow for 1) identification of diverse in
silico PHISs, including oligonucleotide profile analysis,
CRISPR analysis, prophage analysis, and PPI analysis;

2) analysis of specialty genes, including virulence factors
(VFs) and antibiotic resistance genes (ARGs); and 3) perfor-
mance of similarity analysis and co-occurrence/co-abundance
analysis. These integrated tools can be accessed via http://

www.microbiome-bigdata.com/PHISDetector/index/tools/.

http://www.microbiome-bigdata.com/PHISDetector/index/tools/
http://www.microbiome-bigdata.com/PHISDetector/index/tools/
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Oligonucleotide profile analysis

This module predicts the bacterial host of phages by examining

various oligonucleotide frequency (ONF)-based distances/
dissimilarities using VirHostMatcher. For the prediction of
the prokaryotic host of short viral contigs, an extra WIsH

approach is provided. Note that an extra taxonomy file is
required when using the VirHostMatcher approach, so we
have provided a tool to generate the taxonomy file for the

input bacterial genomes using NCBI accession IDs.

CRISPR analysis

CRISPR spacer sequences are computationally identifiable
sequence signatures of previous phage–host infections. In this

module, three scenarios of analysis are supported. 1) Users
can provide their input either as spacer sequences in
(multi-)FASTA format, such as CRISPRFinder, PILER-CR,
or Seq2CRISPR [29] output files, or as a bacterial genome

sequence for which the CRISPR spacers will be automatically
identified using PILER-CR. Next, putative protospacer targets
will be identified by a Nucleotide Basic Local Alignment Search

Tool (BLASTN) search of the spacer input against the viral ref-
erence database. 2) Users can upload viral sequences that will
undergo BLASTN searches against the spacer reference data-

base. The spacer reference database has been built in our pipe-
line, including spacers predicted from the complete and draft
bacterial genomes in the NCBI database. The bacterial sources
of the identified spacers are predicted to be the potential hosts

of the viral sequences. 3) Users can examine the phage–host
links by CRISPR spacer–protospacer matching between the
uploaded bacterial and phage sequences in (multi-)FASTA for-

mat. The spacer sequences will be predicted on the bacterial
sequence using PILER-CR first, and will then be aligned to
the phage sequences by BLASTN.

Prophage analysis

The prophage analysis module accepts both raw DNA
sequences in FASTA format and annotated genomes in
GBK format, and performs analysis using three prophage

detection programs: Phage_Finder, VirSorter, and
DBSCAN-SWA. DBSCAN-SWA implements an algorithm
combining the DBSCAN algorithm and SWA, referring to

the theory of PHASTER, a widely used web tool for prophage
prediction with no available stand-alone version or source
code [4]. In addition, tRNA sites are annotated using ARA-

GORN [30] for raw DNA sequences, and extracted for anno-
tated sequences. The sequences of 10 upstream and
downstream proteins for each cluster using integrase as the

anchor are extracted to examine putative attachment (ATT)
sites using BLASTN, with the parameters ‘-task blastn-short-
evalue 1000’. Finally, the predictive prophage region is charac-
terized using BLASTN against the Universal Protein (Uni-

Prot) viral genome DNA sequences, and the best hitting
phage organism is returned. We also use the viral UniProt
TrEML reference database to annotate the predicted ORFs

in the prophage region. Annotated ORFs with taxonomy
information are then subjected to a voting system, and the
prophage region is assigned a taxonomy based on the most

abundant ORF taxonomy annotated within the prophage.
The distribution of prophage-like elements detected by differ-
ent methods and their size relative to the genome of their host
are shown on an interactive circular genome viewer, encoded
using AngularPlasmid (https://angularplasmid.vixis.com).
The corresponding prophage annotation is shown in the right
panel when clicking on the regions.

PPI analysis

Interactions between bacteriophage proteins and bacterial pro-
teins are important for efficient infection of the host cell. We

assign bacterial and phage genes to homologs in the Universal
Protein Knowledgebase (UniProtKB) protein database based
on amino acid sequence homology via double index alignment

of next-generation sequencing data (DIAMOND) searches
[31]. The interactions between bacteriophage and bacterial
proteins are inferred by examining the PPIs of their homologs

in the IntAct Molecular Interaction Database (https://www.
ebi.ac.uk/intact/). The interactions between bacteriophage
proteins and bacterial proteins may contribute to understand-

ing the infectious interactions between bacteria and phages.

Specialty gene check

As accessory genetic elements, bacteriophages play a crucial

role in disseminating genes and promoting genetic diversity
within bacterial populations. They can transfer genes encoding
VFs, such as toxins, adhesins, and aggressions, to promote the

virulence of the host bacteria. ARGs in bacterial chromosomes
or plasmids can also be mobilized by phages during the infec-
tion cycle to increase antibiotic resistance. To identify specialty
genes for a pair of bacteria–phage genomes, ORFs are first

predicted using FragGeneScan, then further predicted using
Short, Better Representative Extract Dataset (ShortBRED)
[32] and Resistance Gene Identifier (RGI, v3.1.1; https://

github.com/arpcard/rgi) against the virulence factor database
(VFDB; http://www.mgc.ac.cn/VFs/) [33] and the Comprehen-
sive Antibiotic Resistance Database (CARD; https://card.mc-

master.ca/) [34], respectively. This analysis facilitates our
understanding of how specialty genes are transferred between
bacteria and phages.

Similarity analysis

In this module, the similarity between the query phage genome
and the genomes of 2196 (or 1871) reference phages with

known host genera (or species) is calculated using HostPhinder
[18], and the corresponding bacterial host species of similar
phages is returned, using a tree viewer and a table to illustrate

the prediction process. The GeneNet [19] program is also pro-
vided to predict the phage host range based on a built-in gene-
based virus–host reference network.

Co-occurrence analysis

This module receives relative abundance profiles in text file for-

mat as input, and uses CoNet [35] implementation with Java to
calculate the co-occurrence or co-exclusion relationships
between the abundance of bacterial and phage organisms
across samples. The co-occurrence analysis is mainly divided

into initial network computation and assessment of signifi-
cance. The network is computed by scoring the association
strength between bacteria and phage, in which five metrics

are calculated by default including correlation metrics (Pear-
son, Spearman), similarity metrics (mutual information), and
distance metrics (Kullback–Leibler, Bray Curtis). Next, the

significance of the associations is assessed with a permutation
test and bootstraps, and multiple testing corrections are

https://angularplasmid.vixis.com
https://www.ebi.ac.uk/intact/
https://www.ebi.ac.uk/intact/
https://github.com/arpcard/rgi
https://github.com/arpcard/rgi
http://www.mgc.ac.cn/VFs/
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performed with the Benjamini–Hochberg procedure by
default. Finally, networks obtained from diverse measures
are combined through voting systems using the Sims method.

We also incorporate Cytoscape.js [36], an open-source graph
theory library written in JavaScript for network visualization
so that the differences among the networks constructed using

distinct metrics could easily be observed and compared.

Evaluation methods

One-sided t-test was used to examine whether the signal scores
were significantly greater or lower (P < 0.05) in positive
phage–host pairs than in negative pairs. The receiver operating

characteristic (ROC) curves were used to assess the power
of predictive signals by plotting the false positive rate
(1 – specificity) vs. the true positive rate (sensitivity) according
to the change in threshold for each signal feature. The area under

the ROC curve (AUC) is a measure of the ability of the model to
rank true interactions higher than non-interactions, independent
of the prediction score threshold. The sensitivity (true positive

rate) and specificity (true negative rate) were used as accuracy
metrics to assess the prediction results.

Results

An integrated approach for predicting phage–host interactions

Phage–host interactions can be inherently traced by various
signals recorded in their genomic sequences. We designed five

categories of features to represent diverse in silico PHISs that
contribute to the prediction of phage–host interactions. First,
since temperate phages are ubiquitous in nature, with nearly

half of sequenced bacteria bearing lysogens [37], we can link
phages with their bacterial hosts by identifying the integrated
prophages and comparing them with the phage genomes.
Thus, we incorporated prophage-related features (PROPnum,

PROPidn, and PROPcov) into our tool to evaluate the similarity
between integrated prophage(s) and phage genomes based on
homologous protein alignment using DIAMOND Protein

Basic Local Alignment Search Tool (BLASTP), and nucleotide
alignment using BLASTN. Second, given that phages amelio-
rate their nucleotide composition toward that of their bacterial

hosts, we next added sequence composition features (S�
2 simi-

larity, WIsH score, and codon usage score) to reflect highly

similar patterns in codon usage or short nucleotide words (k-
mers) shared between some phages and their hosts. Third, as
CRISPR-Cas systems have been found in � 45% of bacterial

genomes [24], and approximately 7% of all detectable spacers
can match known sequences, most of which originate from
phage genomes [38], we incorporated CRISPR features

(CRISPRnum, CRISPRidn, and CRISPRcov) into our tool to
identify past infections between a phage and its hosts. Fourth,
we incorporated genetic homology features (ALNhpc, ALNidn,
and ALNcov) to represent genetic homologous sequences that

were acquired during a past infection event. Finally, DDI
scores (DDInum, DDIbap, and DDIphp) and PPI scores
(PPInum, PPIbap, and PPIphp) were combined to evaluate inter-

actions between proteins from the phage and its bacterial
hosts. The combination of these categories of PHIS features
increases the possibility of capturing additional interacting sig-

nals derived from different known mechanisms. Based on the
aforementioned in silico PHIS features, we next carried out
machine learning modeling to systematically integrate the cat-
egories of PHISs to predict phage–host interactions. The over-

all prediction framework is illustrated in Figure 1.

Evaluation of the predictive power of in silico PHISs

To assess the discriminatory power of each of the 18 PHIS fea-
tures, one-sided t-test was used to determine the difference
between the mean scores of each PHIS feature in the positive

and negative phage–host pairs from a training set containing
817 phages and 143 host bacterial species. All features from
thefive categories showed extraordinarydiscriminating abilities,

except for DDI-based features, which have acceptable discrimi-
nating abilities (Figure 2). For sequence composition analysis,
positive phage–host pairs had significantly higher S2* similarity
(P = 3.056E�125), WIsH score (P = 3.760E�91), and codon

usage similarity (P = 2.908E�103) than negative pairs
(Figure 2A). In terms of the three prophage-related features,
significant discriminant power could be observed between the

positive and negative pairs (PROPphp, P = 4.450E�58;
PROPidn, P = 1.854E�112; and PROPcov, P = 1.800E�56;
Figure 2B). All CRISPR scores were significantly higher for

the positive phage–host pairs than for the negative ones
(CRISPRnum, P = 1.778E�30; CRISPRidn, P = 1.766E�52;
and CRISPRcov, P = 7.889E�53; Figure 2C). For genetic
homology features, positive andnegative pairswere significantly

different based on homologous comparisons between phage and
bacterial nucleotide and protein sequences (ALNhpc,
P = 4.141E�62; ALNidn, P = 4.560E�82; and ALNcov, P =

2.239E�67; Figure 2D). All PPI-based features also showed
extraordinary discriminating abilities, but the DDI-based fea-
tures did not provide good discriminative abilities (Figure 2E

and F). The discriminating ability of these features was also val-
idated by calculating the AUC values. Similarly, except for
DDI-based features which had weak discrimination abilities,

the other features could achieve excellent discriminating ability
(with AUC � 0.792) (Table S4).

Machine learning models for phage–host interaction predictions

A single PHIS category could identify only a limited number of
positive interactions for the training set (16.4%–41.25%)
(Figure 3A), while the combination of multiple categories of

PHIS features could identify many more known interactions
at the species to family level (70.13%–89.84%). A phage–host
pair is decided as positive or validated by a given feature using

criterion 1 for the CRISPR, prophage, and genetic homology
signals, and pre-determined values for sequence composition
and PPI signals in Table S3. It is worth noting that, at the spe-

cies level, about 30% of the known phage–host interactions
did not contain any of the detectable signals defined in our
study. These results indicate that different types of PHISs
may reflect distinct interacting mechanisms that are requisi-

tioned by different phage–host sub-populations and more
phage–host interaction signals need to be discovered or
incorporated.

Based on the aforementioned 18 in silico PHIS features, we
carried out machine learning modeling to systematically inte-
grate various categories of PHISs to predict and evaluate

phage–host interactions. Seven machine learning models



Figure 2 Distributions of 18 PHIS feature values in 817 interacting phage–host pairs and non-interacting phage–host pairs

A. Jitter scatter plots of sequence composition feature values, including S�
2 score, WIsH score, and codon usage score. B. Jitter scatter plots

of prophage-related feature values, including PROPphp, PROPidn, and PROPcov. C. Jitter scatter plots of CRISPR-related feature values,

including CRISPRnum, CRISPRidn, and CRISPRcov. D. Jitter scatter plots of genetic homology feature values, including ALNhpc, ALNidn,

and ALNcov. E. Jitter scatter plots of PPI-based features, including PPInum, PPIphp, and PPIbap. F. Jitter scatter plots of DDI-based

features, including DDInum, DDIphp, and DDIbap. *, P < 0.05; ***, P < 0.001; ns, not significant.
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(RF, DT, LR, SVM-RBF, SVM-linear, Gaussian NB, and
Bernoulli NB) were applied to the training dataset containing

817 phages and 143 host bacterial species (Table S1; Figure S1).
Ten-fold cross-validation was performed to determine the best
configuration parameters. Next, we applied these trained

models to validate the test set containing 936 phages infecting
110 host species (Table S1; Figure S1), and plotted the
corresponding ROCs. The AUC, which measures the
discriminative ability between positive and negative pairs in

the test set, was 0.5738–0.9275 for each trained model,
with the RF model achieving the best performance
(Figure S2).

To further prove that the machine learning model integrat-
ing all PHIS categories performs better than nonintegrated



Figure 3 Comparison of the predictive power of single PHIS category or the integrated phage–host interaction signals

A. Heatmap showing whether known phage–host pairs are validated by diverse in silico PHISs. B. ROC curve showing the discriminative

ability between positive and negative pairs in the test set using the integrated model combining all PHISs, with the AUC value of 0.9347.

C. Bar chart displaying the performance of RF models based on integrated PHISs or single PHIS category in the test set by four

evaluation indexes, namely, accuracy, F1-score, precision, and recall. ROC, receiver operating characteristic; AUC, area under the ROC

curve.
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models, we also trained RF models using each individual PHIS
category and integrated signals, and tested the corresponding

discriminative abilities in the test set. AUCs ranged between
0.5738–0.9275 for sequence composition, CRISPR, prophage,
genetic homology, and PPI individually, while the AUC of our

integrated model achieved 0.9347 (Figure 3B, Figure S2). In
addition, by calculating the four general evaluation indexes,
including accuracy, F1-score, precision, and recall, we showed

that our integrated model performed much better than each
individual PHIS category, with a score approximate to 0.875
in all these indexes (Figure 3C). Although at the strain level
the datasets for model training and external validation are

mutually exclusive, at the phage genus level they are not com-
pletely exclusive but with 96 shared phage genera. Therefore,
to further evaluate the ability of the models in predicting

phage–host interactions for novel phages, we split the test
dataset into 698 ‘experienced’ phages whose genera occurred
in the training set and 238 ‘novel’ phages whose genera were

not used in the training set. By random sampling of the ‘expe-
rienced’ and ‘novel’ phages with equal size 100 times, the
median accuracy for predicting ‘novel’ phages using our
trained models achieved 0.72, decreased by 0.13 than that for

the ‘experienced’ phages (which achieved a prediction accuracy
of 0.85) (Figure S3A). Therefore, our approach, which inte-
grated five categories of PHIS features using machine learning

models, exhibited robust predictive power for phage–host
interactions even for new phages unseen in the training models.
Furthermore, we evaluate the performance of PHISDetector in

predicting hosts for phages at various lengths based on the pre-
dicted results for 1434 phages with known phage–host interac-
tions from the two external test sets. As is shown in
Figure S3B, PHISDetector could predict hosts for a majority

of phages (with a length of 10–100 kb) with a high accuracy
of 0.64–0.88 or 0.86–0.92 at the genus or family level (Fig-
ure S3B). For the phages with lengths less than 10 kb or

greater than 100 kb, PHISDetector could obtain a prediction
accuracy of 0.25 and 0.47 at the genus level, but achieve 0.99
and 0.76 at the family level. Therefore, predicting hosts for

shorter viral contigs probably required more phage–host inter-
action signals to accurately predict their hosts.
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Advanced features of PHISDetector

Our prophage analysis module integrated two popular pro-
grams, Phage_Finder and VirSorter, and our in-house devel-
oped tool DBSCAN-SWA, which combines the DBSCAN

algorithm [39] with SWA. DBSCAN-SWA presents the best
detection power based on an analysis using a controlled data-
set, including 184 manually annotated prophages, with a detec-
tion rate of 85%, which is greater than that of Phage_Finder

(63%) or VirSorter (74%). Combining all three methods (pro-
vided as a ‘‘merge” function in the prophage analysis module),
92 % of the reference prophages could be detected. We also

added a prophage annotation step to indicate possible inte-
grated phages in the predicted regions.

Our CRISPR analysis module facilitates two-way analysis.

If a phage genome is submitted, it will be compared with our
in-house collected spacer database (13,183,722 spacer
sequences) to quickly detect CRISPR-targeting associations

between the input phage sequence and microbial genomes in
NCBI. If a bacterial genome is received, the PHISDetector will
detect the CRISPR spacer automatically and compare it with
an in-house collected PGPD to find the target phage. If a bac-

terium–phage pair is received, the PHISDetector will detect the
CRISPR spacer automatically in the bacterial genome
sequence and compare it against the query phage genome to

predict the CRISPR-targeting association.
The sequence composition analysis module supports

VirHostMatcher, WIsH, and codon usage, which are comple-

mentary because VirHostMatcher may be more suitable for
complete genomes, whereas WIsH (for virus contigs shorter
than 10 kb) and codon usage distance can be detected in both
complete and incomplete genomes. The genetic homology

module detects the sequence homology between any phage–
host pair regions of genetic homology, and provides visualiza-
tions to display the degree of matching between the phage–

host pair as circular genome viewers. In the co-abundance
analysis module, we used the CoNet program to infer a viral
and bacterial co-occurrence network. As a plug-in of Cytos-

cape, we adapted CoNet to a web version to better aid biolo-
gists without a computational background to use and adjust
parameters. As shown in the Figure 3A, a distinct phage–host

sub-population was determined by PPIs/DDIs compared with
other categories of signals, with the hosts of 19 phages (2.3%)
were correctly identified only by PPIs/DDIs but not supported
by any other signals. Therefore, the PPIs/DDIs could reflect

the phage–host interactions originated from the interactions
between their encoded proteins though not supported by other
categories of signals. Therefore, we also provided a functional

module for the detection of PPIs and DDIs between a pair of
phage–host genomes to better understand their interplay at the
protein level. In addition, to assist in characterizing phage gen-

omes for therapeutic applications, we introduced a specialty
gene check module to detect VFs and ARGs.

Finally, a consensus analysis using machine learning mod-
els was performed to indicate the possible integrity of the pre-

dicted interactions and the interplay among different PHISs.
Based on PHIS detection for the training set, consisting of
817 known phage–host interactions, more than 85% of the

phage hosts were correctly identified at the species level by
combining all categories of signals. The integrated RF model
trained on the training set attained the best performance, with
an AUC value of 0.9347 and an accuracy of 0.875 for the test
set (936 known phage–host pairs). Therefore, the PHISDetec-
tor can predict interactions that could not have been detected

using a single category of signals, and can precisely calculate
the possibility of novel phage–microbe pairs.

Case study 1: identification of hosts of metagenomic viral contigs

using PHISDetector

As a large number of new viral genomes or sequence fragments

are being unveiled by viral metagenomics, predicting the
microbial hosts for these metagenomic phage contigs remains
one of the most fundamental challenges in understanding the

ecological roles of phages [40]. The stand-alone version of
the PHISDetector is particularly powerful for expanding our
framework for large viral metagenomics dataset analysis.
Users can submit high-throughput sequencing-derived phage

sequences as the input, and the predicted bacterial hosts of
these phages are returned.

We tested a set of 125,842 metagenomic viral contigs

(mVCs) from 3042 geographically diverse samples [41] and
predicted their bacterial hosts using PHISDetector. First,
using criterion 1, we could predict the bacterial hosts of

13,304 (10.57%), 2221 (1.76%), and 276 (0.22%) mVCs by
matching CRISPR spacers, genetic homology of bacterial gen-
omes, and microbial prophages with mVCs, respectively. Sec-
ond, using criterion 2, 111,058 (88.25%) mVCs were retained

for further evaluation by machine learning models (Figure 1).
Finally, 64,957 mVCs (51.62%) were returned with predicted
hosts at the genus level, supported by at least two trained

machine learning models with a probability � 0.8. Compared
with the original study, in which only 9607 (7.7%) of the
mVCs whose hosts were bacteria were predicted mainly

through CRISPR spacers and transfer RNA matches,
PHISDetector annotated hosts for 69,257 (55.03%) of all
mVCs, and the predicted hosts matched the previous annota-

tion in 62.34% of cases at the genus level (Figure 4A, Figure S4;
Tables S5 and S6). In summary, PHISDetector can success-
fully predict bacterial hosts for virome contigs in large
datasets.

Case study 2: prediction of infecting phages for MDR bacteria

and human gut bacteria

Antibiotic resistance in bacteria, especially a dramatic increase
in MDR bacteria, has emerged as a global challenge over the
past century. As viruses bear the ability to kill or inhibit bac-

teria, bacteriophages may provide a therapeutic opportunity to
combat MDR bacteria. To demonstrate this application, we
extracted 368 clinical bacterial pathogen isolates from the

NCBI Pathogen Detection database (https://www.ncbi.nlm.
nih.gov/pathogens/isolates/, using the query ‘‘host: Homo
sapiens && epi_type: clinical && asm_acc: GCA* && cre-
ation_date: 2020 && AMR_genotypes: *”). These bacterial

isolates belong to 31 species, and have complete bacterial gen-
ome sequences and predicted antimicrobial resistance (AMR)
genotypes. We applied PHISDetector to predict potential

infecting phages for these pathogens, and obtained a total of
927 reliable infecting phages for 315 bacterial isolates
(85.6%) from 21 species (67.7%). Among these bacterial iso-

lates, 83 (26%), 265 (84%), and 250 (79%) strains were

https://www.ncbi.nlm.nih.gov/pathogens/isolates/
https://www.ncbi.nlm.nih.gov/pathogens/isolates/
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Table 1 Isolated phages reported by Cornuault et al. [43] and predicted phages using PHISDetector for Faecalibacterium prausnitzii strains

Strain
Isolated

phage

name

Isolated phage

GenBank ID

Predicted

phage

GenBank ID

PHIS

CRISPR Prophage
Genetic

homology
Machine

learning
C1 C2 C1 C2 C1 C2

Faecalibacterium prausnitzii M21/2 FP_Epona MG711462 NA � � � p � � �
Faecalibacterium prausnitzii A2-165 FP_Mushu MG711460 MG711460 � � p p p p �

FP_Lagaffe MG711461 MG711461 � � p p p p �
Faecalibacterium prausnitzii SL3/3 FP_Toutatis MG711466 MG711466 � � � p � p p
Faecalibacterium prausnitzii KLE1255 FP_Lugh MG711464 NA � � � � � � �

FP_Toutatis MG711466 MG711466 � � p p � p �
Faecalibacterium prausnitzii L2-6 FP_Toutatis MG711466 MG711466 � � p p p p �

FP_Lugh MG711464 NA � � � � � � �
FP_Taranis MG711467 MG711467

p p p p � p �
Note: ‘‘

p
” denotes that the corresponding signal could be detected for the phage–host pair; ‘‘�” denotes that the corresponding signal could not be

detected for the phage–host pair. C1 and C2 denotes criterion 1 and criterion 2 defined in Table S3, respectively. PHIS, phage–host interac-

tion signal; NA, not available.
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detected based on strong CRISPR, prophage, and genetic
homology signals using criterion 1, respectively. PHISs could

be detected in most of the strains (305, 96.8%) using a machine
learning model (Figure 4B). Reliable prediction of infecting
phages is considered when there is a match between the genus

of the bacterial host for a phage and the genus of the query
bacteria. These predicted interactions may provide vital infor-
mation for the development of novel phage therapies for the

treatment of MDR bacterial infections. Detailed information
can be accessed and browsed via the PHISDetector webserver
(http://www.microbiome-bigdata.com/PHISDetector/index/case_
study).

Although a growing body of research has emphasized the
role of the human gut microbiome in human health and dis-
ease, knowledge of phages that can infect major human gut

commensal bacteria remains limited. The discovery of their
interactions will provide potential tools for precise manipula-
tion of specific microbes in human gut and be of great benefit

to studies about the function of intestinal symbiotic bacteria as
well as development of therapies for treating pathogenic bacte-
ria. Therefore, we collected 454 bacterial isolates (representing
222 species) from the human gastrointestinal tract that have

complete sequences and annotation via https://www.hmp-
dacc.org/hmp/HMRGD/. In total, 416 candidate phages for
135 (30%) bacteria from 55 (25%) species were predicted with

high reliability using a PHISDetector, with 95 (70.4%) strains
3

Figure 4 Performance of PHISDetector in predicting bacterial hosts f

bacteria

A. Phylogenetic distribution of the bacterial hosts for mVCs. In total, 2

(blue rectangles) shows the number of mVCs assigned to a genus by Pa

the number of mVCs assigned to a genus by PHISDetector. In the midd

(green ovals), prophage (blue ovals), genetic homology (yellow ovals),

the pie charts indicate the consistency of host prediction at genus level

the fraction of mVCs assigned to a genus by Paez-Espino et al. [41] th

fraction of mVCs assigned to a genus by Paez-Espino et al. [41] but not

reliable phages predicted using strong CRISPR, prophage, or genetic

learning model, respectively, for 315 MDR bacteria (B) and 454 h

multidrug-resistant; HMP, Human Microbiome Project.
detected by strong signals in criterion 1, and 108 (80%) using a
machine learning model (Figure 4C). PHISDetector performed

dependably for major gut bacteria; for example, as one of the
most abundant bacterial species in the human gut microbiota,
a reduction in the abundance of Faecalibacterium prausnitzii is

relevant to the pathogenesis of inflammatory bowel disease
(IBD) [42]. PHISDetector could identify the exact infecting
phages for several F. prausnitzii strains, whose phages were

first isolated in 2018 [43] (Table 1). It should also be noted that
only a limited number of phages could be isolated because
most human gut bacteria are anaerobic, and are difficult to iso-
late or culture. Meanwhile, among the 319 bacterial isolates

(182 species) for which PHISDetector failed to predict any reli-
able phages, in 88 species (� 48%) this was due to the lack of
sequenced phages infecting bacteria within the same genus in

our PGPD. With more human gut virome studies conducted,
more gut phage DNA will be isolated, sequenced, and added
into viral databases, which will notably enhance the detection

ability of PHISDetector in the future.

Case study 3: making predictions and annotations using the

PHISDetector webserver

The PHISDetector webserver receives bacterial or virus geno-
mic sequences in GBK or FASTA format as input, and pro-
vides graphical results and data tables with details to
or mVCs and the infecting phages for MDR bacteria and human gut

05 genera are shown in the phylogenetic tree. The innermost circle

ez-Espino et al. [41] and the adjacent circle (red rectangles) shows

le circles, various signals detected for a genus are marked: CRISPR

and sequence composition (orange ovals). In the outermost circle,

between Paez-Espino et al. [41] and PHISDetector. Red indicates

at is also correctly predicted by PHISDetector. Black indicates the

predicted by PHISDetector. B. and C. The number of strains with

homology signals using criterion 1 or using the trained machine

uman gut bacteria (C). mVC, metagenomic viral contig; MDR,

http://www.microbiome-bigdata.com/PHISDetector/index/case_study
http://www.microbiome-bigdata.com/PHISDetector/index/case_study
https://www.hmpdacc.org/hmp/HMRGD/
https://www.hmpdacc.org/hmp/HMRGD/
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download. For a FASTA input file, ORFs will be first pre-
dicted on the input genome using FragGeneScan [44], while
for a GBK file, DNA sequences and ORF amino acid

sequences of the genome will be extracted directly from the
input GBK file (Figure 1). The PHISDetector webserver sup-
ports three types of analysis. 1) Evaluation of the interacting

probability for a pair of phage and prokaryotic genomes. If
a pair of phage–microbe genome sequences has been submit-
ted, the PHIE module will be applied to indicate the possibility

of the interaction (Figure 1). 2) Prediction of infecting phages
for a query prokaryotic genome. If a bacterial sequence has
been submitted (Figure 1, upper left), the ORFs, prophage
regions, and CRISPR arrays will be initially detected. Then,

the PHIE module will be performed to evaluate the interacting
potential for each of the 18,387 phages in the PGPD with the
input bacterial sequence. 3) Prediction of bacterial hosts for

the query phage genome. If a phage sequence has been submit-
ted (Figure 1, upper right), the PHIE module will be used to
evaluate the interacting potential of the query phage with each

of the 24,799 bacterial genomes in the BGPD or 13,183,722
spacers in the CSD based on CRISPR spacer matching
information.

We illustrated the output results using the predictions for
infecting phages of Staphylococcus aureus subsp. aureus JH1
(NC_009632) (Figure 5A), and for bacterial hosts of Staphylo-
coccus phage 47 (NC_007054) (Figure 5B), as well as the char-

acterization of interactions between them (Figure 5C). A word
cloud plot showing the frequency of keywords for all predicted
phages for S. aureus JH1 was used to visualize the dominant

phages (Figure 5D). For each candidate phage–host pair, a
consensus table displaying different PHISs was used to give
an overview of all detected signals supporting the interaction

and consistency among signals (Figure 5E). Interactive Data-
Tables were used to display the prediction results with details
for CRISPR, prophage, genetic homology, sequence composi-

tion, and PPI signals (Figure 5F–J). In addition, several kinds
of interactive graphics are provided to facilitate browsing,
analysis, and interpretation of the prediction results. For the
CRISPR signal, a table showing matching between the bacte-

rial host CRISPR spacer and phage protospacer is provided
(Figure 5F). For the prophage signal, an interactive circular
genome viewer is provided to illustrate the prophage regions

in host genome with detailed information for homologous
comparison between the phage and the matching prophage
3

Figure 5 Illustrations for making predictions and annotations using P

A. Infecting phages identified from PGPD for bacterial strain Staphyl

for Staphylococcus phage 47 (NC_007054 or AY954957) identified fr

(S. aureus JH1 vs. Staphylococcus phage 47). D. Word cloud showing th

E. A consensus table displaying diverse PHISs detected for the phage–

between host CRISPR spacer and phage protospacer sequences. G. Ci

the prophage regions of S. aureus JH1 and Staphylococcus phage 47, ba

genome viewers displaying the sequence homology between S. aureus J

homologous alignment, with color shade representing the level of simi

I. S2*, WIsH, and codon usage scores (red lines) evaluating the sequence

phage 47 were plotted on background density curves, with red and b

positive and negative training sets, respectively. J. Interactive bipartite

JH1 and its predicted phage Staphylococcus phage 47 (NC_007054).
(Figure 5G). For genetic homology analysis, a circular genome
viewer can be used to evaluate the similarity between host and
phage based on homologous protein alignment by

DIAMOND BLASTP and nucleotide alignment by BLASTN
(Figure 5H). For sequence composition signals, S�

2, WIsH, and

codon usage scores are plotted on the density curves, with red
and blue curves representing the distribution of scores calcu-
lated using the positive and negative training sets, respectively

(Figure 5I). For PPIs, the interactive bipartite network shows
the PPIs between the phage and bacterial proteins, with Data-
Tables providing detailed information about proteins. In addi-

tion, PHISDetector also provides seven independent analysis
modules: oligonucleotide profile analysis, CRISPR analysis,
prophage analysis, protein interaction, specialty gene check,

similarity analysis, and co-occurrence analysis, to provide a
flexible and convenient one-stop web service for oriented
phage–host interaction analyses (Figure S5).

Comparison with other methods

We compared PHISDetector with VirHostMatcher [11], WIsH
[12], VirHostMatcher-Net [21], and PHP [13] on an indepen-

dent benchmark dataset including 758 annotated phage–host
pairs (see Method). Since all the four published methods and
PHISDetector calculate a score to indicate the reliability of a

predicted phage–host pair, we return the one with the highest
score (or probability) as the predicted hosts for each phage and
calculated a host prediction accuracy as the percentage of

phages whose representative hosts predicted by these methods
belong to the same taxonomic affiliation as their annotated
hosts (Table S7). As shown in Figure 6, PHISDetector outper-
formed the other tools at all taxonomic levels, especially at the

species and genus levels. In addition, we compared the pre-
dicted results of PHISDetector and RaFAH for 125,842 mVCs
from 3042 geographically diverse samples [41]. Compared with

the original study, in which only 9607 (7.7%) of the mVCs
were predicted mainly through CRISPR spacers and transfer
RNA matches, PHISDetector annotated hosts for 69,257

(55.03 %) of all mVCs, and the predicted hosts at the genus
level matched the previous annotation in 62.34% of cases.
Comparatively, with a P value threshold of 0.1, WIsH anno-
tated 59% of the mVCs and the predicted hosts matched the

previous annotation in 70% of the cases just at the family level;
RaFAH just annotated hosts for 20,409 contigs (16.22%) of all
HISDetector web server

ococcus aureus subsp. aureus JH1 (NC_009632). B. Bacterial hosts

om BGPD or CSD. C. Characterization of the phage–host pair

e frequency of keywords of all predicted phages for S. aureus JH1.

host interaction. F. CRISPR panel showing matching information

rcular genome viewers illustrating the sequence homology between

sed on BLASTP or BLASTN homologous alignment. H. Circular

H1 and Staphylococcus phage 47, based on BLASTP or BLASTN

larity with detailed information shown when clicking on a region.

composition similarity between S. aureus JH1 and Staphylococcus

lue curves representing the distribution of scores calculated using

network and tables giving the PPIs between proteins of S. aureus



Figure 6 Comparison of the performance of PHISDetector with VirHostMatcher, WIsH, VirHostMatcher-Net, and PHP on 758 annotated

phage–host pairs

Lollipop chart showing the prediction accuracies of the different approaches for 758 phages. Prediction accuracies were compared between

PHISDetector and other four published phage–host interaction prediction tools, including VirHostMatcher, WIsH, VirHostMatcher-Net,

and PHP, at different taxonomic levels, including species, genus, family, order, class, and phylum. The principle for assigning the host is

that the one with the highest score (or probability) is predicted as the host for each phage.
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mVCs with a probability � 0.5, and matched the previous
annotation in 47.05% of cases with a probability � 0.8 and

61.5% of cases with a probability � 0.5. Moreover,
PHISDetector showed significantly better performance than
RaFAH (bootstrap test on ROC with P = 0.0025; Figure S4;

Table S6). In summary, PHISDetector presented better perfor-
mance in predicting hosts for complete phage genomes or vir-
ome contigs than other available tools.
Discussion

In the present study, we applied an integrated approach to

develop PHISDetector for phage–host interaction predictions.
Compared with prior tools, the PHISDetector pipeline is
uniquely comprehensive, because it integrates various types

of PHISs, reflecting possible phage–microbe interacting mech-
anisms into one tool, and adds valuable novel functionalities.
Consequently, PHISDetector can predict additional interac-

tions that cannot be detected using a single category, and
can calculate the possibility of a novel phage–microbe pair
using trained machine learning models. Users can choose to
use the web server or stand-alone version flexibly, according

to their research and resources, both of which provide well-
designed, interactive visualization outputs for improved inter-
pretation. The PHISDetector will continue to develop to incor-

porate additional in silico phage–host signals, and to evaluate
the consistency of the association between different signals
upon extensive analysis of large datasets. We hope that

PHISDetector can promote research on the role of phage–host
interactions from ecological and evolutionary perspectives,
facilitate our understanding of their roles in human health

and disease, and accelerate the development of novel therapeu-
tic strategies, such as modulating specific microbes in a micro-
bial community and treating MDR infections.
Code availability
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Data availability
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www.microbiome-bigdata.com/PHISDetector/index/download.
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