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T-cells specifically bind antigens to induce adaptive immune responses using highly
specific molecular recognition, and a diverse T-cell repertoire with expansion of antigen-
specific clones can indicate robust immune responses after infection or vaccination. For
patients with inflammatory bowel disease (IBD), a spectrum of chronic intestinal
inflammatory diseases usually requiring immunomodulatory treatment, the T-cell
response has not been well characterized. Understanding the patient factors that result
in strong vaccination responses is critical to guiding vaccination schedules and identifying
mechanisms of T-cell responses in IBD and other immune-mediated conditions. Here we
used T-cell receptor sequencing to show that T-cell responses in an IBD cohort were
influenced by demographic and immune factors, relative to a control cohort of health care
workers (HCWs). Subjects were sampled at the time of SARS-CoV-2 vaccination, and
longitudinally afterwards; TCR Vb gene repertoires were sequenced and analyzed for
COVID-19-specific clones. We observed significant differences in the overall strength of
the T-cell response by age and vaccine type. We further stratified the T-cell response into
Class-I- and Class-II-specific responses, showing that Ad26.COV2.S vector vaccine
induced Class-I-biased T-cell responses, whereas mRNA vaccine types led to different
responses, with mRNA-1273 vaccine inducing a more Class-I-deficient T-cell response
compared to BNT162b2. Finally, we showed that these T-cell patterns were consistent
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with antibody levels from the same patients. Our results account for the surprising
success of vaccination in nominally immuno-compromised IBD patients, while
suggesting that a subset of IBD patients prone to deficiencies in T-cell response may
warrant enhanced booster protocols.
Keywords: SARS-CoV-2 (COVID-19), mRNA vaccine, T-cell repertoire, inflammatory bowel disease, immunodeficiency
INTRODUCTION

Coronavirus-19 (COVID-19) infection is characterized by
immune dysregulation (1–8), especially in elderly or
immunocompromised patients with comorbidities (9, 10).
Vector-based vaccines (i.e. Ad26.COV2.S by Janssen/
Johnson&Johnson) and mRNA vaccines (BNT162b2 by Pfizer/
BioNTech, mRNA-1273 by Moderna/NIH) (11, 12) are both in
wide use in the United States, although there may be some
advantages of the latter in safety, pharmacokinetics, and
manufacturing (13, 14). Vaccine-induced immune responses
include both humoral (antibody) and cellular (T-cell)
immunity. While post-vaccination antibody responses in
various immune-compromised populations have been
described (10, 15, 16), T-cell responses have not been well-
characterized. Understanding the mechanisms of the immune
system’s response to COVID-19 vaccines is essential to
understanding infection risk in vaccinated vulnerable
populations including those with immune-mediated conditions.

A critical element of the immune response to both SARS-
CoV-2 infection and vaccination is the T-cell compartment (7,
17–19). T-cells are essential for specific recognition of virus
antigens, which occurs via T-cell receptor (TCR) binding via
either MHC Class-I or Class-II antigen presentation (20, 21).
MHC Class-I presentation signals CD8+ T cells, while MHC
Class-II presentation signals CD4+ T-cells which mediate both
inflammatory effector processes and antigen-specific antibody
generation (22). Flow cytometry-based and ELISpot methods
permit enumeration of CD4+ and CD8+ T-cell vaccine
responses, but do not permit dissection of the clonal dynamics
of the T-cell response (23–26). Peptide stimulation reveals
antigen-specific populations which can be functionally assayed
(27, 28), but individual TCR clones must still be sequenced.
High-throughput next-generation sequencing has made TCR
sequencing widely available (29, 30), and TCR repertoire
profiles have been described following COVID-19 infection
(31, 32). Antigen-specificity and Class-I/II-specificity are then
derived by computational analysis of TCR repertoire sequences
and in vitro validation (33, 34).

Inflammatory bowel disease (IBD) is characterized by an
aberrant host immune response to commensal gut bacteria,
and is often treated with immune-modifying therapies
including thiopurines, corticosteroids, monoclonal antibodies
targeting tumor necrosis (TNF)-a, integrins, and interleukin
(IL)-12/23, and small-molecule inhibitors of janus kinase
(JAK) (35). While immunocompromised populations are
generally at increased risk for COVID-related complications,
those with IBD have shown COVID complication risks generally
org 2
similar to the non-IBD population irrespective of biologic
therapy or small molecule use (36). Furthermore, those with
IBD have robust cellular responses (37) and very high rates of
post-vaccination anti-spike seroconversion (16), while those
treated with anti-TNF therapies or corticosteroids may have
lower quantitative antibody levels (15). Thus, patients with IBD
provide an ideal opportunity to study differential effects of these
immune-modifying therapies on immune responses following
vaccination against SARS-CoV-2.

In this study, we utilized two large, diverse cohorts of patients
to track the progression of mRNA vaccine response in the T-
cell compartment.
METHODS

Patient Cohort and Sample Collection
We studied IBD (16) and non-IBD HCW subjects (38) (n=521
patients total, Table 1), enrolled in an IRB-approved prospective
registry at Cedars-Sinai between January and June 2021 (9, 10).
For IBD patients, samples were collected longitudinally at the time
of SARS-CoV-2 vaccine dose 1, dose 2 (when available), and 2 and
8 weeks after dose 2 (after dose 1 for vector vaccine participants)
when possible. For HCW subjects, samples were collected at dose
1, and 8 weeks after dose 2. HCW subjects for this study were
chosen from the available HCW registry by matching for the IBD
age distribution. We quantified spike-specific and nucleocapsid
SARS-CoV-2 antibody levels using the SARS-CoV-2 IgG-II assay
(Abbott Labs, Abbott Park, IL). Self-reported COVID-19 were
excluded from analyses except where specifically indicated.

Immunosequencing
Immunosequencing of the CDR3 regions of human TCRb chains
was performed on blood genomic DNA using the immunoSEQ
Assay (Adaptive Biotechnologies, Seattle, WA), which includes
bias-controlled multiplex PCR, high-throughput sequencing,
identification and quantitation of absolute abundance of unique
TCRb CDR3 regions, and quantitation of the corresponding T cell
fractions by template count normalization (33). Attribution of
TCR sequences to SARS-CoV-2 spike or other non-spike SARS-
CoV-2 protein specificities were assigned as described by Alter
et al. and Snyder et al. (32, 39). Briefly, SARS-CoV-2-associated
TCRb sequences were identified using a one-tailed Fisher’s exact
test comparing TCRb presence in SARS-CoV-2 PCR-positive
samples (n=1954) with negative controls (n=3903). Subsets of
these SARS-CoV-2-associated sequences were assigned to spike
and non-spike antigens based on data from multiplexed antigen
stimulation assays (40). A total of 917 TCRs were assigned to the
April 2022 | Volume 13 | Article 880190
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SARS-CoV-2 spike protein and 1564 to non-spike viral proteins.
The breadth metric was calculated as the number of unique
annotated rearrangements among total number of unique
productive rearrangements in the individual sample’s dataset.
The depth metric was calculated by the summation of two
elements multiplied pairwise; (a) the raw frequency of each
rearrangement in the total repertoire in the individual sample’s
dataset, and an estimate of clonal generations of the lineage
represented by each rearrangement. The resultant depth metric
estimates the relative number of clonal expansion generations
across the TCRs, normalized by the total number of TCRs
sequenced in the sample. Hence, the metric can range from
negative to positive values. We infer whether a SARS-CoV-2-
associated sequence is a CD4+ or CD8+ T cell by statistically
associating each sequence to a Class II or Class I HLA. HLA
associations are derived from a set of 657 SARS-CoV-2 positive
individuals who have genotyped HLAs. We built a binary logistic
regression classifier with L1 regularization to determine which
HLA best predicts the observed distribution of a given SARS-CoV-
2-associated sequence across all HLA-typed cases. The L1
regularization strength was tuned to yield a single non-zero
coefficient, giving a single inferred HLA association for each
enhanced sequence. The inferred HLA associations are validated
against the subset of SARS-CoV-2-associated sequence which
overlap with our multiplex antigen stimulation assays.
Frontiers in Immunology | www.frontiersin.org 3
Analysis and Statistics
All data was analyzed using R version 4.1.2. The MHC Class-I/II
residual score was measured by calculating the linear regression
of Class-I and Class-II breadth with no restrictions on the y-
intercept. To calculate the scaled and normalized z-score, the
mean of the residuals was subtracted from each residual and
divided by the standard deviation. The residual and z-scores
describe how far each patient’s response lies from the regression
in an absolute manner, rather than a proportional manner (i.e.
fold change), which limits Class-I/II variation noise from
patients with low breadth and depth metrics. Patients with z-
score >1 or <-1 were denoted as extreme responders and either
Class-I biased or Class-I deficient, respectively.

Statistics were performed using t-tests, generalized linear
models, ANOVA and Tukey’s test, and chi-squared tests as
indicated. Generalized linear models were used unless
otherwise noted in the text. Comparison of TCR breadth and
depth used a Mixed Linear Model across time points and
Generalized Linear Model within time points. Where possible,
inverse normal transformation was performed, and age and sex
were included as covariates. Confidence intervals for binomial
probabilities were computed using exact methods. Other
analyses are specified in the individual figures. Analyses were
restricted to individuals with mRNA vaccines and no prior
COVID-19 experience unless stated otherwise. Figure symbols
and p-values serve as a visual guide, exact p-values are described
in the text.
RESULTS

Clonal Breadth and Depth of IBD and
HCW Participants
The demographics of the study cohorts are shown in Table 1.
Both IBD and HCW cohorts were disproportionately female
(IBD, 56%; HCW, 71%). Participant ages ranged from 19 to 83
years. Participants were grouped by decades of age into 6 groups,
with the largest group being 30-39 years (n=158). By study
design, the age distributions of the HCW subjects were
matched to the IBD subjects. The IBD and HCW groups were
similar in Hispanic/Latino ethnicity (~5-6%), but differed by race
with a higher proportion of Asian subjects among HCWs
(Table 1). All HCWs received BNT162b2 except for 1 subject
who received mRNA-1273, while those with IBD received all 3
vaccines (n=154 BNT162b2, n=128 mRNA-1273, n=15
Ad26.COV2.S). IBD patients had either Crohn’s disease (CD,
211) or Ulcerative Colitis/Indeterminant Colitis (UC/IC, 93).

The time course of the T-cell response is shown in
Figures 1A, B for IBD and HCW. These trends were observed
in IBD patients and the HCW control population (after
adjustment for age, sex, and IBD type). Both TCR breadth and
depth increased significantly over time after vaccination
compared to pre-vaccination (Figures 1A, B). For the IBD
cohort, the fold-responses for clonal depth at dose 2, 2 weeks
post-dose2, and 8 weeks post-dose 2, compared to dose 1, were
1.8, 2.7, and 1.9 fold (p<1E-10 each). Similarly, clonal breadth
TABLE 1 | Study Cohort.

IBD HCW

n 297 224
race, n(%)
Asian 7(2.36) 77(34.38)
Black or African American 4(1.35) 0
Multiple 4(1.35) 0
Other 15(5.05) 0
Prefer not to answer 3(1.01) 0
White 264(88.89) 147(65.63)

Hispanic, n(%) 15(5.05) 14(6.25)

Gender, female n(%) 166(55.89) 159(70.98)

Vaccine type, n(%)
BNT162b2 154(51.85) 223(99.55)
Ad26.COV2.S 15(5.05) –

mRNA-1273 128(43.10) 1(0.45)

Prior COVID-19 History, n(%) 15(5.05) 12(4.46)

Treatments, n(%)
No Immune suppression 49 (16.50) –

Anti-TNF 103(34.68) –

Other biologics (anti-IL23, anti-integrin) 125(42.09) –

Immunomodulators 49(16.50) –

Age group, n(%)
<30 22(7.41) 20(8.93)
30-40 86(28.96) 72(32.14)
40-50 67(22.56) 53(23.66)
50-60 52(17.15) 27(12.05)
60-70 41(13.8) 36(16.07)
70+ 29(9.76) 16(7.14)
April 2022 | Volume 13 | Article 880190
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increased over time relative to baseline (p<1E-10). In the HCW
cohort, the response was also elevated at the one evaluated time
post-vaccine (8 weeks post-dose 2, p<1E-10). There was no
significant difference by race or between IBD types and HCW
cohorts for either depth or breadth metrics (Figures S1A, B).

Age was a significant factor in the T-cell response
(Figures 1C, D), but this effect was restricted to clonal depth
(p=5.8E-9), not clonal breadth (p=0.63). The impact of age on
clonal depth was not significantly different for IBD and HCW
cohorts (ANOVA, p=0.07). Sex was not significantly associated
with clonal breadth and depth overall (Figures 1E, F). However,
we observed variations over time that may suggest that sex affects
the dynamics of the T-cell clonal response. A sex difference was
observed at Dose 2, with a higher depth in female IBD patients
versus male patients, but this was conflated with a disparity in
age distribution and hence not significant (p=0.13, IBD
only, Figures 1F).

We also assessed the impact of vaccine type on the T-cell
response (Figures 1G, H). Among the relatively small subgroup
(N=15) receiving vector vaccine (Ad26.COV2.S), we observed a
Frontiers in Immunology | www.frontiersin.org 4
significantly lower clonal breadth (p=0.0034) and depth
(p=0.015), at 2 weeks and 8 weeks post vaccination compared
to mRNA vaccines. Responses to the two mRNA vaccines were
generally comparable, but patients vaccinated with mRNA-1273
generated a higher clonal breadth (p=0.0044) but not depth
response (p=0.53) in patients at 8 weeks.

Our data included a small number of subjects with self-
reported prior COVID-19 infection (n=27). Despite a small
sample size, this group was associated with significantly higher
breadth and depth at dose 1, dose 2, and 8 weeks post vaccination
(p=0.036E-7, Figures 1I, J). In accordance with the TCR
response after COVID-19 infection, we also observed an
elevated response non-spike, SARS-CoV2-specific T breadth
and depth in subjects with prior infection. These cells are not
stimulated by the vaccine and therefore unchanged following
vaccination in subjects with no prior COVID-19 infection
(p<1E-10, Figure S1C). Among the top 10% of non-spike
breadth values, 27% of samples reported prior COVID-19
infection (26/95) compared to 2.1% (19/875) prior infections
in the bottom 90% of non-spike breadth values. Similarly, of the
A B C

I J

D

E F G H

FIGURE 1 | Breadth and depth metrics after COVID-19 vaccination. (A, B) Breadth and depth increases over time, peaking at 2 weeks after vaccine dose 2 in IBD.
This increase was observed for both IBD and HCW cohorts. (C, D) Depth, but not breadth, was dependent on age. Younger patients have greater depth and more
clonal expansion, with a similar number of unique clones detected. (E, F) Female patients only exhibited increased depth at dose 2 but were also younger. (G, H)
Ad26.COV2.S vaccination resulted in lower depth. mRNA-1273 vaccination resulted in slightly higher breadth only at 8 weeks after dose 2. (I, J) Prior covid infection
resulted in higher breadth and depth, except at 2 weeks after vaccination (*p<0.05). N.S., not-significant
April 2022 | Volume 13 | Article 880190
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top 10% of non-spike depth values, 20% (19/97) came from
reported prior infection samples compared to 3% of the bottom
90% of non-spike depth values.

Interplay and Dynamics Between
MHC Class-I- and Class-II-Specific
TCR Response
We further analyzed the change in T-cell response by stratifying
patients by the MHC Class-I/Class-II MHC-specific response. As
stand-alone metrics, the Class-I- and Class-II-specific clonal
breadth and depth responses display the same trends as the
overall breadth and depth (Figures 2A, C). There was a
consistent proportion of Class-I- to Class-II-specific clones for
both breadth and depth (about 85% Class-II).

We tested whether there was any disproportionate
distribution of Class-I/Class-II variation (from Class-I-biased
to Class-I-deficient/relatively Class-II-biased TCR responses)
that might be dependent on clinical factors. To measure the
Class-I/II variation, we performed a linear regression between
Class-I and Class-II breadth and depth and measured the
residual (Figures 2B, D) and z-score of Class-I/II bias for each
patient’s SARS-CoV-2-specific response (Figures S2A, B).

Lower z-scores indicate less Class-I-specific T-cell activity.
We observed a small but significant decrease in z-score for
breadth and depth with increasing age group (Figures S2C-F,
ANOVA, breadth p=1.7E-8, depth p=1.8E-7). Z-score and thus
Class-I-specific T cells increased in female participants (breadth
p=0.003, depth p=0.006, Figure 2E). No significant changes were
associated with the vaccination time (breadth p=0.44, depth
p=0.24) or IBD status (breadth p=0.75, depth p=0.68). We also
observed a divergence in breadth and depth z-scores over time by
vaccine administered, with those that received mRNA-1273
having significantly lower z-scores (8 weeks breadth p=0.02,
depth p=0.0035, Figure 2F).

Some immunomodulatory treatments significantly affected
the Class-I/II balance. Patients receiving anti-IL23 (n=86,
Figure 2G) had lower breadth z-scores (p=0.039) but not
depth z-scores (p=0.11). No significant changes were observed
in breadth or depth z-scores for patients receiving anti-integrins
(n=40, breadth p=0.33, depth p=0.058) or immunomodulators
(n=49, breadth=0.86, depth=0.26). Different types of anti-TNF
treatment resulted in significant differences (n=103, infliximab
n=63 and adalimumab n=37). After correcting for age, sex, and
time after vaccination, patients receiving adalimumab had
significantly higher depth Z-scores (p=0.012, Figure 2H) but
not breadth Z-scores (p=0.091), while those receiving infliximab
(breadth p=0.83, depth p=0.44) did not. Finally, patients
reporting prior COVID-19 infections also had significantly
higher z-scores and Class-I bias (p<0.05), especially at Dose 1
and at 8 weeks after vaccination (Figure 2I).

Patterns in MHC Class-I and Class-II
Extreme Responders
For ~85% of all patients measured, a typical balance between
measured Class-I and Class-II breadth and depth was
maintained with Class-I:Class-II at ~1:6 ratio, indicated by
Frontiers in Immunology | www.frontiersin.org 5
Class-I/II z-scores between -1 and 1. Other extreme responder
patients were isolated (Figures 3A, B) and associated with
clinical features. The most significant associations were
observed at 8 weeks after vaccination, with both age and
vaccine type emerging (chi-squared test, breadth age p=0.032
and vaccine type p=0.038, depth age p=0.0095 and vaccine type
p=0.018). Patients with breadth or depth z-scores greater than 1
(Class-I-biased) were significantly younger, and vice versa for z-
scores less than -1 (Class-I-deficient). Of the three vaccines
studied, patients receiving mRNA-1273 resulted in lower z-
score extremes, while those receiving Ad26.COV2.S resulted in
higher z-score extremes in the limited sample size.

We measured antibody abundance in patients to determine if
TCR metrics were associated with antibody production
(Figure 3C). As previously reported (16, 38, 41, 42), IgG-spike
antibody levels were highly dependent on time after vaccination,
prior SARS-CoV-2 infection, and vaccine type, and slightly
dependent on IBD status (Figure 3D). No significant
association was found based on age or gender (p=0.91, p=0.35,
respectively). Antibody levels were highly correlated with
standard TCR metrics of breadth and depth. We observed
increased antibody levels with increased breadth z-score,
independent of the overall clonal breadth (p=0.028).
DISCUSSION

The development of vaccines in response to the COVID-19
pandemic has been a successful public health initiative that has
also revealed insights on human immunobiology. Among the
present challenges are breakthrough infections and reduction in
disease severity for emerging viral variants. The corresponding
roles of antibody and cellular immunity are dependent on Class
II and Class I T-cell vaccine responses, which are understudied
compared to the vaccine-induced antibody response and
sensitive to immunologic disease and immunotherapy. In this
study, we assessed the antibody and T-cell vaccine responses, the
latter distinguished by molecular TCR-based assessment of T-
cell clonal dynamics, in a demographically diverse cohort of
control and IBD patients. Our findings reveal preservation of the
T-cell vaccine response across demographics and in IBD patients
under a range of immune-targeted therapies. However, we
observed impacts of subject age and vaccine type, affirming
and expanding on recent reports of the T-cell response to
vaccination (32, 39). This study adds to the growing body of
evidence showing that immunocompromised status does not
necessarily prevent a vaccination response (43, 44).

Compared to antibody serology, which in studies by our
group and others is relatively constant in the initial post-
vaccine period (16, 38), TCR metrics begin to diverge
dependent on clinical features. Increased depth but not breadth
in younger patients suggests that the elevated response of
younger versus older patients was not via the recruitment of
more novel antigen-specific clones, but instead by elevated burst
size of the available T-cell clonal population (45). Higher depth
was observed in patients vaccinated with mRNA-1273 at 8
April 2022 | Volume 13 | Article 880190
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weeks, suggesting more persistent retention of unique T-cell
clones. Since vaccination elicits spike protein-specific TCR
sequences, non-spike protein-specific sequences detect natural
infection events. In patients with high (>90th percentile) non-
spike breadth or depth values, we observed a nearly 10-fold
higher rate of prior COVID-19 infections (2% to 20%), but a
majority of these patients still did not report a prior COVID-19
infection. These non-spike specific clones detected at high levels
Frontiers in Immunology | www.frontiersin.org 6
could be due to prior exposure to related viruses (46, 47), or a
prior asymptomatic, unreported infection.

By measuring Class-I/II-specific TCR sequences, we explored
distinct mechanisms of T-cell-mediated immunity. We initially
hypothesized that a Class-I-biased response may be linked with
relatively lower antibody levels due to proportionally less helper
T-cell activation via Class-II-specific T cells. Perhaps
surprisingly, a higher z-score breadth, which indicates Class-I-
A B

DC

GE F

H I

FIGURE 2 | Class-I and Class-II TCR metrics. (A, B) Class-I-specific breadth was consistently lower than Class-II-specific breadth. The residual metric was used to
describe how much Class-I-specific breadth was observed relative to expected. (C, D) The Class-I/II residual was replicated for depth. (E) Z-scores for female
patients were higher. (F) Z-scores for mRNA-1273 patients were significantly lower. Ad26.COV2.S differences were not statistically significant with the small sample
size, but trended higher. (G, H) Anti-TNF treatment by adalimumab but not infliximab increased depth z-scores, and anti-IL23 decreased breadth z-scores. (I) Prior
covid infection was significantly associated with higher z-scores (*p<0.05).
April 2022 | Volume 13 | Article 880190
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specific T-cell bias, was instead associated with increased
antibody response. This phenotype most likely reflects a
stronger comprehensive response, including both Class-I and
Class-II-specific T cells. Indeed, no patients had a truly absent
Class-II response while also having a Class-I response. Patients
with prior COVID-19 infections also had a significant Class-I-
biased response before vaccination, suggesting that Class-I-
specific TCRs were the most significant holdovers of the
immune response to natural infection. This bias disappeared at
early stages of vaccination, but re-emerged after 8 weeks,
suggesting possible differences in longevity to natural
immunity and vaccine-induced responses.

These differences were more pronounced when considering
extreme responders by Class-I/II variation. The vaccine type was
a significant factor in the extreme response phenotype, including
distinctions between the two mRNA vaccines analyzed in this
study (48). No patients receiving Ad26.COV2.S displayed Class-
I-deficient responses, and those receiving mRNA-1273 reporting
~3x the rate of Class-I-deficient responses as those receiving
BNT162b2 (11% vs 4%). Due to the very low occurrence of
breakthrough infection during the period of this study, we were
Frontiers in Immunology | www.frontiersin.org 7
unable to assess whether these extreme Class-I/II responses
related to efficacy of protection.

The interpretation of this data has several caveats. First, a
direct comparison of the absolute strength of the vaccine-
induced response vs. the prior infection response was not
possible, as the Adaptive Biotechnologies reference dataset was
generated using natural infections, and vaccines might stimulate
distinct TCRs (28). Moreover, matching of HLA-alleles will also
affect the accuracy of TCR-based measurements, especially in
minority populations. However, our analysis was illuminating in
demonstrating that both vaccine-induced and natural infection-
induced T cell clones were detectable in our study population.
Second, these measurements were taken using the peripheral
blood, which may not reflect the entire repertoire available,
especially among Class-II-specific T cells participating in B-cell
activity and maturation in lymph node compartments (49).
Third, the z-score reflects a shift in balance between Class-I/II
response, but this does not appear to preclude a patient with a
Class-I-biased z-score from mounting an effective antibody
response, which is instead correlated to the absolute magnitude
of clonal breadth and depth. Fourth, individual TCR clones
A

B

C

D

FIGURE 3 | Class-I/II patient extremes. (A) Age groups of patients with breadth z-scores <-1, >1, and between -1 and 1 are shown with the number of samples in
each group. Class-I-biased patients were more likely to be younger, while Class-I-deficient patients were more likely to be older. Ad26.COV2.S vaccines resulted in a
higher proportion of Class-I-biased patients. (B) Similar trends were observed using depth z-scores. (C) Spike-specific antibody serology was correlated with both
breadth and depth. (D) Prior covid infection was strongly associated with antibody counts. mRNA-1273 vaccination resulted in higher antibody counts and
Ad26.COV2.S vaccination resulted in lower counts (*p<0.05).
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contributing to SARS-CoV-2-specific breadth and depth were
not characterized for the magnitude of the cellular response by
assays such as ELISpot or cytokine release. Finally, no COVID
infections, symptomatic or asymptomatic, in our study subjects
were reported during the window of observation, so it was not
possible to assess the influence of TCR response or Class-I/II
balance on disease prevention or severity.

TCR sequence-based analysis of antigen-specific responses
and T-cell clonal dynamics quantifies an important element of
adaptive immunity, but poses a formidable analytic challenge.
This challenge can be addressed by the development of validated,
large-scale clonal datasets of antigen-specific T cell responses,
such as the SARS-CoV-2 dataset and associated metrics used in
this study. These present findings uncover factors affecting the T-
cell response that may guide SARS-CoV-2 vaccination decisions
for IBD and =control patients.
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