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The tumor microenvironment (TME) is known to have a strong influence on tumorigenesis,
with various components being involved in tumor suppression and tumor growth. A
protumorigenic TME is characterized by an increased infiltration of tumor associated
macrophages (TAMs), where their presence is strongly associated with tumor
progression, therapy resistance, and poor survival rates. This association between the
increased TAMs and poor therapeutic outcomes are stemming an increasing interest in
investigating TAMs as a potential therapeutic target in cancer treatment. Prominent
mechanisms in targeting TAMs include: blocking recruitment, stimulating repolarization,
and depletion methods. For enhancing targeting specificity multiple nanomaterials are
currently being explored for the precise delivery of chemotherapeutic cargo, including the
conjugation with TAM-targeting peptides. In this paper, we provide a focused literature
review of macrophage biology in relation to their role in tumorigenesis. First, we discuss
the origin, recruitment mechanisms, and phenotypic diversity of TAMs based on recent
investigations in the literature. Then the paper provides a detailed review on the current
methods of targeting TAMs, including the use of nanomaterials as novel
cancer therapeutics.

Keywords: tumor associated macrophages (TAMS), solid tumor, peptide, nanotargeting, nanotherapy,
cancers, immunotherapies
INTRODUCTION

The tumor microenvironment (TME) that surrounds cancer cells, plays an important role in
carcinogenesis. It is involved in multiple processes including tumor growth, metastasis, and the
development of treatment resistance (1). The TME is known to be unique to each tumor type and
changes throughout the different stages of tumor development, thus making TME biology a
complex field of research. The TME consists of various components, such as tumor stromal cells
(cancer associated fibroblasts), blood and lymphatic vasculature, immune cells (macrophages,
tumor infiltrating lymphocytes, dendritic cells, etc), and non-cellular components such as
extracellular matrix and signalling molecules. The continual interaction of these components
along with malignant cells provides a dynamic network for either supporting or suppressing
tumorigenesis (2, 3).
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Tumor evasion of the immune system is a known “hallmark
of cancer” where clinical outcomes have been consistently linked
to immune cell populations present within the TME (2). An
antitumorigenic TME is characterized by the presence of
multiple types of immune cells including T helper cells of type
1 (Th1), CD8+ cytotoxic T lymphocytes (CTL), M1
macrophages, N1 neutrophils, natural killer cells (NK cells)
and dendritic cells (DC). This coincides with proinflammatory
bioactive molecules such as; antitumorigenic cytokines
[interleukin 2 (IL-2), IL-12, interferon gamma (IFNg)], growth
factors [granulocyte-macrophage colony-stimulating factor
(GM-CSF) and chemokines (CXC motive chemokine ligand 9
(CXCL9), CXCL10]. Conversely, the predominant immune cell
populations in a protumorigenic TME include: M2-like TAMs, T
helper 2 cells (Th2), myeloid-derived suppressor cells (MDSC),
N2 neutrophils, tolerogenic dendritic cells (tDC), and T
regulatory cells (Tregs). While the protumorigenic bioactive
molecules include; protumorigenic cytokines (IL-4, IL-6, IL-10,
transforming growth factor beta (TGF-b), IFNg), angiogenic
factors (vascular endothelial growth factor (VEGF), growth
factors [GM-CSF, epidermal growth factor (EGF), hepatocyte
growth factor (HGF), fibroblast growth factor (FGF)] and
chemokines [C–C motif chemokine ligand 2 (CCL2)] (2, 4)
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(Figure 1). The complex structure of the TME means that the
presence of certain cell populations and/or biological molecules
are not always indicative of tumor progression or suppression
(5–11). For example, IFNg is predominantly known for its
antitumor activity, however it has been shown to have a
protumorigenic property by inducing the upregulation of PD-
L1 in tumors (12–14). Another example is GM-CSF which is
recognized for its ability to induce antitumor immune responses
as well as modulate protumorigenic properties like tumor growth
and spread (15).

With the increased interest in the protumorigenic immune
TME, more opportunities arise in discovering novel therapeutic
targets and in developing potent anticancer therapies. For
instance, the recent introduction of immune checkpoint
inhibitors (ICI) improved treatment outcomes for many
cancer patients and highlighted the importance of the
research in this field (16, 17). Unfortunately, many cancers
become or are non-responsive to ICI and investigations are
ongoing to understand underlying cause of resistance (18).
Currently, a number of clinical trials are investigating the
therapeutic potential of combining ICI with targeting TAMs
in order to counteract a protumorigenic TME and overcome
ICI resistance (19).
FIGURE 1 | Antitumorigenic and protumorigenic TME components. Antitumorigenic and protumorigenic TME have distinct immunologic profiles. Left. An
antitumorigenic TME: M1 macrophages, Th1 cells, DC, CD8+ cells, NK cells and bioactive molecules (antitumorigenic cytokines (IL-2, IL-12, IFNg), growth factor
(GM-CSF), chemokines (CXCL9, CXCL10). Right. A protumorigenic TME: M2 macrophages, tolerogenic DCs, MDSCs, Th2 cells, Treg cells and bioactive molecules
(protumorigenic cytokines (IL-4, IL-6, IL-10, TGF-b, IFNg), angiogenic factors (VEGF), growth factors (GM-CSF, EGF, HGF, FGF) and chemokines (CCL2)). Created
with BioRender.com.
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Multiple studies describe the active role of TAMs in
tumorigenesis and demonstrate that targeting protumorigenic
TAMs is an effective strategy to attenuate tumor progression
(20–23). The aim of this paper is to provide a current
understanding of macrophage biology in relation to their role
in tumor progression, and therapeutic approaches to target
TAMs, including a specific targeting with nanomaterials and
TAM targeting peptides.
MACROPHAGE HETEROGENEITY,
PLASTICITY, AND NOMENCLATURE

Macrophages are a heterogeneous and complex population of
immune cells having roles in host defense against pathogens,
maintenance of tissue homeostasis and tissue architecture (24).
Macrophages are highly plastic cells and in response to
microenvironmental signals such as chemokines and cytokines
differentiate/polarize into distinct phenotypes with specific
functionality. Multiple populations of macrophages are known
to be present within the same microenvironment and each
phenotype has a distinctive combination of expressing
receptors, secreting chemokines and cytokines (25). A current
classification of macrophages is based on their function and
response to polarizing agent. Traditionally, unpolarized
macrophages are called M0 (naïve) and all other macrophage
phenotypes have been divided between M1 (classical) and M2
(non-classical) polarization spectra. This classification also
includes M2 subtypes M2a, M2b, M2c, M2d (26) (Table 1).
Since the same/similar phenotypes can be generated by several
polarizing agents in vitro, Murray et al. suggested to expand
macrophage classification by including the activating molecules
in macrophage naming. According to this nomenclature, M1
macrophages are subdivided into M(LPS), M(IFNg) or M
(IFNg+LPS), M2a become M(IL-4), M(IL-13) or M(IL-4/IL-
13), M2b – M(IC+LPS), M2c – M(IL-10) etc (38). Mosser
Frontiers in Oncology | www.frontiersin.org 3
et al. have also proposed to categorize macrophages
accordingly to their in vivo functions, such as: (i) host defense,
performed by classically activated macrophages induced by IFNg,
LPS, and TNF, (ii) wound healing, performed by IL-4 and IL-13
activated macrophages, and (iii) immune regulation, performed
by regulatory macrophages induced by glucocorticoids, TGF-b,
IC+LPS, IL-10, apoptotic cells, prostaglandins, adenosine and
some other stimulants (39). Though the M1-M2 classification
system is used extensively, its appropriateness and in vivo
applicability are debated, as there are macrophage subsets that
express an intermediate phenotype and have markers present
from both M1 and M2 polarization states (24). Additionally,
there are macrophage phenotypes with novel characteristics (40,
41). Current theorems suggest that the development of an
immunologically relevant macrophage classification also
depends on an understanding of the macrophage ’s
surrounding microenvironment (24, 38, 40). Indeed, with
increased investigations into macrophage polarizing agents,
more novel macrophage phenotypes are being discovered. For
example, two recently identified macrophages, M4 and M17, are
defined by their polarizing ligands chemokine (C-X-C) ligand 4
(CXCL4) (40) and IL-17 (42), respectively (Table 1). In addition,
novel macrophage phenotypes have been discovered by a
transcriptome analysis of human macrophages polarized with
28 different stimuli. Interestingly, some of these transcriptomes
were matched to the transcriptomes of alveolar macrophages
obtained from smokers and patients with chronic obstructive
pulmonary disease (COPD) (41).

Overall, traditionally M1 and M2 polarization states are used
to classify macrophages. However, with advancements in
medical research it has become evident that in vivo
macrophage diversity is more complex. With the increased
understanding of macrophage polarizing conditions, more
novel macrophage phenotypes are being discovered that not
only demonstrate macrophage heterogeneity and plasticity but
are also more suitable in vitro models.
TABLE 1 | In vitro macrophage phenotypes and their role in cancer.

Phenotype Activators Phenotypic Markers/Secreted molecules Association with cancer

M1
(classical)

IFNg/Lps
TNF

CD86, iNOS, CD80, CD40, CD69, MHCII,
CD38, TLR2, TLR4;
IL-12, IL-23, IL-6;

Improved patient survival in NSCLC (27) and ovarian cancer (28).

M2a
(M2,
alternative)

IL-4/IL-13 CD206, CD163, MHCII, Erg2;
TGF‐b, IL-10, IL-1RA;
In mouse only: Arg-1, Ym1/2, Fizz1(RELM- a);

Lung cancer progression (29).
Stimulated invasion and migration of breast cancer cells (30).

M2b
(regulatory)

Immune
complexes/LPS,
IL-1R

CD86, CD163, MHCII, iNOS;
LIGHT (TNFSF14), CCL1, IL-10, IL-1, IL-6,
TNF- a;

Progression of HCC (31). Bevacizumab-resistant triple-negative breast
cancer (32).

M2c
(regulatory)

IL-10,
Glucocorticoids,
TGF- b

CD163, TLR1, TLR8, CCR2, SR-A (CD204);
IL-10, TGF- b;

Progression of lung cancer (29).
Advanced breast cancer (33).

M2d
(angiogenic,
TAMs)

Adenosine/Lps,
IL-6, LIF

iNOS, IL-10, IL-12, IL-6, VEGF; Tumor angiogenesis (34)
Progression of gastric cancer (35) and HCC (36). Radiation-induced macrophage
infiltration in NSCLC (37).

M4 CXCL4 IL-6, TNF, MMP-7, MMP-12; Not reported
M17 IL-17 TLR2, TLR4;

TNF- a;
Not reported
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TAMs Origin and Recruitment
Macrophages have two distinct developmental pathways. Briefly,
tissue-resident macrophages are developed from embryonic
precursors (fetal yolk sack or fetal liver progenitors) and
monocyte-derived macrophages are developed from bone-
marrow haemopoietic cell progenitors (43). Tissue-resident
macrophages are widely distributed in the body and,
depending on their location, are called osteoclasts in bone,
alveolar macrophages in lungs, microglial cells in central
nervous system and Kupffer cells in liver. Monocyte-derived
macrophages serve as a reservoir for macrophage replenishment
and are recruited in pathology (25). Under physiological
conditions, tissue resident macrophages and monocyte-derived
macrophages have a distinct tissue distribution: (i) both subsets
are present in liver, pancreas, lung, heart, kidney and spleen; (ii)
only tissue-resident macrophages (yolk sac derived) are found in
brain; (iii) monocyte-derived macrophages predominate in
intestines and dermis (44, 45).

Compared to tissue homeostasis, cancer is characterized by
increased monocyte recruitment and/or expansion of tissue-
Frontiers in Oncology | www.frontiersin.org 4
resident macrophages with both populations involved in
tumorigenesis (25) (Figure 2). For example, in a murine model
of pancreatic ductal adenocarcinoma (PDAC), the expansion of
the tissue resident-macrophages population (>29 fold) was
observed (44). Both, tissue resident interstitial macrophages
and recruited monocyte-derived macrophages were found in
murine TC-1 lung carcinoma (46). Chen et al. reported that
recruited monocyte-derived macrophages accounted for 85% of
the total TAMs in glioblastoma (47). Recruitment of monocyte-
derived macrophages to liver was also seen in hepatocellular
carcinoma (48).

Various pathways are involved in monocyte recruitment to
the tumor including monocyte recruiting cytokines, chemokines,
and growth factors. The most prominent recruitment ligand/
receptors are M-CSF/CSF-1R, CCL2/CCR2, CX3CL1/CX3CR1,
CCL3/CCR1, CCL3/CCR5, CCL5/CCR5, and VEGF-A/VEGFR1
ligand-receptor interactions (49).

M-CSF (also called CSF-1) is an important molecule involved
in recruitment and M2 polarization of monocytes, and in self-
renewal of tissue-resident macrophages (50, 51). High levels of
FIGURE 2 | Macrophage populations in homeostasis and cancer. In health, macrophages present within tissues are tissue-resident macrophages and/or monocyte-
derived macrophages. These macrophages maintain tissue homeostasis by performing numerous functions like immunosurveillance, clearance of senescent and
apoptotic cells, and maintenance of tissue architecture. The TME of cancer is highly infiltrated with macrophages due to the increase in monocyte recruitment from
the blood stream and/or self-proliferation of tissue-resident macrophages. The TME derived monocyte recruiting molecules (M-CSF, CCL2, CX3CL1, CCL3, CCL5,
and VEGF-A) stimulate monocyte extravasation into the TME, where monocytes are transformed to monocyte-derived TAMs. Created with BioRender.com.
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expression of M-CSF was found in advanced upper tract
urothelial carcinoma (52), breast cancer (53), esophagus SCC
(54), gastric cancer (55).

Colony-stimulating factor 1 receptor (CSF-1R) has two
ligands, macrophage colony-stimulating factor (M-CSF) and
IL-34, and both are involved in various protumorigenic
processes. IL-34 has two effects on tumor cells and the TME,
being protumorigenic in lung cancer and ovarian cancer, but
having an antitumorigenic role in luminal and Her2+ breast
tumors. The protumorigenic effects of IL-34 on TAMs include
monocyte recruitment, polarization, and survival in the
TME (56).

The chemokine CCL2 is a strong chemoattractant for CCR2+
monocytes (57) and its overexpression was reported in
progressing breast cancer (58), prostate cancer (59), oral
squamous cell carcinoma (OSCC) (60), liver cancer (61), and
colorectal cancer (CRC) (62). A number of studies have shown a
correlation between CCL2 expression and TAM infiltration in
clear cell renal cell carcinoma (63) and esophageal cancer (64).
CCL8, another ligand of CCR2, was found to be highly
overexpressed in human cervical cancer and involved in TAMs
recruitment to hypoxic areas (65).

Another chemokine involved in monocyte recruitment is
CCL3. Interestingly, CCL3 has diverse functions in the TME as
it is secreted by a broad range of immune/non-immune cells and,
in addition, CCL3 binds to various cells expressing CCR1, CCR5,
and CCR3 (5, 66). Increased levels of CCL3 have been reported
in colorectal (67), esophageal (68), and endometrial cancers (5).
CCL3 secretion by TAMs was found to be induced by CCL2/
CCR2 and IL-33, with these TAMs reported to mediate
metastatic spread in different tumor models (66, 68, 69). For
example, the CCL3/CCR1 axis was found to mediate
macrophage recruitment during the formation of early
metastatic niches in a mouse E0771-LG breast cancer model
(66, 69), and CCL3/CCR5 mediated macrophage recruitment to
the metastatic site in murine Renca renal cell carcinoma model
(70). In addition, CCL3 derived from TAMs was reported to
promote esophageal cancer cells (TE-8 and TE-9) migration and
invasion via interaction with their CCR5 receptor (68).

CCL5 is also a known potent monocyte chemoattractant.
Similar to CCL3, CCL5 is expressed by a variety of cell types, and
has a number of binding receptors including CCR1, CCR3,
CCR5, G-protein coupled receptor 75 (GPR75), and CD44 (5,
71). High expression of CCL5 has been correlated with poor
prognosis in many cancers (5), including glioblastoma (71) and
breast cancer (72). Indeed, CCL5 was shown to recruit and
mediate M2-like TAM polarization, with this being linked to
glioblastoma progression (71), as well as to recurrence and
metastasis in breast cancer (73, 74). Apart from monocyte
recruitment, CCL5 has a direct effect on tumor cells,
supporting tumor cells migration, invasion, and survival (71,
74). High CCL5 expression was also associated with increased
TILs such as CD8+ T cells, NK cells, and M1 macrophages in
triple negative breast cancer. This study reported that patients
with low CCL5 and TILs had an increased residual tumor
size (75).
Frontiers in Oncology | www.frontiersin.org 5
The CX3CL1/CX3CR1 axis is also an important monocyte
recruitment pathway. In human colon carcinoma, CX3CR1+
TAM infiltration was associated with poor prognosis as these
TAMs were found to be proangiogenic and prometastatic (76).
The CX3CL1/CX3CR1 axis was also involved in macrophage
recruitment in breast cancer (77). In addition, CX3CR1+ and
CCR2+ recruited macrophages were also found to support Lewis
lung carcinoma progression (78). While predominantly
CX3CL1/CX3CR1 signalling is related to tumor progression,
inactivation of the CX3CL1/CX3CR1 axis was shown to
enhance glioblastoma development. In fact, brain tissue
homeostasis is maintained by CX3CR1+ microglia which
interact with CX3CL1+ neurons (79).

TAM recruitment to the hypoxic TME is also mediated by
VEGF-A, endothelin-2, and EMAPII. Once recruited, TAM
migratory receptors become downregulated, which prevents
their further migration. Within a hypoxic TME, TAMs
participate in angiogenesis and tumor spread due to the
upregulation of hypoxia-inducible factor (HIF)-1a and HIF-2a
(80). HIF-1a is known to increase TAMs infiltration and induces
epidermal growth factor (EGF) production in TAMs, which in
turn promotes metastasis (81). Further, both HIF-1a and HIF-
2a upregulate angiogenic molecules VEGF, IL-6, and the
tyrosine-protein kinase receptor (Tie2) receptor in TAMs, thus
promoting tumor angiogenesis (81, 82).

It is clear that tissue-resident-macrophage expansion and new
monocyte recruitment are critical for the development of
multiple solid cancers. Indeed, these studies suggest that the
major monocyte recruiting pathways (M-CSF/CSF-1R, CCL2/
CCR2, CCL3/CCR1, CCL3/CCR5, CCL5/CCR5 and CX3CL1/
CX3CR1) enable tumor survival by supplying the TME with pro-
tumorigenic TAMs. Thus, a suppression of monocyte/
macrophages recruitment is a potential therapeutic strategy to
eliminate or reduce TAMs involvement in tumorigenesis.

Protumorigenic Tumor Associated
Macrophages (TAMs)
Biomolecules derived from the TME and cancer cells have a
direct effect on macrophage polarization. Although at the early
stages of tumor formation macrophages within the TME
predominantly express a proinflammatory M1 phenotype,
tumor progression is associated with increased infiltration of
anti-inflammatory M2 polarized TAMs (83). It is known that the
TAM population within the TME is phenotypically heterogenous
(25, 84) and the overall number of TAMs accumulated within a
tumor is not considered in estimation of clinical prognosis.
However, the ratio of M1/M2 is considered an important
prognostic marker (6–11). A low M1/M2 TAM ratio is
associated with tumor progression and poor prognosis, while a
high M1/M2 ratio tends to correlate with positive outcomes in
ovarian cancer (6), gastric cancer (7), CRC (8), osteosarcoma (9),
lung cancer (10) and OSCC (11). Multiple studies showed that
M2 TAMs have strong roles in promoting of tumor growth (85),
angiogenesis (86, 87), modification of extracellular matrix (88),
inhibition of anti-tumor immunity (25), metastasis (89),
chemoresistance (90) and recurrence (91) (Figure 3).
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TAMs mediated immunosuppression severely disrupt the
effector cell functions required for tumor clearance. Some of
the known strategies by which TAM mediate immune evasion
include: (i) the upregulation of checkpoint inhibitors such as
programmed cell death ligand 1 (PD-L1), PD-L2 and B7
superfamily member 1 (B7-H4) which deactivates effector
CTLs via interaction with their receptor PD-1. Increased
expression of PD-L1 and PD-L2 within the TME has been
associated with poor prognosis in multiple solid cancers (92)
and CTL dysfunction was mediated by B7-H4 expressing TAMs
in ovarian cancer (93); (ii) production of immunosuppressive
cytokines IL-10 and TGF-b that affect multiple immune cells.
Both cytokines are known to induce an anti-inflammatory
phenotype in monocytes and macrophages and inhibit CD4+
and CD8+ T cell proliferation and cytokine production (94, 95).
In addition, TGF-b induces Treg cells and prevents Th1
polarization (95). Interestingly, TAM derived IFNg has been
shown to induce PD-L1 expression in lung cancer and by this
mechanism supported tumor progression (96); and (iii) CTL
exclusion from intra-tumoral environment. The known TAMs
mechanisms are stimulation of tumor stroma fibrosis by granulin
secretion and depletion of nutrients (97). Overall, TAMs are
equipped with multiple mechanisms to generate and support an
immunosuppressive TME.
Frontiers in Oncology | www.frontiersin.org 6
TAMs are known to be strongly involved in tumor
angiogenesis and it has been reported that the hypoxic
environment of the TME aids this TAM function. Angiogenic
TAMs are typically located in hypoxic avascular tumor areas (98)
with recruitment and maintenance of angiogenic function
mediated by CXCL12-CXCR4, angiopoietin-2 (Ang2)-Tie2,
and VEGF-VEGFR pathways (87). Under hypoxic conditions
TAMs are known to upregulate HIF-1a/2a (80) which are
inducers for angiogenic molecules like VEGF, FGF2, CXCL8,
IL-8, and the Tie2 receptor (80–82).

Some TAM phenotypes have a distinct role in tumor
metastasis. For example, CXCR4+ TAMs are involved in
metastatic spread via promotion of epithelial-to-mesenchymal
transition (EMT) and cancer stem cells development in OSCC
(99), luminal B breast cancer (100) colorectal cancer (101), non-
small cell lung cancer (NSCLC) (102), hepatobiliary cancers
(103). These TAMs are recruited to the tumor site by stromal
cell derived factor 1 (CXCL12), a chemokine produced within
the TME (104). Metastasis was also supported by CCL18
secreting TAMs in pancreatic ductal adenocarcinoma (PDAC)
(105), head and neck squamous cell carcinoma (HNSCC) (106),
osteosarcoma (107), gallbladder cancer (108), hepatocellular
carcinoma (HCC) (109), NSCLC (110), gastric cancer (111).
CCL18 is a chemokine involved in immune tolerance by the
FIGURE 3 | TAMs role in supporting tumor growth. TAMs mediate immunosuppression by recruiting Treg cell and inhibiting CD8+ T cells. In addition, TAMs
participate in metastatic spread, angiogenesis, and drug resistance. Created with BioRender.com.
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recruitment and generation of immune cells like tolerogenic
DCs, Th2, M2 macrophages and suppression of effector T
lymphocytes. In addition, exposure of tumor cells to CCL18
promoted EMT cell motility and invasion (112). TAMs are
known to produce proteolytic enzymes like matrix
metalloproteinases (MMP2, MMP9, MMP7), serine proteases,
and factors involved neovasculature formation (VEGF, MMP9)
to enhance metastasis (113). As such, TAM derived MMP9 has
been associated with enhanced invasion and migration in HCC
(114), gastric cancer (115), melanoma (116), colon cancer (117),
and estrogen receptor positive breast cancer (118).

Tumor recurrence has been shown to be associated with
increased TAM infiltration in the TME. For example, increased
CD11b+ myeloid cells infiltration was observed in early
recurrent head and neck cancer (119) and in recurrent
glioblastoma (120). In addition, reduced recurrence-free
survival was associated with increased stromal CD68+ CD163+
TAMs in basal-like breast cancer (121), and with increased
tumor center CD68+ CD163+TAMs in colorectal cancer (122).

TAM mediated chemoresistance is a significant challenge in
tumor treatment as it limits patients’ treatment options and
contributes to tumor recurrence. For example, high infiltration of
CD68+ and CD163+ TAMs were associated with a poor response
to neoadjuvant chemotherapy in oesophageal cancers (123), and
to immunotherapy resistance in bladder cancer (124, 125). Some
of the known mechanisms applied by TAMs to mediate
chemoresistance are the inhibition of tumor cell death (126),
production of cathepsin cysteine proteases (127), and TAMs
mediated upregulation of chemoresistance-associated pathways
in tumor cells (128). Oxaliplatin resistance, measured by the
reduction in tumor cell death and an increase in autophagy, was
observed in SMMC-7721 and Huh-7 human HCC cell lines
cocultured with PMA-treated THP-1 macrophages (126). In
PyMT cells, TAMs derived cathepsin was shown to inhibit
paclitaxel mediated tumor cells death (127). Cisplatin
resistance has been shown to be mediated by TAMs derived
miR-223 exosomes which activated the PTEN-PI3K/AKT
pathway in SKOV3 human epithelial ovarian cancer cells
(128). In addition to chemoresistance, TAMs have been
reported to be involved in radiotherapy resistance via
activation of monocyte recruitment pathways. Increased TAMs
infiltration and a restored protumorigenic TME were observed as
a result of radiotherapy induced activation of CCL2/CCR2 axis in
pancreatic ductal adenocarcinoma (129) and of the CSF-1/CSF-R
axis in glioblastoma (120).

To date there have been several investigations that have
reported on TAM phenotypes present in a specific TME and
this knowledge is proving invaluable for the understanding the
role of TAMs in tumor development and discovery of an effective
treatment (130). For example, in breast cancer the following
macrophage phenotypes and their functions have been
described: (i) M2a TAMs mediated the persistence of the
dormant breast cancer cells (131), (ii) M2a/M2c (CD163+)
TAM infiltration was associated with poor differentiation, fast
proliferation, histological ductal type, and estrogen receptor
negativity in primary breast cancer (132); (iii) CCR6
Frontiers in Oncology | www.frontiersin.org 7
expressing TAMs were involved in the initiation and early
stage tumorigenesis of breast cancer in vivo (133), (iv) high
infiltration of SIGLEC1+ CCL8+ TAMs was shown to be
associated with shorter disease-specific survival in estrogen
receptor positive breast cancer (134), (v) high infiltration of
CCR5-expressing macrophages was found in residual epidermal
growth factor receptor 2 (Her2) positive breast tumors (73).

In a lung cancer (A549) xenograft model M0, M2a and M2c
TAMs were found to promote cancer invasiveness, while M1
macrophages contributed to tumor suppression, reduced
angiogenesis and sensitivity to chemotherapy (29). M2a TAMs
were found to also be involved in A549 tumor cell migration via
direct contact with tumor cells (135).

In HCC, a high infiltration of CD86low/CD206high (defined
as M2) TAMs correlated with increased tumor aggressiveness,
poor overall survival (OS) and increased tumor time to
recurrence (TTR) in a-fetoprotein-negative patients.
Conversely, a high number of CD86high/CD206low (M1
defined) TAMs was associated with favorable OS and TTR
(136). M2c TAMs were seen in early stages of HCC in C57BL/
6 male mice on high fat–high cholesterol–high sugar diet treated
with a hepatocarcinogen (diethyl nitrosamine) (137). M2b
(defined as CD14+CD68+CCL1+IL-12-IL-10+iNOS-)
macrophages were also found as a dominant population in
advanced HCC (31).

Immunohistochemical analysis of OSCC showed significant
TAMs infiltration compared to healthy tissues (138) and the
presence of CD68+CD163+(M2) TAMs or CD206+ (M2-like)
TAMs were associated with poor overall survival (139, 140). In
addition, CD163+ (M2) TAMs were associated with primary
HPV-negative HNSCC (119).

Overall, data accumulated through several different cancer
models suggest that TAMs are a heterogeneous group of cells
with multiple mechanisms involved in supporting of tumor
progression. Studies indicate that increased infiltration of M1
macrophages, that are pro-inflammatory and equipped with
many different cytotoxic molecules important in suppressing
tumorigenesis. Alternatively, the predominance of alternative
macrophage phenotypes, of any M2 subtype, compromises
tumor suppression. Indeed, tumorigenesis is a complicated
process with TME being variable between different tumor types
and/or tumor stages. And that is why studies looking at polarized
macrophage phenotypes report variety of TAMs phenotypes. It is
clear, however, that more investigations are needed to identify
the TAMs phenotypes in specific TME and possible interplay
between these populations for the development of effective
therapeutic strategies targeting TAMs.

TAM Targeting Strategies: Strategies in
Targeting TAM Recruitment
Considering the various roles of TAMs in tumorigenesis,
significant research effort has focused on targeting of
protumorigenic TAMs as potential cancer therapies. Among
the widely applied strategies are suppression of TAM
recruitment, phenotypic reprograming towards anti-
tumorigenic M1, and TAMs depletion (141) (Figure 4).
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The inhibition of monocyte-derived macrophage recruitment
is heralded as a promising strategy to reduce the tumor
associated TAMs population and to boost an anti-tumor
response. The M-CSF/CSF-1R, CCL2/CCR2, CCL5/CCR5, and
CX3CL1/CX3CR1 pathways discussed above are the main targets
that show potential in tumor therapy (142).

Several monoclonal antibodies and small molecule inhibitors
of CSF-1R are under development as a monotherapy or in
combination with other therapeutic agents. The FDA approved
small molecule inhibitor of CSF-1R Pexidartinib (PLX-3397),
used for the treatment of tenosynovial giant cell tumor (143), has
been further investigated in multiple clinical trials for treatment
of other solid tumors. The recent phase Ib clinical trial of PLX-
3397 in combination with paclitaxel (a chemotherapeutic) in
patients with advanced solid tumors reported effective blockage
of CSF-1R measured by the decline in peripheral blood
monocytes and increase of CSF1 levels in plasma. Complete
response and partial response were seen in 3%(n=1) and 13%
(n=5) of patients, respectively. However, PLX-3397 does have
side effects; 70% of patients (n=38) reported Grade 3-4 adverse
effects, which were hematological toxicities (anemia and
neutropenia) and non hematological (hepatotoxicity due to
possible effect on Kupffer cells and hypertension) (144).

Chiauranib (CS2164), another small molecule targeting CSF-
1R and angiogenesis-related kinases (VEGFR2, VEGFR1,
Frontiers in Oncology | www.frontiersin.org 8
VEGFR3, PDGFRa and c-Kit), showed significant antitumor
activity in several human xenograft models (145). Currently
Chiauranib is being investigated in two ongoing clinical trials
on solid tumors (www.clinicaltrials.gov) (ClinicalTrials.gov
Identifiers: NCT04830813, NCT03974243) and one Phase I
completed trial (ClinicalTrials.gov Identifier: NCT02122809)
t h a t h a s c o n fi rm e d i t s s a f e t y a n d f a v o u r a b l e
pharmacokinetics (146).

Several CSF-1R blocking antibodies were also developed and
investigated in clinical trials as an anti-cancer therapy. A CSF-1R
blocking monoclonal antibody RG7155 was shown to reduce
CSF-1R+CD163+ TAMs and peripheral blood CCR2+
monocytes in phase I clinical trial in patients with diffuse-type
giant cell tumor (ClinicalTrials.gov identifier NCT01494688)
(147). Also, safety and pharmacodynamic activity of CSF1R
inhibitor cabiralizumab was reported in phase I clinical trial
testing a combination of CD40 agonist APX005M (sotigalimab)
and cabiralizumab with or without PD-1/PD-L1 inhibitor
nivolumab in PD-1/PD-L1 resistant advanced cancer patients
(ClinicalTrials.gov Identifier: NCT03502330) (148).

CSF-1R blocking agents are also being investigated for
synergistic effects with current cancer therapeutics in
preclinical studies. For instance, an increase in doxorubicin
potency was observed in combination with BLZ945 in mice
ovarian cancer model (149) and PLX3397 in mice castration-
FIGURE 4 | Current strategies in targeting TAMs as a novel cancer therapy. Created with BioRender.com.
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resistant prostate cancer (150). Halbrook et al. also reported that
a combination of gemcitabine and CSF-1R inhibitor AZD7507
showed better treatment outcomes in vivo (151).

The blocking of the CCL2/CCR2 axis is also under
investigation in multiple clinical studies with variable
therapeutic outcomes. For instance, Carlumab (CNTO888), an
IgG1k monoclonal antibody that binds to CCL2 showed low
therapeutic effect with an increase in free CCL2 levels in phase I
trials in patients with solid tumors (152) and in a phase 2 study in
metastatic castration-resistant prostate cancer (153). On the
other hand, targeting the CCR2 receptor was shown to be
more promising, as the combination of a CCR2 inhibitor (PF-
04136309) with FOLFIRINOX (oxaliplatin and irinotecan plus
leucovorin and fluorouracil) improved clinical outcomes in
patients with borderline respectable and locally advanced
pancreatic adenocarcinoma in a phase I clinical trial (Clinical
Trials.gov Identifier: NCT01413022). In the PF-04136309 with
FOLFIRINOX combined treatment group, control of tumor
growth was seen in 32 out of 33 patients with significant
reduction in tumor markers. In addition, there was a decrease
of circulatory CCR2+ monocytes, an increase of bone marrow
CCR2+ monocytes, a reduction of TAMs in tumor tissues and
modulation of the TME (increase in IL-12 and TGF-a, and a
decrease in IL-10, TGF-b, IL-13) (154). In metastatic PDAC, the
combination of PF-04136309 with nab-paclitaxel and
gemcitabine was shown to have an increase pulmonary toxicity
in Phase Ib (Clinical Trials.gov Identifier: NCT02732938) (155).
Though, the CCL2/CCR2 axis is an important target for
exploration, Kitamura et al. showed that blocking CCL2/CCR2
axis downstream molecules could be more efficient. The study
found that CCL2 recruited metastasis-associated macrophages
(MEMs) which accumulated in metastatic sites via activation of
the CCL3/CCR1 axis. The suppression of the CCL3/CCR1 axis
reduced MEMs accumulation with no effect on circulating
monocytes, resident macrophages and CD11b+ lung
macrophages numbers, indicating that targeting the CCL3/
CCR1 axis may have high treatment specificity (69).

Targeting the CCL5/CCR5 axis has been shown to be a potent
strategy to limit TAM recruitment and modulate TAM
phenotype. For example, antitumor responses were observed
after treatment with CCR5 and CCL1 inhibitors such as CCL5
and CCR5 blocking antibodies, and CCR5 antagonists
(Maraviroc, TAK-779, Anibamine, and GSK706769) (156,
157). Blocking the CCR5 receptor with either Maraviroc, CCL5
neutralizing antibody, or CCLR5 blocking antibody was
investigated in human colorectal cancer explant model. This
study found that inhibition of the CCL5/CCR5 axis induced M1-
like TAMs polarization, which mediated antitumor responses.
Further investigation of Maraviroc in a pilot clinical trial
(MARACON) (ClinicalTrials.gov identifier: NCT01736813) in
patients with advanced metastatic colorectal cancer showed
therapeutic efficiency with a tumor control rate of 80% (4 out
of 5 patients had partial response or stable disease) and mild side
effects (158). In a preclinical study, Maraviroc administration
lowered F4/80+ TAM numbers and decreased tumor growth in
metastatic BM1 MDA-MB-231 human triple negative breast
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cancer (74). Among CCR5 blocking antibodies, a humanized
anti-CCR5 Leronlimab in combination with Carboplatin is
currently under investigation in phase 1b/2 clinical trial
ClinicalTrials.gov identifier: NCT03838367) for patients with
CCR5+ metastatic triple negative breast cancer (159).

Another potential target to prevent macrophage recruitment
is to block the CX3CL1/CX3CR1 pathway. Though several
CX3CL1/CX3CR1 blocking agents have been developed (160–
162) and anti-tumor activity was reported for CX3CR1 receptor
agonists JMS-17-2 and KAND567 (162, 163), the effect of
CX3CL1/CX3CR1 pathway inhibition on TAMs has not
been explored.

Overall, targeting TAMs recruitment with small molecules or
antibodies has been shown to be a promising treatment
technique that can be used as a monotherapy or combination
therapy with standard treatment therapeutics. However, given
the need to address the side effects in targeting macrophage
recruitment other strategies for targeting TAMs are
under investigation.
TAM Targeting Strategies: Strategies
to Re-Polarize TAMs Towards an
Anti-Tumorigenic Phenotype
Macrophage plasticity can also be used as an opportunity to treat
cancer by repolarizing TAMs to become anti-tumorigenic. This
strategy has already been shown to be possible as the FDA-
approved cancer chemotherapy paclitaxel and sorafenib can
repolarize TAMs (164, 165).

Preclinical and clinical data indicates that enhancement of
phagocytosis by TAMs promotes tumor cell clearance and
antigen presentation (166). Tumor cells evade macrophage
phagocytosis by expressing CD47 that sends “do not eat me
signal” to phagocytic cells via interaction with macrophage signal
regulatory protein alpha (SIRPa) receptor. CD47 was found to be
present in numerous haematological and solid tumor types and its
expression was associated with reduced survival (167). For that
reason, blocking the CD47-SIRPa axis has been widely investigated
in cancer treatment with the reported treatment effects being
enhancement of tumor cell phagocytosis, TAM repolarization
towards an M1 phenotype, increased DC mediated antigen
presentation to CD4 and CD8 T cells, enhancement of NK-
mediated Antibody Dependent Cellular Cytotoxicity and caspase-
independent tumor cells apoptosis (168). Currently, there are few
anti-CD47 antibody therapeutics, anti-SIRPa antibody therapeutics
or recombinant SIRPa protein in preclinical and clinical studies.
The clinical results of CD47-SIRPa disruption was evaluated in
Phase I trial of Hu5F9-G4 (5F9) (ClinicalTrials.gov identifier:
NCT02216409), a humanized IgG4 anti-CD47 antibody in
patients with advanced solid tumors and lymphomas. Treatment
was well tolerated and antitumor activity was observed in two
patients with clear cell ovarian and fallopian tube carcinomas.
However, a few adverse effects were observed in the initial stages
of treatment, such as transient anemia, observed in 57% of patients
after the initial priming dose. This was an anticipated side effect,
because CD47 is expressed on erythrocytes (RBCs). Stabilization of
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hemoglobin levels was maintained by rapidly released young RBCs
which are resistant to 5F9 due to the lack of CD47 on their surface
(169). Preliminary data of the Phase 1/1b clinical trial (Clinical
Trials.gov Identifier: NCT03512340) reported the safety and
tolerability of SRF231, a fully human IgG4 anti-CD47 antibody,
in patients with advanced solid and hematological tumors.
Unfortunately, complete or partial response from treatment has
not been observed, but, participants had prolonged stable disease
(170). Three more anti-CD47 antibodies, IBI188 (ClinicalTrials.gov
Identifier: NCT03763149 and NCT03717103), ZL1201
(ClinicalTrials.gov Identifier: NCT04257617), TTI-621
(ClinicalTrials.gov Identifier: NCT02663518, NCT02890368) are
in Phase I clinical trials (www.clinicaltrial.gov) with no reported
results as of the time of publishing.

Two other, monoclonal antibodies directed against the CD47
receptor SIRPa (BI 765063 and CC-95251) are both under Phase
I investigations (ClinicalTrials.gov Identifier: NCT03990233,
ClinicalTrials.gov Identifier: NCT03783403 respectively).
Though no clinical data is available regarding targeting SIRPa
with antibodies, a possible neurological side effect could be
anticipated as SIRPa is expressed on neurons (171). The
efficiency of SIRPa fusion proteins is also under investigation
in Phase I clinical trials: TTI-621 (ClinicalTrials.gov Identifier:
NCT02663518) and ALX148 (Clinical Trials.gov Identifier:
NCT03013218) as a monotherapy or in combination with
other treatment agents.

Other methods to enhance TAM antitumor activity are also
under investigation. For example, the effectiveness of antigen
presentation to effector lymphocytes is strongly dependent on
CD40/CD40L binding. CD40 is a receptor present in antigen
presenting cells (APCs) including macrophages and its ligand,
CD40L is expressed on CD4 T cells, B cells and NK cells and
memory CD8 T cells. Stimulation of CD40 receptor on APCs was
shown to enhance antitumor immunity in preclinical and clinical
studies (172–175). Several approaches to activate CD40/CD40L
are under investigation: targeting CD40 by recombinant
agonistic CD40 antibodies or targeting CD40L by using
recombinant CD40L or adenovirus vectors carrying CD40L
gene (172). Among the most studied CD40 agonists are CP-
870,893 and ChiLob7/4. The CD40 agonist CP-870,893, a fully
human monoclonal antibody in combination with gemcitabine,
was shown to be well tolerated and induced the development of
antitumor immunity in patients with advanced pancreatic cancer
(Clinical Trials.gov Identifier: NCT00711191) (173). Antitumor
immunity was also induced when the CD40 agonist CP-870,893
was used in combination with carboplatin and paclitaxel in
advanced melanoma and other solid tumors patients, such as
hormone-independent prostate cancer, renal cell carcinoma and
ovarian cancer patients (174). A phase I clinical trial using the
IgG1 chimeric anti-CD40 antibody ChiLob7/4 found it to be well
tolerated in patients with various tumors and 15/29 patients
showed median 6 months disease stability (ClinicalTrials.gov
Identifier: NCT01561911) (175).

Another promising strategy to modulate protumorigenic
TAMs is to inhibit CSF-1R. Though the CSF-1/CSF-1R
pathway is required for TAM recruitment and survival, the
Frontiers in Oncology | www.frontiersin.org 10
inhibition of CSF-1R by BLZ945 was shown to repolarize
TAMs in a glioblastoma multiforme mouse model. In addition
to the reduction in M2 associated gene expression (Adm, Arg,
Mrc1, F13a1) in TAMs, this study observed multiple therapeutic
effects from BLZ945 treatment, such as reduced tumor
aggressiveness and increased animal survival. The effects on
TAM survival and polarization were found to be mediated by
tumor derived factors, these being IFNg and GM-CSF (176).
TAM repolarization and consequent tumor suppression were
also observed after treatment with another CSF-1R inhibitor,
PLX3397, in a mouse glioblastoma model (177). Interestingly,
both studies reported that treatment with CSF-1R inhibitors did
not reduce TAM numbers in the TME, however, microglia
depletion was seen in the surrounding brain tissues (176, 177).
Antitumor activity and modulation of TAMs phenotype were
observed after PLX3397 administration in a hepatocellular
carcinoma mouse model, where TAM repolarization was
mediated by tumor derived CSF-2 (178). Collectively, these
studies indicate the potential of CSF-1R targeting to block M2-
like TAM polarization, however, off-target effect such as the
suppression of macrophages in healthy tissues may be a side
effect to be investigated.

Other promising treatment targets include; M2 specific
scavenger receptor MARCO, which was associated with poor
prognosis in breast cancer, metastatic melanoma and NSCLC
(179); PI3Kg signalling that mediates immunosuppressive
reprograming of macrophages (180); Lrg4/Rspo-1 axis that was
shown to support M2 polarization (181); and tumor-derived
exosomes that have been shown to support M2 TAMs
polarization and metastasis (182, 183).

Overall, repolarization of macrophages is showing promise as
a new therapeutic strategy in cancer treatment. Though clinical
data on the treatment efficiency of repolarizing agents is limited,
it is clear that CD47-SIRPa, CD40/CD40L, and CSF-1/CSF-1R
molecular pathways are involved in tumor survival and
progression. Thus, antitumor immunity can potentially be
boosted by reprogramming M2 macrophages to more M1-like
phagocytic cells able to enhance tumor immunologic clearance.

TAM Targeting Strategies: Strategies in
Depleting TAMs in the Tumor
Microenvironment
Several chemotherapeutic agents also have been reported to be
cytotoxic to TAMs. Bisphosphonates, used in treatment of bone
metastatic cancers like breast cancer and prostate cancer (184),
also have a macrophage-killing properties in addition to killing
tumor cells (185). Among the most used bisphosphonates are
clodronate and zoledronic acid which are administered as a
single agent or in combination with others to target multiple
tumorigenic components. As a drug, bisphosphonates have low
bioavailability (short plasma half-life, rapid uptake within bone
and rapid kidney excretion) (186) and cause severe side effects
(jaw osteonecrosis, atrial fibrillation, nephrotoxicity, stress
fractures and gastrointestinal lesions) (187) that limit their use
and therapeutic potential. Thus, bisphosphonates nanodelivery
has more advantages over conventional drug administration.
December 2021 | Volume 11 | Article 788365

https://www.clinicaltrials.gov
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hourani et al. Tumor Associated Macrophages
Clodronate liposomes suppresses tumor growth and
angiogenesis (22, 23) and zoledronic acid in the form of lipid-
coated calcium zoledronate nanoparticles also depletes TAMs
and attenuates tumor growth (188, 189).

Trabectedin is a chemotherapeutic agent used for treatment
of advanced soft tissue sarcomas and recurrent ovarian cancer.
Apart from having a cytotoxic effect on cancer cells, trabectedin
also induces caspase 8-mediated apoptosis in monocytic
phagocytes (macrophages and monocytes) via activation of
TNF-related apoptosis-inducing ligand (TRAIL) receptors
signalling (190). Trabectedin mediated TAM depletion and the
reduction in tumor volume was observed in trabectedin-resistant
murine MN/MCA1 fibrosarcoma and a xenograft model of
ovarian cancer (IGROV). In addition, immunohistochemistry
of tumor biopsies from cancer patients receiving trabectedin,
showed a reduction of TAMs infiltration and blood vessels
density compared to biopsies collected before chemotherapy
initiation (190). A structurally related compound to
trabectedin, lurbinectedin, also has macrophage-depleting
properties. In vivo lurbinectedin administration induced TAM
depletion in xenografted PDAC (191), xenograft human ovarian
cancer and mouse fibrosarcoma MN/MCA1 models (192). In
addition, treatment synergy in reducing tumors was found when
lurbinectedin was administered in combination with
gemcitabine (191). This treatment combination was also well
tolerated in Phase I clinical trials in patients with advanced solid
tumors (Clinical Trials.gov Identifier: NCT01970553) (193).

Overall, the above studies demonstrate that TAM depletion
has tremendous potential as a novel cancer treatment as a
monotherapy but also in combination with traditional
therapies. However, many of these treatments, in addition to
severe side effects (186, 187, 194), will reduce the systemic
macrophage populations, which are a first line of defense in
the innate immune response. Considering the importance of
macrophages in initiating the immune response, nanotargeting
of TAMs has a potential for the development of more specific
treatment with a potential low effect on the systemic
macrophage population.
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Peptides as a Strategy to Targeted TAMs
Nanomedicine provides a novel approach in cancer treatment.
Compared to traditional chemotherapeutic treatment, specific
targeting of TAMs, rather than macrophages more broadly, has
the potential to increase treatment potency and reduce side
effects of treatment. Several TAM specific peptides are
currently being investigated and these include M2pep (195),
“UNO” (196), melittin (197), RP-182 (198), IL4RPep-1 (199), T4
peptide (200), Pep-20 (201), and CRV (202) (Table 2).

Cieslewicz et al. used phage peptide display libraries PhD C7
and PhD12 to identify a peptide called M2pep that was found to
bind to murine TAMs (CD45+F4/80+CD301+) in vitro and in
vivo. M2pep successfully delivered a proapoptotic peptide to CT-
26 colon cancer cells, which led to the reduction of TAM
populations and improved survival in a murine model (195).
Currently M2pep is an actively researched macrophage targeting
peptide that was used to develop various nanocarriers to deliver
CSF-1/CSF-1R inhibitors like PLX3397 and CSF-1R-siRNA
(206, 207), and a proapoptotic peptide (KLA peptide) (195).
Several studies also have addressed the enhancement of M2pep
targeting and stability. For example, M2pep(RY) with amino acid
substitutions in M2pep (lysine-9 to an arginine, K9R and
tryptophan-10 to a tyrosine, W10Y) and decafluorobiphenyl
cyclisation through cysteines significantly enhanced binding
affinity and increased serum stability (203, 204). Another study
modified M2pep(RY) by tyrosine substitution with 3,5-
diiodotyrosine to develop a pH sensitive M2pep(RY). This
peptide showed increased selectivity to IL-4 polarized (M2)
macrophage over IFN-g and LPS polarized (M1) macrophages
at pH 6 compared to unmodified M2pep(RY) peptide in vitro
(208). Despite significant research into M2pep delivery of anti-
cancer drugs and optimization of targeting, the macrophage
molecule that M2pep binds to remains unknown.

The ability of certain peptides to specifically bind to CD206+
(M2) macrophages was demonstrated for melittin, RP-182
peptide and “UNO” peptide (196–198). Melittin, a major
component of honeybee (Apis mellifera L.) venom, is known
for its haemolytic and cytotoxic properties. Lee et al. found that a
TABLE 2 | TAMs targeting peptides.

Peptide Sequence Target Function References

M2pep YEQDPWGVKWWY-OH Murine CD45+F4/80+CD301+TAMs Targeting (195)
Cyclic M2pep(RY) CGYEQDPWGVRYWYGC-OH Murine CD45+F4/80+CD301+TAMs Targeting (203, 204)
Melittin GIGAVLKVLTTGLPALISWIKRKRQQ-NH2 CD206 TAMs Targeting (197)
“UNO” peptide CSPGAKVRC-OH CD206 TAMs Targeting (196)
RP-182 peptide KFRKAFKRFF-OH CD206 TAMs Targeting;

M2 macrophages apoptosis;
M2 macrophages repolarization towards M1

(198)

T4 NLLMAAS-OH Tie2+ TAMs and endothelial cells. Targeting;
Blocks Tie2/Ang1

(205)

IL4RPep-1 CRKRLDRNC-OH IL-4R+ TAMs and tumor cells. Targeting (199)
Pep-20 AWSATWSNYWRH-NH2 CD47 Targeting;

Block CD47/SIRPa
(201)

Pep-20-D12 a w s ATWSNY w r h-NH2* CD47 Targeting;
Block CD47/SIRPa

(201)

CRV CRVLRSGSC-OH TAMs retinoid X receptor beta Targeting (202)
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non-cytotoxic dose of melittin displayed CD206+ (M2) TAM
selectivity, without inhibiting the CD86+ (M1) macrophage
population or other leukocytes (197). These findings were
supported by an in vivo investigation, where mice inoculated
with mouse Lewis lung carcinoma and then treated with melittin
and proapoptotic peptide (KLAKLA)2 had reduced CD206+
(M2) TAM tumor infiltration, reduced tumor growth, and
angiogenesis compared to control mice (197).

Peptide RP-182 was discovered by in silico screening of host
defense peptides. RP-182 was found to bind to human and
murine CD206+ (M2) TAMs and induce apoptosis and/or
repolarization towards a proinflammatory anti-cancer CD86+
M1-like phenotype (198). The in silico modelling predicted that
RP-182 may also bind to the receptors transglutaminase 2
(TGM2), RelB (a members of the NF-kB family), SIRPa, and
CD47 (209).

“UNO” peptide was identified by in vivo phage display and its
GSPGAK motif (also termed as “mUNO” peptide) is found in
several CD206 physiological ligands. Though the “UNO” peptide
is cyclic, binding to CD206 requires peptide linearity which is
enabled by the reducing conditions found in the TME. The
“UNO” peptide was also able to bind to and be internalized by
CD206+ expressing (M2) murine TAMs and human CD206+
(M2) macrophages (196, 210, 211). In five independent in vivo
solid tumor models, a fluorescently labelled “UNO” peptide
(FAM-UNO) was found to accumulate in tumor tissues
infiltrated with CD206+ (M2) TAMs, but not in non-
malignant adjacent tissues or in controlled animal tissues. In
addition to intra-tumoral TAM homing, FAM-UNO has also the
ability to accumulate in sentinel lymph nodes, which was
observed in ex vivo AT1 tumor model (196). The ability of
“UNO” peptide to deliver a therapeutic cargo was demonstrated
by the increased accumulation of UNO conjugated paclitaxel-
loaded polymersome to CD206+ (M2) TAMs in MCF-7 breast
cancer bearing mice (196). In addition, “mUNO” peptide
conjugated with tol l l ike receptor agonist TLR7/8
(resiquimod)-loaded lignin nanoparticles was shown to target
CD206+ (M2) TAMs in vivo in an aggressive mice triple-
negative breast cancer model (212). All these findings
suggested that the “UNO” peptide is a good candidate for the
development of highly specific cancer therapies and also can be
used in imaging (196, 212).

Tyrosine-protein kinase receptor (Tie2) expressing
monocytes and macrophages (TEMs) are involved in tumor
angiogenesis and contribute to tumor aggressiveness. Besides
TEMs, Tie2 receptor is found on endothelial cells and upon
interaction with Ang1 and Ang2 this pathway has a substantial
role in the formation of new vasculature (213, 214). Targeting
tumor Tie2-mediated angiogenesis is a potential therapeutic
strategy to prevent tumor access to nutrients and oxygen. The
T4 peptide (NLLMAAS) was found to bind to human
recombinant Tie2 receptor and was identified by a phage
display peptide library testing (205). The study reported that
T4 peptide blocked Tie2 interaction with Ang1 in a HUVEC cell
line in vitro and inhibited angiogenesis observed in vivo in a
chick chorioallantoic membrane (CAM) assay (205). T4 was
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explored for targeting tumor endothelial cells and TAMs to
prevent breast cancer relapse in a 4T1 breast cancer cell mouse
model (200). For this purpose, T4 peptide was protected from
proteolytic degradation by creating a dual-responsive (pH
sensitive and enzyme cleavable) (mPEG1000-K (DEAP)-AAN-
NLLMAAS) nanoformulation which upon exposure to the TME
would expose active T4 peptide. This T4 nanoformulation was
able to suppress angiogenesis, delay tumor relapse and metastasis
formation in the animal model (200). Two other peptides; GA5
peptide (NSLSNASEFRAPY) and T7 (HHHRHSF) were also
reported to bind the Tie2 receptor, although their binding to
TEMs requires investigation (205, 215).

The peptide IL4RPep-1 (CRKRLDRNC) has been shown to
bind to IL-4R-expressing tumor cells and M2(IL-4) polarized
macrophages (199). Vadevoo et al. (199) reported that IL4RPep-
1 was able to deliver proapoptotic peptide (KLAKLAK)2 with
paclitaxel to a 4T1 breast cancer tumor and this treatment
resulted in suppression of tumor growth and metastatic spread
in the mouse model. Due to the high expression of IL-4 receptor
in M2 macrophages, the number of M2 macrophages was
significantly reduced after treatment. In addition, the reduction
in Treg cells was observed together with the increase in activated
cytotoxic CD8+ T cells in treated mice (199).

Wang et al. (201) discovered that Pep-20 peptide
(AWSATWSNYWRH) was able to block CD47/SIRPa
pathway by binding to CD47. An in vitro study confirmed the
ability of Pep-20 to enhance macrophage phagocytic activity
against a range of murine and human cancer cell lines as well as
promoting macrophage-mediated development of antitumor
CD8+ T cells (201). Antitumor activity of Pep-20 was also
observed in a CT26 tumor mouse model, where the Pep-20
treated group showed tumor suppression and increased overall
survival. In further studies Pep-20 was modified by replacing
certain L-amino acid residues with their D-amino acid resides
(Table 1) in an attempt to make the peptide more proteolytically
stable, termed Pep-20-D12. These modifications not only
improved serum stability but also increased peptide’s anti-
tumor activity against MC38 tumor in vivo (201).

Tang et al. (202) reported that cyclic CRV peptide
(CRVLRSGSC) had specific binding to TAMs via retinoid X
receptor beta, a receptor found to be expressed predominantly
by TAMs (CD11b+, F4/80+, CD68+). The group also
demonstrated peptide specific tumor homing, as fluorescently
labelled (sulforhodamine 101) CRV peptide conjugated with
porous silicon nanoparticles increasingly accumulated in 4T1
tumor mice model comparing to nanoparticles without CRV
peptide (202). CRV peptide was also used to design an
immunostimulatory tandem peptide nanocomplexes conjugated
with TLR9 ligand ODN1826. This nanoformulation in
combination with anti-CTLA4 was tested in vivo in B16F10
tumor mice model, where the reduction in tumor volume was
observed comparing to anti-CTLA4 combinations with untargeted
nanocomplexes or with naked ODN1826 (216).

The above studies demonstrate the exciting potential of TAM
targeting peptides to enhance cancer treatment by specific
delivery of a therapeutic cargo directly to the tumor site. It is
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clear that more research is required to evaluate safety and
efficiency, but some preclinical data indicate that formulations
with TAM targeting peptides potentially can outperform
traditional treatments (199, 207). The benefits of using TAM
targeting peptides are tumor homing which enables specific
targeting and intrinsic therapeutic activity observed in few
peptides which can be used as a monotherapy or synergy with
the carried cargo.

Nanomaterials as an Effective TAMs
Repolarization Strategy
A primary function of macrophages is their ability to phagocytose
micro- and nano-materials and this process is being exploited to
alter and/or modulate macrophage phenotypes. Apart from
therapeutic agents to repolarize TAMs towards M1 phenotype,
some nanomaterials have been reported to have an intrinsic activity
to induce phenotypical changes in macrophages. For example,
Zanganeh et al. (217) demonstrated that ferumoxytol, a drug used
in treatment of iron deficiency anemia, induced the upregulation of
CD86 and TNF-a (M1 macrophage) markers in RAW264.7
macrophages co-cultured with MMTV-PyMT cancer cells. In vivo
studies confirmed these findings and treatment with ferumoxytol
nanoparticles (carboxy-dextran coated super paramagnetic iron-
oxide nanoparticles (SPIONs) (Figure 5A) induced macrophage
mediated suppression of primary tumor growth in MMTV-PyMT
cancer model and inhibited metastasis in a KP1-GFP-Luc cancer
model (217).

Polystyrene nanoparticles functionalized with carboxyl or amino
groups (Figure 5B) were also reported to impair CD163 and
CD200R expression and IL-10 production in M2 macrophages
without affecting the M1 population (218). In the 4T1 tumor model
poly(styrene-co-maleic anhydride) (PSMA) nanoparticles
conjugated with polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-
phenylenevinylene, PPV] were able to attenuate tumor growth and
Frontiers in Oncology | www.frontiersin.org 13
modulate TME by upregulation ofM1macrophagemarkers (CD86,
CD80, iNOS, TNF-alpha) and downregulation of M2-like markers
(CD206, CD163) in the TME (219).

Cationic polymers such as cationic dextran and
polyethyleneimine (PEI) were shown to alter TAM phenotype
via TLR4 signalling. The phenotypical changes in TAMs include
the upregulation of IL-12, NOS2 and MHCII (M1-related
markers) and downregulation of IL-10, Arg1 and Ym1 (M2-
specific markers) which were observed in vitro and in vivo in a
S180 sarcoma model. Therapeutically, cationic dextran and PEI
showed some anti-tumor activity in tumor bearing wild type
mice compared to TLR4 knockout mice (220).

The finding that nanoparticles alone or NPs coated with
cationic polymers have immunostimulatory properties that can
shift the balance of macrophage phenotypes towards a M1
profile, indicates their exciting potential to enhance therapeutic
strategies documented here and contribute to reducing the
cancer burden after treatment, particularly when combined
with targeting methods.
DISCUSSION

Macrophages are plastic and highly heterogeneous cells that have a
potential to suppress or promote tumor growth. Multiple aspects of
macrophage biology are being considered when developing TAM
targeting strategies. Many of these strategies are already in clinical
studies which gives hope of new effective treatment regimens to be
used clinically and also insights into their efficacy. These clinical
trials and the research into targeting TAMs has highlighted the
porosity in our understanding of the macrophage subtypes present
in the TME and their involvement in tumorigenesis. The increase in
our understanding of the role of these subtypes in pathology will
ultimately aid in the design of potent therapies. An exciting area that
A B

FIGURE 5 | Nanoparticles that induce TAMs phenotypic shift towards tumor-suppressive phenotype. (A). SPION nanoparticle (NP): Carboxy-dextran coating and
Iron oxide core. (B). Carboxyl- and amino- functionalized NP with polystyrene core.
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is showing a high degree of potential to target TAMs is peptide and
nanomaterial targeting due to their ability to modulate the TME
without affecting general monocyte/macrophage populations.
Indeed, these properties can be used in the development of the
future cancer treatment that will be more potent and less toxic.
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