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Abstract Cancer remains one of the diseases with the highest incidence and mortality globally. Con-

ventional treatment modalities have demonstrated threatening drawbacks including invasiveness, non-

controllability, and development of resistance for some, including chemotherapy, radiation, and surgery.

Sono-photodynamic combinatorial therapy (SPDT) has been developed as an alternative treatment mo-

dality which offers a non-invasive and controllable therapeutic approach. SPDT combines the mechanism

of action of sonodynamic therapy (SDT), which uses ultrasound, and photodynamic therapy (PDT),

which uses light, to activate a sensitizer and initiate cancer eradication. The use of phthalocyanines

(Pcs) as sensitizers for SPDT is gaining interest owing to their ability to induce intracellular oxidative

stress and initiate toxicity under SDT and PDT. This review discusses some of the structural prerequisites

of Pcs which may influence their overall SPDT activities in cancer therapy.
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1. Introduction

Photodynamic therapy (PDT) and sonodynamic therapy (SDT) are
cancer treatment modalities developed as alternatives to the con-
ventional chemotherapy, surgery, or radiation1,2. These modalities
are mainly developed to address the inherent limitation observed
with the conventional cancer therapeutic techniques, such as inva-
siveness and resistance3e5. Current studies focus on developing
PDT and SDT as monotherapies or in combination, as sono-
photodynamic combinatorial therapy (SPDT). The techniques
each involve the synergistic activities of three key components,
including a non-toxic sensitizer, light of specific wavelength (in
PDT)6 or low frequency ultrasound (in SDT)7 and molecular oxy-
gen (O2) to initiate cytotoxicity8. Both treatment modalities offer
controllable and minimally invasive techniques for cancer therapy
and can potentially treat a wider-range of cancer types9e11. A
plethora of sensitizers have been designed and studied for SDT/
SPDT of cancers including porphyrins, chlorins, xanthenes and
phthalocyanine to mention a few4,12,13. Phthalocyanines (Pcs) are
regarded as the second generation of sensitizers for PDT and have
shown promising results as anticancer agents14,15. Themain interest
on Pcs for SPDT compared to other sensitizers is owed to their
maximum absorption within the near-infrared region (NIR) of the
electromagnetic spectrum. The use of light of wavelengths within
the NIR is better suited for PDT/SPDT treatments of cancers as it
offers improved tissue penetrability compared to shorter wave-
lengths (with porphyrins and chlorins)12. Additionally, Pcs are
generally stable under physiological conditions and structurally
relatively easier tomodify to tailor their physicochemical properties
(including addition of various central metals or substituents)15,16.
The general structures of Pcs are shown in Fig. 1.

Pcs are macrocycles comprised of tetra-pyrrolic subunits with
a central cavity in which a metal ion or metalloid may be chelated
to yield metallated Pcs from free base Pcs (H2Pcs) (Fig. 1)

16e18.
Their structures are further modified through the addition of
R-groups on different positions. Pcs are electron-rich with an 18-p
electron conjugated system which affords them impressive elec-
tronic and physicochemical properties19,20.

This review will focus on Pcs as sensitizers for SDT and SPDT.
For PDT a wide range of Pcs with varying physical and chemical
properties have been studied and are well reported in the
Figure 1 The general structures of unmetallated free-base and

metallated Pcs structures showing the peripheral (a), non-peripheral

(b) and axial R-group points. And the typical UVeVis spectra of

Pcs showing the distinctive Q- and B-bands, and the phototherapeutic

window.
literature21,22. It is important to maintain these properties when
intending to apply Pcs for combinatorial therapies such as SPDT
to ensure effective photo-activities. The structural variations of
Pcs in SDT have been reported to a lesser extent compared to
PDT. A substantial number of review articles have looked at the
general library of sensitizers for SDT. Various Pcs designs have
been reported and studied on their SDT and SPDT anticancer
activities. This review will discuss for the first time some of the
factors affecting the sono-activities of Pcs for cancer treatments in
terms of their structural designs to possibly postulate the design
consideration of Pcs for SDT and SPDT.
2. Rationale for use of Pcs in SPDT

Pcs have gained much interest as sensitizers for PDT for
various reasons including their impressive electronic proper-
ties and increased light absorption in the NIR12,23,24. The extinc-
tion coefficients of Pcs in the NIR are relatively high
(>105 L/(mol$cm))25. This is beneficial as increased light wave-
length allows for deeper tissue penetrability compared to lower
wavelengths24,26. Moreover, biological molecules show absorption
outside the 600e800 nm range27,28. This region is known as the
therapeutic window and competition for photon-energy is reduced
at this wavelength range. A typical UVeVis absorption spectrum
of Pcs shows an intense absorption peak at wavelengths between
600 and 850 nm, this peak is denoted the Q-band (Fig. 1)29,30. A
lower absorption intensity in the blue region is also evident for Pcs
and is denoted as the B-band30. For PDT, Pcs are typically excited
using light of wavelengths corresponding to the wavelength of
their Q-bands. Furthermore, Pcs have shown minimal dark toxicity
and impressive photo-activities during PDT24. Although Pcs-
mediated PDT seems promising, light penetrability into tissue is
only limited to w10 mm past the epidermis, even at longer NIR
wavelengths11,31. Therefore, PDT alone is only limited to the
efficient eradication of superficial tumours32. To address this issue,
SDT has been considered and developed as an alternative or
supplementary treatment modality to PDT. The degree of light
penetrability past the epidermis compared to ultrasound for cancer
treatment is shown in Fig. 2.

SDT utilizes low-frequency ultrasound which may be focused
on a narrow region, and therefore maintaining a controllable
therapy33,34. The ultrasound used in SDT has a low tissue atten-
uation coefficient and may traverse tissue relatively deeper
compared to light35 (Fig. 2). Skin and prostate cancers are easily
reachable by NIR light alone and may be treated by PDT. It is
more challenging to eradicate cancers located in deep tissues such
as liver, stomach, cervical and bone cancers, as well as treating
metastatic cancers. These may therefore be reachable by ultra-
sound in SDT or SPDT36. Pcs have shown synergistic activities
with ultrasound to initiate cytotoxicity in various cancer cell
models5,12. Moreover, Pcs have shown the ability to respond to
both ultrasound and light in SPDT and therefore enables the use of
a single sensitizer for this treatment modality making Pcs gener-
ally interesting as SPDT agents2.
3. Mechanism of action of Pcs in SPDT

Combination therapy is a common tool for increasing the thera-
peutic efficacies of different treatment modalities. This type of
treatment involves the synergistic therapeutic activities of two or
more modalities for the treatment of specific diseases. The



Figure 2 The tissue penetrability of light is limited and only rea-

ches slightly into the dermis. Ultrasound shows improved penetra-

bility into tissue past the hypodermis to reach deep tissue seated

tumours.
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mechanisms of action of Pcs sensitizers under light and ultrasound
exposure to elicit tumouricidal effects involve different processes
which may overlap to an extent. The mechanism of action
involved in SPDT is shown in Fig. 3.

3.1. Mechanism of action in PDT

The mechanism of action in PDT is well-known and has been
defined using the Jablonski diagram22,37. The diagram outlines the
energy pathways from the photo-activated Pcs to the generation of
the cytotoxic reactive oxygen species (ROS) (Fig. 3). Briefly, the
non-toxic Pcs in the ground state (S0) absorb photon-energy from
the light to which they are exposed to occupy the excited energy
states (S1)

38. The excited Pcs may relax back to the ground state
through fluorescence or undergo internal conversion, resulting in
the non-radiative relaxation to release heat39. This is known as
photo-thermal conversion. Alternatively, the excited Pcs may un-
dergo intersystem crossing (ISC) and occupy the triplet excited
state (T1). The Pcs in the T1 may therefore initiate ROS-generating
processes through two main routes, namely, the type I and the type
II before returning to the S0

40. The type I involves the transfer of
an electron (ee) from the excited Pcs to a biomolecular-substrates
in the cells to yield ROS such as hydrogen peroxide (H2O2), su-
peroxide ðO�

2
$Þ or hydroxyl ðOH $Þ radicals, Fig. 3. The type II

route involves the transfer of energy from the excited Pcs in the T1

to nearby molecular oxygen (O2) to yield singlet oxygen (1O2)
ROS (Fig. 3). For Pcs, the type II route been defined as the pre-
dominant ROS-generation process in PDT using Pcs.

3.2. Mechanism of action in SDT

In SDT, the mechanism of action is not yet clear. However,
possible mechanisms of action have been proposed in the litera-
ture. The current proposition is explained through a phenomenon
referred to as acoustic cavitation33,41,42. Acoustic cavitation can be
classified into two types, namely: inertial and stable (non-inertial)
cavitation (Fig. 3).

3.2.1. Inertial cavitation
Inertial cavitation involves the nucleation, growth, and violent
jetting of gas-filled microbubbles43e45. The bursting bubbles may
emit light known as sono-luminescence which causes nearby Pcs
to be activated similarly to PDT to yield ROS. The emission
intensities of the sonoluminescence were reported to be within the
wavelength range of 300e700 nm with maximum emission in-
tensity at 500 nm by Giuntini et al.46 The ultrasound parameters
used in the study were of frequency 1.86 MHz and power of
1.5 W/cm2 46. Sazgarnia et al. observed the sonoluminescence
emission wavelengths at ranges 350e450 nm; 450e550 nm and
550e650 nm when using gel phantom-based tissue simulators and
ultrasound of 1.1 MHz, 2 W/cm2 47. Furthermore, inertial cavi-
tation may lead to localized increase in temperature (up to
w10,000 K) and pressure (>80 MPa) within the tumour micro-
environment3,48. This dynamic process promotes water-pyrolysis
yielding $OH and H2O2; and hyperthermia, resulting in tumour
ablation.

3.2.2. Stable cavitation
Under stable cavitation, bubbles continuously oscillate within the
cells exerting shear forces intracellularly49,50. The bubbles even-
tually burst releasing shock forces resulting in the increase of
intracellular pressure and therefore causing damage to the cyto-
skeleton and eventually lead to necrosis11,51. This mechanism of
cell death does not involve oxidative stress from ROS yields as in
inertial cavitation, instead, cytoskeleton undergoes physical
damage as a result of released shock forces from the jetting
bubbles. Additionally, the cellular membrane loses its integrity
through stable cavitation (formation of pores known as sono-
poration), thus, allowing for facile release and internalization of
sensitizer molecules for SDT treatment52. Plasma membrane
poration was observed for US treated MAT B III cells using US
frequency of 1.15 MHz52. Helfield et al. also reports on the
membrane sono-poration of apical and basal cells which results in
cellular permeability induced by microbubble oscillation within
the cells after US irradiations50. From the study, an increase in
sono-poration effect was observed at lower frequency ultrasound
(0.5 MHz) compared to 1 and 2 MHz50. Stable cavitation is known
to occur predominantly at low frequency ultrasound51.

Overall, SDT promotes a destructive effect on the cancer
cytoskeleton and biological functions of enzymes and organelles
through oxidative and non-oxidative stress.

The coexistence of the mechanisms of both PDT and SDT
while using a single sensitizer molecule to illicit cytotoxicity is
enabled during SPDT, as shown in Fig. 3. The mechanism of
action in SPDT is an important consideration when designing Pcs
for this treatment technique.

4. Molecular design considerations of Pcs for SPDT

Generally, Pcs are relatively easily tuneable. Variations to their
structures may be introduced using several strategies, including
varying the position and type of substituents, varying the central
metal or by conjugating the Pcs to different bio-active complexes
and nanoparticles. Each of these structural changes results in
different physicochemical properties which play a role in the
overall sono-photo-therapeutic activities of the Pcs.

4.1. Effect of central metal

The use of metals is a common way of enhancing the NIR ab-
sorption of Pcs. Generally, closed-shell diamagnetic metals such
as Al, Zn, In, Ga etc. have been used for Pcs and are known to
promote the T1 population and ROS yields of Pcs during PDT39,53.
When targeting photo-thermal therapy, however, open shell



Figure 3 The mechanism of action in SPDT using Pcs for cancer treatment. The light results in the generation of ROS through the type I or type

II route. The ultrasound causes inertial cavitation resulting in the emission of sonoluminescence, pyrolysis-mediated ROS yields, and hyper-

thermia; and stable cavitation which enhances sensitizer internalization and destabilization of cell integrity. All these processes result in cell death.
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paramagnetic metals such as Co, Mn, and Fe etc. may be used39.
These are known to reduce the ISC efficiency and promote photo-
thermal conversion; the ROS yields are reduced when these metals
are used39,54. The increase in metal sizes has been reported to
further enhance T1 population through a phenomenon known as
the heavy atom effect in PDT55,56. Various central metals, met-
alloids, and lanthanide (Ln)-bearing Pcs have been studied in SDT
or SPDT and will be discussed herein. The effect of metals on Pcs
has been studied to a lesser extent in SDT compared to PDT. A
summary of the Pcs structures used in the study of the metal-effect
under sono-treatments are shown in Fig. 4.

An improvement in the SDT activities of Pcs by use of central
metal compared to their free-base counterparts has been reported
in the literature57,58. The comparison of the SDT activities of the
free-base Pc 1 to the metallated Pc 2 and Pc 357; and the free-base
Pc 4 compared to the metallated Pc 5 and Pc 658; and finally, Pc 7
compared to Pc 8 and Pc 959 showed that metallated Pcs have
enhanced SDT activities compared to the corresponding free-base
counterparts. The enhanced SDT activities of the Pcs were seen
with increased ROS (1O2) yields and increase cytotoxicity for
some. Therefore, the central metal may play a key role in the SDT
efficacies of Pcs. Generally, the Pcs with bigger central metals
also showed increased SDT activities i.e., In > Ga57,59, In > Zn58.
Considering the increase in efficacies observed for both PDT and
SDTwhen using metallated Pcs compared to free-base Pcs, it may
be deduced that in SPDT, metallated Pcs may be favourable. Pd Pc
1060 and In Pc 1161 have been reported for SDT. The SDT ac-
tivities were higher for the larger In Pc 11 compared to the smaller
Pd Pc 10. Although the heavy atom effect has been observed and
defined for Pcs with larger metals during PDT, for SDT, the in-
crease in activities for Pcs with larger metals is not yet clear.
However, it may be related to the increase in nucleation sites for
bubbles during acoustic cavitation.

4.2. Effect of substituents (R-groups)

The type and positions of the R-groups on the Pcs structures have
been shown to alter their overall properties and therapeutics be-
haviours. Several strategies may be used to vary the addition of
R-groups on the Pcs structures. The structures of some of the Pcs
with varying R-group properties are shown in Fig. 5.

4.2.1. Effect of position and number of substituents
The positions of the R-groups on the Pcs play a key role in their
electronic properties. The positions of the R-groups have been
reported to influence the Q-band wavelengths. Sindelo et al. re-
ported on the Q-band red-shifting for tetra-morpholine Pcs with
R-groups on the a-positions compared to b-positions62. The
Q-bands of Pcs are influenced by their molecular orbital properties
characterized by the energy gap between lowest unoccupied mo-
lecular orbital (LUMO) and the highest occupied molecular
orbital (HOMO). The a-R-groups are known to cause the desta-
bilization of the HOMO and reduction of the HOMO-LUMO gap
and therefore result in red-shifting of the Q-band63. Moreover, a-
substituted Pcs have been reported to have improved solubility
compared to their b-substituted counterparts64. This effect has
been reported by Ikeuchi et al., comparing anionic water-soluble
Pcs with R-groups on the a- and b-positions61. Farajzadeh et al.



Figure 4 Structures of some of the reported Pcs used in the study of the effect of central in SDT/SPDT.
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reported on the SPDT activity comparisons of Lu tetra-a- and b-
substituted Pc 12 and Pc 13, respectively. In this study, the 1O2

yields were observed to be higher for the b-substituted Pc 13
compared to the a-substituted Pc 12 for both PDT and SPDT
treatments. In the same study, the tetra-substituted Pcs were
compared to the corresponding octa-b-substituted derivative, Pc
1465. The SPDT 1O2 yields were slightly decreased for the octa-
substituted Pc 14 compared to the tetra-substituted Pc 13. This
effect is not yet clear. The sulfonated symmetrical AlS4Pc (Pc 15)
and asymmetrical AlS2Pc (Pc 16) have been studied and have
shown good SDT activities respectively66e68. Reduced symmetry
of the Pcs structures is achieved by varying the number or type of
R-groups on the Pcs structure69. For PDT, asymmetry in the Pcs
structures has been reported to the increase the ROS yields are
increased70. Low symmetry has also been reported to cause
Q-band red-shifting when studied on a series of BODIPY-
substituted ZnPcs71. Asymmetrical Pcs may also result in the
destabilization of the HOMO resulting in the narrowing of the
HOMO-LUMO gap and therefore the red-shifting of the Q-band.
Although there is no current study comparing the symmetry of Pcs
for SDT or SPDT, it would be interesting to explore the effect of
symmetry by peripheral/non-peripheral R-groups variations on the
sono-activities of Pcs.

4.2.2. Effect of substituent-halogenation
Halogens are highly electronegative atoms and will affect the
electron-densities of Pcs when present in the Pcs’ substituents. A
halogenated Pc 17 bearing F and Cl atoms on peripheral R-groups
has been reported and showed SDT activities72. Karanlık et al.
compared the effects halogenation in SDT activities of tetra-b-
substituted Pcs using F, Cl or Br on the R-groups73. The 1O2 yields
increased with increasing electron shells in the order Br > Cl > F.
This observation was seen for the Pd Pcs (Pc 18ePc 20)73 and In
Pcs (Pc 21ePc 23)74. Atmaca et al. reported on the effect of
halogenation on axially substituted SiPcs, Pc 24ePc 2675. The
ROS yields increased with increasing electron densities. For PDT,
the effect of Pcs halogenation was reported for a fluorinated Pcs
compared to its non-fluorinated counterpart76. Increased ROS
yields were observed for the fluorinated Pcs. Furthermore, the
redox-potential of the fluorinated Pc was higher and therefore
more susceptible to electron transfer to O2 or substrate for ROS
generation through the type I and/or type II76. Halogenation may
be beneficial for Pcs in SPDT.

4.2.3. Effect of solubility and geometry
The planar hydrocarbon structure of Pcs in addition to their
conjugated core causes them to easily stack on each other through
pep interactions77,78. This causes aggregation in aqueous media.
The use of sp3-hybridized and bulky substituents on the periph-
eral, non-peripheral, or axial positions on the Pcs structure has
been reported to reduce aggregation79e81. Axial ligands alter the
geometry of the Pcs and may improve their solubility81,82. A se-
lection of various axially substituted SiPcs have been reported for
SDT/SPDT, including the Pc 27ePc 4083e90. Some of the Pcs
with axial ligands that have been studied for SDT and or SPDT are
shown in Fig. 6.

Molecular aggregation of Pcs is non-favourable since aggre-
gation is known to promote photo-thermal conversion and reduced
ISC39. In the case where photo-thermal therapy (PTT) is desired,
this effect is ideal. However, for PDT, the ISC process is essential
for ROS generation. Different moieties can be added to the axial
positions of Pcs. This can be achieved when metal/metalloid
centres with oxidation states of �3 such as In, Si or Sn etc. are
used. Atmaca et al. reported on the SDT activities of Pcs with
axial-ligands bearing quaternary N-groups with cations, Pc 37 and
Pc 3889, and Pc 4090. This further enhances the solubility of the
Pcs compared to their neutral counterparts. Although Zhao re-
ported on improved SDT activities of aggregated Pcs-artesenuate
nanocomplex91, this effect may not be beneficial when consid-
ering PDT since aggregation is known to reduce ISC. Moreover,
the use of self-aggregated Pcs may not be ideal due to the
requirement of increased drug concentrations for improved ther-
apeutic efficacies.

Therefore, Pcs solubility is an important factor when designing
Pcs for SPDT for cancer treatments. Another method for
improving the solubility of Pcs include use of polar substituents
such as eSO3

� 92,93, or eCO2
� 94, or eOH95 and other ionic

moieties96,97.



Figure 5 Structures of some of the Pcs used in the study of (A) the effect of point of R-group substitution, and (B) effect of R-group halo-

genation on the SDT and SPDT activities.
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4.2.4. Effect of charge
The use of ionic substituents for Pcs is another common way of
improving their solubility98. Charge fosters intermolecular elec-
trostatic repulsion which results in reduced molecular stacking
between Pc molecules. Some of the ionic Pcs that have been re-
ported in SDT/SPDT are shown in Fig. 7.

The cellular membrane of most cancers is anionic. This is
attributed to the exposure of anionic phospholipids on the surfaces
of cancer membrane99,100. Moreover, the mitochondrial membrane
potential is relatively higher101,102, thus cationic cancer thera-
peutics are facilitated more easily into the mitochondria once
they’ve accumulated within the targeted cancer cells103. The
mitochondrion is famously known as the powerhouse of the cells
and is crucial for various bio-energetic and bio-synthetic processes
within the cells. The destruction of this organelle promotes anti-
proliferative and cell death pathways. Organelle-targeting allows
for more precise therapy104. Cationic Pcs have gained much in-
terest in the development of cancer therapeutics, as sensitizers in
PDT and SDT. Pcs bearing R-groups with quaternary amines are a
common way of introducing cations to the Pcs’ structures. Various
quaternizing agents have been used in the preparation of these as
seen in Fig. 7. The Pc 41 and Pc 43 with tetra-cations on the
morpholine moieties showed increased anticancer activities
compared to the zwitterionic Pc 42 and Pc 44 counterparts105. The
zwitterionic Pcs were prepared using propane-sultone which in-
troduces anionic sulfonic-groups in addition to the cationic charge
on the N-group. This enhanced efficiency of cationic Pcs may be
attributed to the enhanced cellular uptake. The Pc 45ePc 48 have
also shown impressive anticancer effects in SPDT105. For the Pc
47 and Pc 48, the triphenylphosphine (TPP) moiety was used as a
quaternizing agent for pyridine and morpholine ZnPc. The TPP
enhances the sono-activities of the Pcs by ROS yields and anti-
cancer efficiencies105. Furthermore, the TPP-moiety is known to
target the mitochondria and may therefore improve anticancer
activities through the organelle-destruction effect.

In addition to improved solubility and cancer cell targeting,
ionic therapeutics including Pcs have shown selective binding to
the albumin proteins106. Albumins proteins are the most abundant
in blood and are generally targeted as transport proteins for
various therapeutics. This group of proteins are also largely



Figure 6 Structures of some of the axially substituted Pcs reported in SDT and SPDT studies.
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involved in the regulatory transport of both endogenous and
exogenous molecules. Therefore, ionic Pcs may be crucial in
ensuring effective therapies in SPDT. A summary of Pcs reported
for anticancer SPDT is given in Table 1.

A summary of the Pcs with varying structural designs is given
in Table 2. Most of the Pcs used are metallic Pcs with substituents
on the peripheral, non-peripheral or axial position. The operation
parameters of the ultrasound used in the SDT studies for these Pcs
vary (Table 2). While most of the studies focused on determining
the photo and sono-chemical properties of the different Pcs, some
continued with the evaluation of the anticancer activities in vitro
and/or in vivo.

4.3. Pcs supramolecular structures for SDT and SPDT

Pcs can be modified through conjugation to other sensitizers to
form Pcs-supramolecular structures for enhanced therapeutic
efficacies. The structures of the reported Pcs-supramolecules in
SDT are shown in Fig. 8.

Liu et al. reported on the design and SDT activities of tetra-4-
carboxyphenoxy ZnPc (Pc 49) and its polymer derivative Pc 50107,
Fig. 8. The SDT and SPDT efficacies, as well as the intracellular
uptake of the supramolecular Pc 50 was more enhanced compared
to monomeric Pc 49107. This observation was made in both the
MCF-7 and Hep 1-6 cells in vitro and in vivo. The IC50 values
(mmol/L) were also higher for the Pc 50 compared to the Pc 49 for
both PDT and SDT activities. PceRu-complex supramolecules
have also been reported in SDT studies of Pcs. The peripherally Ru-
complex labelled-ZnPc Pc 51 showed improved 1O2 yields under
SPDT treatments, with 1O2 quantum yields of 0.72 compared to the
PDT treatments, with 1O2 quantum yields 0.66108. The axially
Ru-complex-labelled SiPc Pc 52 showed almost twice the 1O2

yields in SPDT compared to PDT treatments109. When comparing
the Pc 51 to the Pc 52, the peripherally substituted Pc performed



Figure 7 Structures of some of the Pcs bearing cationic substituents reported in SDT and SPDT studies.
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better in terms of ROS yields compared to the axially ligated Pc 52.
Generally, Pc-supramolecular complexes are observed to demon-
strate an increase in the SDT/SPDT efficiencies compared to the
less bulky counterparts. This effect may be due to sensitizer-size
increases, which may allow for increased surface area for bubble
nucleation during acoustic-cavitation. Although this is the consid-
eration, it was not necessarily the observation when comparing the
tetra-substituted LuPcs (Pc 13) to the bulkier octa-substituted
LuPcs (Pc 14)65 which is also an example of increased molecular
size. It is important to consider the possibility of exceptions.
Moreover, it may be considered that supramolecules which
constitute polymetallic subunits, >1 metal atom in the supramo-
lecular frameworks (such as complexes between PcePc or Pc-
metallic moiety) have a greater chance of exhibiting enhanced
SPDT. This may be influenced by the heavy atom effect in com-
bination with enhanced acoustic cavitation. Finally, the use of more
than one sono/photoactive molecules in constructing supra-
molecules may afford dual sensitization and therefore enhance
SPDT effects.

5. Nanoparticle-Pcs systems for SPDT

Nanoparticles (NPs) have been extensively studied in the devel-
opment of cancer therapeutics as they offer a variety of benefits.
PceNPs complexes have been studied in PDT, SDT and SPDT and
are reported in the literature. Some of the PceNPs-complexes
comprise of liposomes110, micelles111,112, graphene oxide (GO)72,
graphene quantum dots (GQDs)113, metallic NPs114, protein
complexes115,116, and magnetic NPs117. The PceNPs complexes
reported in sono-therapies for cancers are shown in Fig. 9. A
summary of PceNPs complexes reported in SDT is given in
Table 2.



Table 1 A summary of Pcs reported in SDT and SPDT studies.

Compd. lmax (nm) Study Parameters (US/light) Cell line Model General observation Ref.

Pc 1 704a SPDT 1 MHz, 0.5 mW/cm2, 60 s Gastric (MKN-28) cells In vitro Increase in 1O2 yields for SPDT compared to

PDT treatments. The 1O2 yields and

cytotoxicity efficiencies were higher for the

metallated Pcs compared to free-base

(In > Ga > H2).

57

Pc 2 708a 0.5 mW/cm2, 60 s

Pc 3 722a

Pc 4 705 SPDT 35 kHz, 50 s e e Increase in 1O2 yields and cytotoxicity for

SPDT compared to PDT treatments. The 1O2

yields were higher for the metallated Pcs

compared to free-base (In > Zn > H2).

58

Pc 5 684 7.05 � 1015 photons/(s$cm2), 50 s

Pc 6 700

Pc 7 725a SPDT 35 kHz, 320 W, 20 s e e Increase in 1O2 yields for SPDT compared to

PDT treatments. The 1O2 yields were higher

for the metallated Pcs compared to free-base

(In > Ga > H2).

59

Pc 8 720a 7.05 � 1015 photons/(s$cm2), 20 s

Pc 9 724a

Pc 10 684 SPDT 35 kHz, 20 s e e Increase in 1O2 yields for SPDT compared to

PDT treatments.

60

Pc 11 699 SPDT 35 kHz, 10 s e e 61

7.05 � 1015 photons/(s$cm2), 10 s

Pc 12 690a SPDT 35 kHz, 10 s e e Increase in 1O2 yields for SPDT compared to

PDT treatments. The b-substituted Pcs

showed enhanced activity compared to the

a-substituted. The tetra-substituted Pcs were

better compared to the octa-substituted Pcs.

65

Pc 13 679a 7.05 � 1015 photons/(s$cm2), 10 s

Pc 14 679a

Pc 15 682 SDT 1.93 MHz; 6.0 W/cm2, 180 s Human leukocyte (HL60)

cells

In vitro Apoptotic cells and caspase-3 activity

observed during SDT treatments.

66

682 SPDT e Prostate (PC3, LNCaP)

cells

In vitro Increase in ROS yields and anticancer

activities for SPDT compared to PDT and

SDT treatments. The methylene blue showed

higher cytotoxicity compared to the Pcs.

67

Pc 16 e SDT 3 MHz, 1.0e3.0 W/cm2, 60 s Colon-26 cells In vitro

and in vivo

Bleomycin improve SDT cytotoxicity of the

Pcs. An increase in caspase-3/7 observed for

bleomycin-Pc-SDT.

68

Pc 18 681 SPDT 35 kHz, 20 s e e Increase in 1O2 yields for SPDT compared to

PDT treatments. SPDT activities increased

with increasing electronegativity

(F > Cl > Br)

73

Pc 19 682 7.05 � 1015 photons/(s$cm2), 20 s

Pc 20 683

Pc 21 710 SPDT 35 kHz, 20 s e e Increase in 1O2 yields for SPDT compared to

PDT treatments. SPDT activities increased

with increasing electronegativity

(F > Cl > Br).

74

Pc 22 710 7.05 � 1015 photons/(s$cm2), 20 s

Pc 23 712

Pc 24 685 SPDT 35 kHz, 20 s e e 75

Pc 25 685 7.05 � 1015 photons/(s$cm2), 20 s

Pc 26 685

Pc 27 684 SPDT 35 kHz, 10 s e e Increase in 1O2 yields for SPDT compared to

PDT/SDT treatments.

83

Pc 28 674 7.05 � 1015 photons/(s$cm2) 10 s

Pc 29 687 SPDT 35 kHz, 20 s e e 84

7.05 � 1015 photons/(s$cm2), 20 s
(continued on next page)
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Table 1 (continued )

Compd. lmax (nm) Study Parameters (US/light) Cell line Model General observation Ref.

Pc 30 683 SPDT 35 kHz, 20 s e e The 1O2 yields of axially-substituted Pcs is

enhanced compared to SiCl2. The SPDT

yields are higher compared to PDT

treatments.

85

7.05 � 1015 photons/(s$cm2), 20 s

Pc 31 674 SPDT 35 kHz, 20 s e e Increase in 1O2 yields for SPDT compared to

PDT treatments

86

7.05 � 1015 photons/(s$cm2), 20 s

Pc 32 674 SPDT 35 kHz, 20 s e e 87

7.05 � 1015 photons/(s$cm2), 20 s

Pc 33 696 SPDT 35 kHz, 20 s e e 88

Pc 34 695 7.05 � 1015 photons/(s$cm2), 20 s

Pc 35 673 SPDT 0.5 W, 60 s Prostate (PC3) cells In vitro ROS yields of axially-substituted Pcs is

enhanced compared to SiCl2. Cytotoxicity

increased for SPDT compared to PDT

treatments. The quaternized Pcs showed

enhanced cytotoxicity.

89

Pc 36 673 0.5 mW/cm2, 60 s

Pc 37 680

Pc 38 676

Pc 39 SPDT 1.0 MHz, 0.5 W/cm2, 60 s Prostate (PC3) cells In vitro Increase in cell death through apoptosis

increases for SPDT compared to PDT and

SDT monotherapies

90

Pc 40 0.5 mW/cm2, 60 s

Pc 41 674 SPDT 1.0 MHz, 1.0 W/cm2, 10 min Cervical (HeLa) and

breast (MCF-7) cell

In vitro The 1O2 and $OH yields generally increases

in SPDT compared to PDT and SDT alone.

The cationic Pcs show better cytotoxicity

compared to the zwitterionic Pcs.

105

Pc 42 647 170 J/cm2, 10 min

Pc 43 669

Pc 44 642

Pc 47 648 SPDT 1.0 MHz, 1.0 W/cm2, 10 min Cervical (HeLa) and

breast (MCF-7) cell

In vitro The 1O2 and $OH yields, and cytotoxicity

generally increases in SPDT compared to

PDT and SDT alone. TPP-labelled Pcs show

impressive cell-internalization and

association to BSA.

105

Pc 48 633 170 J/cm2, 10 min

aValues in THF.
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Table 2 Summary of Pc-supramolecules and NPs/protein conjugates reported in SDT or SPDT studies.

Compd. lmax (nm) Adjuvant Study Parameters (US/light) Cell line Model General observation Ref.

Pc 17 675

(THF)

GO SPDT 35 kHz, 10 s e e Increase in 1O2 yields for SPDT compared to

PDT treatments for the ZnPcs and the

conjugates. A slight decrease 1O2 yields was

observed for the conjugates.

72

7.05 � 1015 photons/(s$cm2), 10 s

Pc 41 673 GQD SPDT 1.0 MHz, 1.0 W/cm2, 10 min Breast (MCF-7) cell In vitro The 1O2 and $OH yields, and cytotoxicity

generally increases in SPDT compared to

PDT and SDT.

113

170 J/cm2, 10 min

Pc 45 685 AuNPs SPDT 1.0 MHz, 1.0 W/cm2, 10 min Cervical (HeLa) and breast

(MCF-7) cell

In vitro The 1O2 and $OH yields, and cytotoxicity

generally increases in SPDT compared to

PDT and SDT alone. The conjugates

generally performed better.

114

Pc 46 684 AgNPs 170 J/cm2, 10 min

Pc 49 675 Pc-polymer SDT 1.0 MHz, 3.0 W/cm2, 5 min Breast (MCF-7) and mouse

hepatoma (Hep 1-6 and H22)

cells

In vitro

and in vivo

The 1O2 yields and cytotoxicity efficacies

increased for polymer Pc compared to the

monomeric Pc. The polymer Pc showed

enhanced cellular uptake.

107

Pc 50 675 PDT 280 mW/cm2, 15 min

Pc 51 680 Ru-complex SPDT 35 kHz, 20 s e e Increase in 1O2 yields for SPDT compared to

PDT. The PDT 1O2 yields were lower

compared to ZnPc.

108

7.05 � 1015 photons/(s$cm2), 20 s

Pc 52 674 Ru-complex SPDT 35 kHz, 20 s e e Increase in 1O2 yields for SPDT compared to

PDT.

109

7.05 � 1015 photons/(s$cm2), 20 s

Pc 53 670 ZnPc Liposome SPDT 1.1 MHz, 1.0 W/cm2, 10 min Colon carcinoma (CT26) In vivo Tumour diameter reduces for SPDT

treatments compared to PDT and SDT.

110

300 J/cm2, 10 min

e DSPE-PEG

Micelles

SDT 20 kHz, 10 W/cm2, 5 min Melanoma (B16F10) cells In vitro Micelles showed enhancement of ROS

yields and cytotoxicity efficacies of Pcs in

SDT.

111

Pc 54 e DSPE-PEG

Micelle

SDT 30 kHz, 10 min HUVECs and breast (4T1)

cells

In vitro Increased 1O2 and $OH yields and tumour

volume reduction for the nanocomposite

compared to the Pcs alone during SDT.

112

Pc 55 688 BSA protein SDT 1.0 MHz, 2.0 W/cm2, 3 min Hepatoma (HepG2) cells In vitro

and in vivo

The BSA improved the 1O2 yields and SDT

efficacy of the Pc. The tumour volumes

in vivo were greatly decreased for cells

treated with oxygenates nano-complex.

115

Pc 56 636 HAS and Hb

protein

SDT 1.0 W/cm2, 2 min Breast (4T1) cells In vitro

and in vivo

The oxygenation of Hb improves the O2-

availability in the cells and therefore

enhances SDT efficiencies and cytotoxicity.

The 1O2 yields were evident for the SDT

treatments in the presence of the nano-

complexes.

116

Pc 57 682 FeS2-PEI SDT 1.0 MHz, 1.0 W/cm2, 5 min Hepatoma (HepG2) cells In vitro

and in vivo

The FeS2 increased the ROS yields and

cytotoxicity efficiency of the Pcs under

sono-treatments. The tumour volumes

in vivo were greatly decreased.

117
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5.1. Enhanced cellular specificity, uptake and
pharmacodynamics

Generally, NPs are used as delivery vectors for therapeutics,
including Pcs, to cancer sites118,119. Cancer cells have a leaky
vasculature, where nutrients are easily internalized120,121. The use
of NPs (1100 nm) allows for the passive uptake of sensitizers by
cells through a phenomenon known as enhanced permeation
retention122e124.

The design of Pc-NPs conjugates may be achieved through
different kinds of interactions as shown in Fig. 9.

Pcs may be designed with specific functional groups to facil-
itate their conjugation to the NPs surfaces through various syn-
thetic routes. For example, covalent amide bonds may be formed
by reacting eCOOH on Pcs and eNH2 groups on NPs and vice
versa, or R-groups bearing eN or eS atoms may be used to allow
for spontaneous affinity bonds to metallic NPs (including Ag and
Au)70,114. Alternatively, non-covalent interactions including pep
Figure 8 Structures (A) Pc-based polymer and
stacking between carbon GQDs and Pcs, or association of lipo-
philic Pcs to lipophilic lipid tails allows for relatively facile
encapsulation of Pcs in lipid NPs. Pcs are also known to non-
specifically bind to BSA proteins and will therefor interact with
the protein to form nano-complexes95,106. The PcseNPs com-
plexes are designed with careful consideration for specific tar-
geting and accumulation of the sensitizer at the tumour site.
Additionally, NPs have been employed in improving the delivery
of lipophilic drug molecules through aqueous biosystems, there-
fore addressing the limitation of non-soluble drug molecules and
improving their biodistribution. For in vivo studies, Pcs generally
conjugated to NPs showed enhanced tumour targeting compared
to their non-conjugated counterparts110,117. Bakhshizadeh et al.
uses liposomes to encapsulate the hydrophobic ZnPc forming
liposomal ZnPc nano-complexes, Fig. 9 110. These nanocomplexes
have improved biodistribution and are able to accumulate at the
tumour sites in the BALB/c mice, reducing the tumour volumes
after SDT treatments110. Yin et al. also reports on the efficient
(B) Ru-complex-labelled Pcs supramolecules.
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tumour targeting and accumulation of the HAS-Hb Mn-tetra-sul-
fonate Pc 56 conjugated to HAS-Hb (complex as shown in Fig. 9)
in mice models bearing the 4T1 breast cancer116. The MRI images
show increased cellular content of these nano-complexes over
3 h116. The Pc 56 are intercalated within the nano-complex with
the HAS and Hb proteins, and may also be bound to the hydro-
phobic pockets of the HAS proteins. The intracellular release of
the Pcs in the nano-complex have been shown to be triggered by
the overexpressed intracellular glutathione in the cancer cells116.
Li et al. reported on the design specific tumour targeting of the Pc
57 when conjugated to FeS2-PEI

117. This study reports on the
reaction of the nano-complexes with intracellular Hþ atoms to
induce the release of the Pc 57117. The SDT intracellular ROS
yields and cell death percentages were increased for cells treated
with the Pc 57eFeS2 complexes compared to those treated with
the non-conjugated Pc 57117. For the in vivo studies, the accu-
mulation of the nano-complexes at the tumour sites were shown to
be higher relative to the accumulation of the Pcs alone. Addi-
tionally, the tumour volumes observed post SDT treatments were
significantly decreased for mice models treated with the nano-
complexes compared to those treated with the Pcs alone117.
Overall, for efficient therapeutic efficacies for in vivo models, Pc-
nano-complexes may be generally better suited, compared to Pcs
alone. Nanoparticles generally improve the delivery and phar-
macodynamics of the Pcs for SDT and SPDT as seen with increase
tumour accumulation and anticancer efficiencies.

There are various synthetic routes that may be used for the
preparation of PceNPs complexes. These are generally dependent
on the physicochemical properties of the Pcs and NPs or NPs sub-
units. For example, similarity in polarity indices, opposite charges
or pep conjugate systems, are examples of properties that may be
used in the formation of PceNPs complexes through non-covalent
interactions72,113e116. Otherwise, covalent interactions may be
formed between the R-groups on Pcs to functional groups on the
surfaces of the NPs114. Examples of the methods used in the
preparation of Pc-NPs conjugates are shown in Fig. 10.

The PceNPs reported for SDT or PSDT have been prepared
using different modification methods. Covalent amide bonds or
non-covalent S-atom affinity bond to metallic Ag and Au NPs114

as shown in Fig. 10. Non-covalent bonding of Pcs to Ps have been
achieved by use of pep interactions on the flat surfaces of GQDs
sheets and Pcs to achieve molecular stacking nano-complexa-
tion113 or the spontaneous non-specific binding of Pcs to BSA
proteins115, Fig. 10, where cationic Pcs have been reported to
demonstrate improved BSA binding behaviours106. Pcs are
carbon-rich structure and are generally lipophilic. In the presence
of lipids in a polar (aqueous) environment, Pcs may also form
nanocomplexes with the lipids to form micelles, where a lipophilic
core (comprising of the lipid lipophilic head) may be form and
accommodate the Pcs molecules, Fig. 10. Liposomes are also
formed similarly, where the lipid tails are bound together on the
outer and inner shell, forming a lipid bilayer with a hydrophilic
core. While some Pcs may also be encapsulated in the core, some
will generally tend to associate with the lipophilic lipid tails and
be intercalated within the bilayer (Fig. 10).

5.2. NPs-assisted ROS yield enhancement

NPs have been reported to play a major role in SPDT and are
known to enhance acoustic cavitation by increasing the surface
area for bubble nucleation and therefore enhancing ROS
yields125,126,127. Various Pcs-NPs conjugates have been designed
and studied for SDT and SPDT to a lesser extent compared to PDT
for cancer therapy (Table 2). Some of the NPs studied in PDT
have been reported in SDT alone and as adjuvants for Pcs.
Graphitic nanoparticles such as graphene oxide (GO), or graphene
quantum dots (GQDs) have been reported to act as donor and
promote the transfer of energy to Pcs acceptors through Forster
energy resonance transfer (FRET) during PDT128,129. FRET
therefore allows for enhance ROS yields under light exposure.
Although this is the case, a decrease in the ROS yields for both
PDT and SPDT was observed when comparing ZnPc-GO conju-
gates compared to the ZnPc alone. There was no clear correlation
in the w% of the GOs on the ROS yields of the conjugates72. It
would be interesting to determine the ROS generation of the GOs
alone. GQDs have been reported for SDT and SPDT where an
enhancement in the ROS yields were observed for Pc 41 when
conjugated to the GQDs113. GQDs alone have also shown ROS
yields under ultrasound irradiations at 1.0 MHz, 1.0 W/cm2 113.
Considering the possible FRET effect under PDT and enhanced
ROS generation in both PDT and SDT, the conjugation of Pcs to
GQDs may be a benefiting strategy in the design of Pc-based
sensitizers for SPDT. Metallic NPs are also known to improve
ROS yields of Pcs through the heavy atom effect in PDT130,131. In
SDT, the metallic AuNPs and AgNPs show an enhancement in the
ROS yields of cationic thiazole Pc 45 and Pc 46114. Moreover, the
anticancer efficacies on MCF-7 and HeLa cells were generally
increased in the presence of the NPs under the SPDT treatment.
Various other NPs including mesoporous SiO2 NPs132, TiO2

NPs133,134 and graphene nanotubes135 have been reported to
enhance acoustic cavitation. These have however not yet been
reported in combination with Pcs in SPDT of cancers.

5.3. NPs-assisted hypoxia evasion

Pc-based nano-complexes have also been reported as probes for
sono-treatments in hypoxic cancers. SDT is known to initiate
cytotoxic effects through both oxygen-dependant and independent
routes (Fig. 3). The efficiency of SPDT may be greatly impacted
in the absence of O2. Yin et al. reported on the design of an O2

self-supplementing nano-complex using Mn tetra-sulfonate Pc (Pc
56), hemoglobin (Hb) and human serum albumin (HSA) to alle-
viate hypoxia in the treatment of 4T1 cells116. The NPs system
with oxygenated Hb (HbO2) was compared to the unoxygenated
complex Hb to measure the effect on SDT. The HbO2 allowed for
an increase in the cellular accumulation of O2 in hypoxic tumours
resulting in increased anticancer SDT efficacies compared to the
non-oxygenated Hb116. The HAS protein in this complex was
mainly for tumour delivery purposes. Additionally, tumour tissues
are known to have excess H2O2 compared to normal tissue and can
therefore be a beneficial target for chemo-dynamic therapy (CDT).
Li et al.117 reported on the chemo-dynamic effect of FeS2-poly-
ethylene imine (FeS2-PEI) and axially substituted SiPc (Pc 57)
nano-complex (FeS2-Pc) in combination with SDT against
HepG2. The FeS2 formulates a programmable nano-complex
which may be turned on and off by the regulation of intracel-
lular Hþ and H2O2 to yield $OH117. The generation of ROS
through the CDT redox reactions allows for intracellular oxidative
stress induction in hypoxic conditions. Enhanced ROS yields for
the sono-treated FeS2-Pc conjugate were observed compared to
the sono-treated Pc 57 alone117. Moreover, the cell viability
studies for the sono-treated cells showed high cytotoxicity for the
CDT and SDT treated cells using the FeS2-Pc nano-complex both
in vitro and in vivo. The FeS2 is also used as a bio-imaging probe



Figure 9 Structures of some of the Pcs and PceNPs conjugates reported in the effects of nano-complexes on the SDT and SPDT efficacies of

Pcs. The formation of the nano-complexes is achievable through intercalation; encapsulation; stacking; or formation of covalent or non-covalent

affinity bonding of the Pcs molecules to various adjuvants.
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for magnetic resonance imaging of tumours in vivo117. The
combination of imaging and therapeutic agents to form theranostic
agents is crucial in the development of anticancer modalities as it
allows for personalized and more precise therapy136,137. The FePc
(Pc 54) micelle nanodots are also reported to enhance the SDT
effects through promoting CDT112. Although the study of CDT in
combination with SPDT using Pcs-NPs conjugates has not yet
been reported, it may be interesting to evaluate the therapeutic
efficacies.
5.4. Biocompatibility and toxicity considerations

The design and application of Pcs and PceNPs complexes with
minimal toxicity is essential for the SPDT of cancers for main-
taining a non-invasive and controllable therapeutic approach. Pcs
are generally reported to demonstrate none to minimal dark
toxicity. Therefore, the use of Pcs as sensitizers for SPDT may
allow for a controllable therapy. For PDT, the photodegradation
quantum yields (Fd) for Pcs quantifies the rate of Pcs degradation



Figure 10 Examples of methods used for the preparation of Pcs-nanocomplexes.
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upon exposure to light during PDT treatments. Güzel et al.53,
Karanlik et al.58 and Atmaca et al.60 reported on the calculation of
the Fd values of different Pcs under light treatments monitored by
UVeVis spectroscopy, where the Fd values were in the 10�4

order. The low Fd values suggest relative stability of the Pcs under
PDT conditions. For SDT, a function defining the stability of Pcs
under US treatments has not yet been defined. However, the
presence of carbon radicals ($C) under US treatments at higher
frequency and power (2.0 MHz, 3.0 W/cm2) were detected for
ionic Pcs in another study suggesting possible fragmentation of Pc
structures105. While this was the observation in this study,
reducing the frequency and power to 1.0 MHz, 1.0 W/cm2 showed
reduced degradation and efficient SDT activities. Since the
toxicity profiles of fragments that may be derived from degrading
Pcs under light and/or US treatments, the stability of Pcs is
important in order to minimize possible toxicity from the treat-
ments105. The stability of NPs for therapy is equally important.
Metallic NPs such a AgNPs are known to exhibit chemotoxicity
by releasing metal ions as a result of ionization138. To minimize
this effect, metallic NPs may be stabilized specific capping agents
including: chemical moieties such as CTAB139, GSH140, poly-
ethylene glycol (PEG)141; or biomolecules such as BSA142, chi-
tosan143. The capping agents, in addition to stabilizing NPs, may
also serve as linkers for Pcs-conjugation to the NPs, as surfactants
to improve solubility or biomarkers for cancer specificity and
delivery139,142. Alternatively, a selection of biocompatible NPs
have been reported and applied in PDT and SDT studies including
liposomes, micelles, GQDs and SiO2. Pcs complexed with these
NPs have also been reported to show none or minimal dark
toxicity110,111,113,144 and may be a relatively favourable consid-
eration for the development of Pcs-based therapeutics.

6. Experimental configurations

While altering the structures of the Pcs may lead to improving
their SDT and SPDT performances, the ultrasonic operational
parameters such as the frequency and power of the ultrasound are
key considerations for Pc-mediated SDT and/or SPDT.
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Furthermore, the order of light and ultrasound irradiation in SPDT
is also key as it may affect the overall ROS yields and therapeutic
efficiencies of the Pcs.

6.1. Effect of ultrasonic parameters

The frequency and power affect the physical properties of the
ultrasonic mechanical waves exerted in the aqueous media, and in
turn the cavitation efficiency during SDT145,146. An increase in the
ultrasonic frequency results in rapid formation and implosion of
the micro-bubbles146e148. Where an increase in the ultrasonic
power increases the average radii of the forming bubbles148. Hy-
pothetically, it may be expected that increasing both the frequency
and power of the ultrasound may enhance the acoustic cavitation
and ROS yields. While this might possibly be the case, the tem-
perature and pressure changes are also increased where the sta-
bility of the Pcs may be compromised. The SDT activities of
differently substituted-cationic Pcs has been reported under
different ultrasonic parameters varying the frequency (1.0 and
3.0 MHz) and the power (1.0 and 2 W/cm2)105. Generally, the
ROS yields and cytotoxicity efficacies were more efficient at
1.0 MHz and 1.0 W/cm2 for most of the Pcs. Increasing the fre-
quency to 2 MHz and/or the power to 3.0 W/cm2 generally
resulted in reduced efficacies. Interestingly, in addition to detected
ROS of the studied Pcs, $C were also detected for some of the
Pcs105. High energy under SDT may lead to localized increase in
temperature and pressure which may in turn cause nearby carbon-
based sensitizers, including Pcs, to fragment. Fragmentation may
lead to the yield of sensitizer-derived $C149. Fragmentation of Pcs
under ultrasound exposure to yield $C may also cause them to lose
their electronic properties and SDT/SPDT activities and therefore
greatly impact their overall efficacies. Moreover, $C are also a
threat to cancer cells since they may form peroxyls and alkoxyls
upon reaction with O2

150. Considering this effect, the order of
light and ultrasound irradiation in SPDT is important and should
be considered for Pcs during treatments.

6.2. Effect of order of irradiation

The order of irradiation in SPDT has been shown to affect the
therapeutic efficacies of Pcs110. While this effect is not clearly
understood, Bakhshizadeh et al. reported on the reduced efficacies
on cancers treated with the ultrasound first and light after when
using Pcs110. In cases where the ultrasonic parameters cause the
Pcs to fragment, irradiating ultrasound first may lead to loss of
photosensitizing ability of the Pcs and reduced activity when light
is administered. There have been no extensive studies reported on
the stability and structures of Pcs under the simultaneous irradi-
ation of light and ultrasound.

7. Conclusions and perspectives

Various strategies involving the structural modifications of Pcs
may be applied to tailor their overall behaviours as agents for SDT
and SPDT. While a wide range of Pcs structures have been
designed and studied for SDT and SPDT, more details on the in-
fluence of some structural variations on the activity-profiles of the
Pcs may still be explored and defined for these treatment mo-
dalities to greater extents.

The central metal plays an important role in light and/or ultra-
sound mediated cancer therapies. In addition to the NIR-shifting of
the Q-bands, the T1 is enhanced leading to increases ROS yields for
metallated Pcs compared to the free-base counterparts. Since the
mechanism of action in SDT involves sonoluminescence for ROS
generation, the relationship of the Pcs’ Q-bands to their SDT ac-
tivities may be defined further to determine Q-band wavelengths
that may allow for more effective sonoluminescence light absorp-
tion under different parameters. Generally, Pcs with metalloids;
transition and post-transition metal-centers have been reported
with impressive SDTand SPDTactivities. Ln are known to result in
extended coordination of two or more Pcs cores yielding double,
triple, quadruple etc. decker supramolecular frameworks. The SDT
activities of these type of complexes may be interesting to explore
and study the effects of the type of Ln and number of layers of Pcs
on the decker complexes. Additionally, the Pcs symmetry may be
further studied for SDT. Pcs symmetries may be altered by adding
different R-group types on the peripheral and non-peripheral po-
sitions. A comparative study looking at the effect of reduced
symmetry in comparison to symmetrical Pcs would be beneficial in
further determining strategies for enhancing their therapeutic effi-
cacies in sono-therapies.

NPs and biologically active adjuvants are undoubtedly advan-
tageous for Pcs in SDT. Researchers have shown improved solu-
bility; tumour targeting and delivery; drug internalization, as well
as improved ROS and cytotoxicity efficiencies in Pcs-NPs conju-
gates. With regards to ROS yields, NPs are reported to promote ISC
of the photo-activated excited Pcs into the T1 and consequently
enhance ROS yields. NPs alone have also demonstrated ability to
generate ROS under sono-treatments, where the combination of
NPs with Pcs may afford a dual-sensitizer complex for SDT with
enhanced ROS yields. Another important benefit to NPs in Pcs-
mediated SDT and SPDT is the ability of some NPs to relieve
hypoxia by generating ROS through the Fenton reaction, a CDT
effect. PDT is known to largely depend on the availability of O2 to
allow for effective cancer eradication. While SDT also depends on
O2 for therapy, it is also reported to promote other non-O2-
dependant processes. However, the design of hypoxia-minimizing
nano-complexes and PceNPs CDT agents may be beneficial in
addressing the issue of hypoxia for effective SPDT in cancer
therapy. SDT may possibly lead to hyperthermia, and some NPs
may promote this effect. Designing Pcs for PTT by tailoring their
molecular structures may cause a suppression in their PDT activ-
ities since the occurrence of photo-thermal conversion (important
for PTT) results in reduced ISC (important for PDT). The use of
heterogenous PceNPs complexes where the Pcs are involved in the
PDT and SDT, and the NPs in CDT, may be ideal. In this case, the
structural pre-requisites of Pcs for SPDT may be appreciated.
Studies focusing on the PTT effect of SDT using Pcs may be
beneficial in further defining the mechanisms of Pcs-mediated SDT
and additional factors affecting these mechanisms thereof. In
addition to NPs and proteins, there are various other adjuvants that
may be applied to enhance the efficacies of Pcs in SDT and SPDT.
For PDT, plant-derived complexes (phytochemicals) have been
studied and shown to enhance efficacies151e153. The study of
phytochemicals in combination with Pcs for SDT and SPDT may
be interesting to explore.

Some of the in vitro and in vivo SDT studies reported in the
literature have shown how the treatments affect cellular
biochemistry. The activation of caspase reactions and DNA
destruction have been reported for Pcs-mediated SDT to explain
the effect of cytotoxicity. There is, however, a gap in the definition
of intracellular mechanisms that are triggered during SDT
including protein or hormone up- and down-regulations which
ultimately lead to cell death. Studies which may define molecular
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process involved in SDT in general (including Pcs-mediated
SDT), are crucial in fully defining the mechanism of action
involved in SDT for cancer therapy. Moreover, a closer look on
the influence of the Pcs’ structures (along with other sensitizers),
on the SDT-initiated cellular biochemical responses, is paramount
in understanding this treatment modality.

The ultrasonic parameters do affect the overall Pcs’ behaviours
under ultrasound exposure. The parameters are reported to affect
the cavitation efficiencies, thus affecting the properties of the
sonoluminescence emission as well as the bubble size and
formation rates. This generally affects the amount of ROS yields.
Additionally, the temperature and pressure within the microenvi-
ronment will be affected. Pcs may fracture under specific
ultrasonic conditions during SDT. It is therefore important to
determine the optimum conditions for Pcs used in SDT. For SPDT
treatments where the ultrasound and light are administered
sequentially, the effect of the order of irradiation also needs to be
determined prior the application of the treatment modality. While
studies have shown the reduced activities of Pcs when the ultra-
sound is administered first and light after, this effect is not yet
clearly defined. For some Pcs, the formation of $C was evident
indicating the formation of Pc-derived fragments. Studies focusing
on the isolation and characterization of Pcs’ structures before and
after ultrasound irradiations may be beneficial in determining the
effects of the ultrasound on the Pcs structures and potentially
define the principle behind the order of irradiation in SPDT.

Overall, Pcs are impressive sensitizers for SPDT. Their struc-
tural versatilities afford them the great interest in the development
of improved anticancer modalities for the treatment of a wide
range of cancer types.
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