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Abstract

Background: Regulated intramembranous proteolysis of the amyloid-b precursor protein by the c-secretase yields amyloid-
b, which is the major component of the amyloid plaques found in Alzheimer’s disease (AD), and the APP intracellular
domain (AID). In vitro studies have involved AID in apoptosis and gene transcription. In vivo studies, which utilize transgenic
mice expressing AID in the forebrain, only support a role for AID in apoptosis but not gene transcription.

Methodology/Principal Findings: Here, we have further characterized several lines of AID transgenic mice by crossing them
with human Tau-bearing mice, to determine whether over-expression of AID in the forebrain provokes AD-like pathologic
features in this background. We have found no evidence that AID overexpression induces AD-like characteristics, such as
activation of GSK-3b, hyperphosphorylation of Tau and formation of neurofibrillary pathology.

Conclusions/Significance: Overall, these data suggest that AID transgenic mice do not represent a model that reproduces
the overt biochemical and anatomo-pathologic lesions observed in AD patients. They can still be a valuable tool to
understand the role of AID in enhancing the cell sensitivity to apoptotic stimuli, whose pathways still need to be
characterized.
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Introduction

Alzheimer disease (AD) is characterized by the production of

amyloidogenic peptides, neurofibrillary tangles (NFT) and neuro-

degeneration [1,2]. The prevailing pathogenic theory, the ‘‘Amyloid

Cascade Hypothesis’’ [3], posits that the accumulation of neurotoxic

amyloidogenic peptides triggers Tauopathy, neurodegeneration,

cognitive and behavioral changes. In AD, the amyloid lesions are

formed by Ab42, which derives from the Amyloid-b Precursor

Protein (APP). APP is cleaved by b-secretase to releases the soluble

b-ectodomain (sAPPb) and the membrane-bound COOH-terminal

fragment C99. C99 is in turn processed by c-secretase to produce

the APP intracellular domain (AID/AICD) and Ab peptides. More

recently, attention of researchers in the field has shifted from

Amyloid plaques to Ab42 oligomers as the main cause of AD

[4,5,6]. However, the amyloid cascade hypothesis is yet to be

validated, and causes of dementia may be multifaceted and involve

other mechanisms. Several investigators have suggested that other

APP-derived fragments may cause or contribute to AD pathogen-

esis. Evidence hints to specific functions and disfunctions for

holoAPP and APP-derived polypeptides. An APP fragment derived

from sAPPb interacts with DR6 to trigger axon pruning and neuron

death [7]. The short AID/AICD is a biologically active intracellular

peptide, which modulates cell death, gene transcription and Ca++

homeostasis [8,9,10,11,12,13,14,15,16,17,18,19]. Caspase-derived

APP fragments, such as C31 [20] and Jcasp [9,21], posses in vitro

toxic activities. Because of these evidence, various APP-derived

fragments, such as AID/AICD [10,22], C31 [23], JCasp [9], sAPPb
[7] have been implicated in neurodegenerative processes.

Mouse models are critical to explore both pathogenesis and

therapy of human diseases. All animal models used to study

human neurodegenerative diseases consist of transgenic mice

carrying mutant forms of genes shown to be involved in human

dementia [24,25,26]. A serious limitation of these models is that

their design is predicated on the assumption that development of

amyloid plaques and neurofibrillary tangles is directly related to

the cognitive and behavioral changes associated with human

dementia. To determine whether AID could trigger an AD-like

neurodegenerative process in vivo, we have made transgenic mice

expressing AID-peptides in the CNS [27]. A previous analysis of

these mice showed that AID can modulate apoptosis in vivo.

However, a role of AID in gene transcription in vivo [28] could not
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be confirmed. Here, we have further characterized our AID

transgenic mice to determine whether over-expression of AID in

the forebrain, when human Tau is also expressed, provokes AD-

like features, as recently suggested [22]. To this end, we have

crossed our AID lines with hTau mice [29,30] overexpressing

human Tau. We have chosen this model as it shows progressive,

age-related, Tau pathology in forebrain regions of the brain which

are also affected in human AD pathology (hippocampus,

parahippocampal cortex, frontal cortex etc.) and which overlap

with the pattern of expression of the AID transgene, without

necessarily expressing mutated Tau.

Materials and Methods

Ethics Statement
Mice were handled according to the Ethical Guidelines for

Treatment of Laboratory Animals of Albert Einstein College of

Medicine. The procedures were described and approved in animal

protocol number 20040707.

AID mice generation and crossing with hTau mice to
yield AID/hTau transgenic mice

AID mice were generated as described before [31]. Briefly, the

cDNA sequences corresponding to AID 50, 57 or 59, were

subcloned into the pNN vector, downstream of the 8Kb CamKIIa
promoter, driving the espression of the transgene in the forebrain

of the postnatal mouse [32]. Transgenic mice, initially on a FVB

background, were backcrosses, at least for 8 generations, onto the

C57Bl/6 background. hTau mice were obtained as described [29]

by crossing 8c mice, expressing a human Tau transgene, H1

haplotype driven by the Tau promoter [33], with Tau knock-out

(KO) mice that have a targeted disruption of exon 1 of Tau [34].

Animals were backcrossed 10 times to C57BL/6J background.

AID transgenic mice were crossed with hTau mice to yield mice

expressing AID transgene, human Tau transgene and one allele

copy of mouse Tau.

Monoclonal antibodies specific for Tau and Tau
phosphorylations

The following monoclonal antibodies have been produced as

described earlier [35].

DA9 (IgG1): total Tau aa102–140; TG5 (IgG1): total Tau

aa220–240 (murine and human); CP27 (Ig2B): total Tau aa130–

170 (human specific); CP13 (IgG1): pSer202; PHF1 (IgG1):

pSer396/Ser404; MC1 (IgG1): N-terminal conformational

change, Exon 10; CP17 (IgG3): pThr231; CP9 (IgM): pThr231.

Antibodies were used pure (hybridoma medium), purified or

biotinylated. Biotinylation of antibodies was performed using EZ-

Link NHS-PEO Solid Phase Biotinylation Kit (Pierce, # 21440).

Heat stable preparation for Tau
Mice were sacrificed by cervical dislocation after Isoflurane

anesthesia. One of the two brain hemispheres was processed for

protein and Tau extraction, the other for immunohistochemistry.

Forebrains were homogenized in 400mL/100mg of Homogenizing

Buffer (TBS-10mM TRIS, 140mM NaCl, pH 7.4-, Roche

Complete-EDTA Protease Inhibitor, 1mM PMSF, 1mM

Na3VO4, 10mM NaF, 2mM EGTA) for 200 with a Polytron

homogenizer, on ice. For heat stable Tau, to a 500mL aliquot of

homogenate, NaCl was added to 250mM, and bME was added to

5% final concentrations, and the mix vortexed. Homogenates

were heated at 100uC for 159, mixed again by vortexing and

cooled in ice for 309, vortexed briefly again and spun down at

20,000g for 109 at 4uC. The supernatant, containing heat stable

microtuble protein enriched for Tau, was retained and used for

subsequent experiments. Protein concentration was measured in

the original homogenate in order to load equal amounts of protein

for western blot and ELISA.

ELISA
Clear, flat bottom, 96 well plates were coated overnight with an

antibody specific for total Tau (DA9) 2mg/mL in Coating Buffer

(230mM K2HPO4, 135mM KH2PO4, 130mM NaCl, 2mM

EDTA, 0.05% NaN3, pH 7.2). Wells were blocked with 100%

Starting Block (Pierce) for 1 hour at room temperature. Homog-

enates were then added: brain homogenates, prepared as

described above, were mixed 1/1 with 0.1% SDS, briefly vortexed

and spun for 109 at 20,000g, at room temperature, and the

supernatant loaded on the ELISA plate at 1/250 to 1/2000

dilution in 20% Superblock-TBS (Pierce) as needed, and left

overnight, at 4uC, gently shaking. Purified primary antibodies we

added to the plate, diluted in 20% Superblock-TBS, as follow:

TG5-biotinylated 1/500000, CP27 (Ig2B) 1/20000, CP13 (IgG1)

1/20000, PHF1-biotinylated 1/10000, CP17-biotinylated 1/

20000, MC1 (IgG1) 1/20000, and left for 2 hours at room

temperature, gently shaking. Secondary antibodies, Streptavidin-

HRP or HRP-Goat-anti mouse IgG2B/IgG1, 1/5000 in 20%

Superblock-TBS (Pierce), were left on the plate for 1 hour as

above. Fifty mL of TMB (Pierce) were added and left for 209, room

temperature, light shielded, gently shaking, and the reaction was

stopped with same volume of 2M Sulfuric Acid, and read at

450nM with an automated Tecan plate reader. Every step was

followed by 5 automated washes with washing buffer (100mM

NaCl, 10mM Tris Base, 0.1% Tween20).

Western Blot
For Tau, heat stable preparations were run on a 4–12% tris-

HCl precast gel (Biorad), blotted on a 0.45mM Nitrocellulose

membrane and probed with monoclonal antibodies specific for

total Tau or site specific Tau phosphorylations as follows: DA9 (1/

3000), CP13 (1/3000CP9 (1/3000), PHF1 (1/3000), MC1 (1/

500). Antibodies were diluted in 5% milk in TBS. Western Blots

were developed either with the ECL system on film or by means of

4-Chloro-Naftol reaction on the membranes. For GSK, brains

were homogenized as described for ELISA, subjected to PAGE as

described above, and the membranes were probed with antibodies

against GSK3a/b (Santa Cruz SC-7291, 1/1000), GSK3bpSer9

(Cell Signaling #9323, 1/1000), GSK3a pTyra279/b216 (Invi-

trogen #44604G), diluted in 20% Superblock-TBS, and anti b-

Actin (Sigma-Aldrich A1978) 1/8000 in 5% Milk-TBS-

0.1%Tween20.

Immunohistochemistry
Brains were fixed in 4% PFA overnight and cut sagittally with a

vibratome the next day. Selection of corresponding sections from

each mouse was performed as follows: brains were cut sagittally at

50mM thickness, from the lateral to the medial aspect, preserving

the cerebellum. For each antibody, 3 sections were stained,

starting at section #15 (i.e. 750mM form the lateral pole), and

taking every 7th section inward (i.e. 350mM apart from each other).

Free-floating sections were conserved in TBS (50mM Tris,

150mM NaCl, pH 7.6)/0.02%NaN3, and the staining was

performed on multiwell plates. Endogenous peroxidases were

quenched with 3% H2O2/0.25% Triton X-100/TBS for 309.

Non-specific binding was blocked with 5% Milk-TBS for 1 hour at

room temperature. Primary antibodies are as follows: NeuN

(Invitrogen #187373, 1/1000), IbA1 (WAKO #019-19741, 1/

AID Does Not Induce AD Traits
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1500), and non-purified anti Tau antibodies DA9 (1/5000), CP13

(1/5000), PHF1 (1/5000), MC1 (1/200), all diluted in 5% Milk-

TBS, and left overnight at 4uC, shaking. Biotin-conjugated

secondary antibodies directed against the specific isotypes were

diluted 1/1000 in 20% Superblock, left for 2 hours at room

temperature, and likely Streptavidin-HRP was incubated for

1 hour. Staining was visualized by 3,39-Diaminobenzidine. Each

step was followed by 5659 washes in TBS.

Statistical analysis
All quantified data represent an average of at least triplicate

samples. Error bars represent standard errors of the mean.

Statistical analysis was done by 2-Way ANOVA and Bonferroni

Post Test. Significance was determined by Student’s t test and a

p,0.05 was considered significant.

Results

AID/hTau mice general characteristics
Mice are presenting with normal growth and weaning, thrive at

appropriate age. No significant differences were observed in

breeding and litter size and survival compared to C57BL/6 mice.

Up to 21 months of age, there is no prevalent pathology,

susceptibility to infections, and animals appear active and alert.

Tau phosphorylation and brain load are not univocally
affected by AID overexpression

Tau accumulation, phosphorylation and axonopathy can be

subtle and precede neuronal degeneration, tangle formation and

cognitive or behavioural deficits [36,37]. Thus, we have

extensively searched for any contribution of AID overexpression

to Tau pathology. We have used antibodies raised against specific

Tau phosphorylation sites that characterize early (pSer202 and

pThr231), or late (pSer396/404) stages of Tau phosphorylation in

AD [37,38]. In addition, we have also analyzed a typical

conformational change in Tau that is found at the latest stages

of AD, using the MC1 antibody. We have analyzed several mice

bearing hTau and AID50, 57 or 59, corresponding respectively to

the c-secretase e-cleavage and c-cleavage producing Ab42 or

Ab40 [27], at different ages, from 4 to 21 months. For each AID

transgene, different lines derived from distinct founders were

analyzed. Analysis of more than one AID50, 57 or 59 line is

necessary to control for phenotypes dependent on the integration

of the transgene in the mouse chromosomes, which can alter

expression of endogenous mouse genes. As previously shown, these

lines also expressed different levels of AID and they behaved

differently as far as susceptibility to toxic stimuli in vitro [27]. In the

western blot (WB) analysis (Fig. 1, Column A and quantified in

Column B), total Tau (DA9) was not significantly and consistently

altered in AID/hTau mice compared to hTau alone. Only line

57.5.1 showed an increase in total Tau at 7 months, but it was

neither confirmed in line 57.13.3, nor by the ELISA analysis

(Fig. 2, bottom panel), neither for human Tau alone, nor for

human plus mouse Tau (CP27 vs TG5).

CP13 recognizes an early Tau phosphorylation epitope

(pSer202). This phopshorylation was decreased in line 57.13.3 at

4 and 7 months on WB (Fig. 1, Column B), and also in line 57.5.1

when total Tau was accounted for (Fig. 1, Column C); contrarily,

line 50.1.5 showed an increase of CP13 signal at 13 months (Fig. 1,

Column C); ELISA data (Fig. 2) show no consistency in CP13

signal, that vary according to age and weather only human (CP27

weighed) or both human and murine (TG5 weighed) Tau are

accounted for (Fig. 2, Column A). Thr231 phosphorylation (CP9)

levels seem increased in line 59.4.4 at 4 months of age, but this

increase is not maintained later in life in WB (Fig. 1, Column C).

On the contrary, CP17 ELISA over total Tau shows an increase at

all ages for AID59.4.4 (Fig. 2, Column B). Neither AID57 line

shows consistent variation from controls at this site except a

difference between the 2 AID57 lines at 7 months. Later

phosphorylations (PHF1 Ser396/404) are not influenced by AID

overexpression. Interestinlgy, on ELISA analysis, conformationally

dependent MC1 signals show an increase in AID59 mice at 4 and

21 months (Fig. 2, Column D) when total Tau is considered. Less

consistently, MC1 signal is augmented in the AID57 lines (Fig. 1,

Column B and C; Fig. 2, Column D).

Neuronal Tau distribution is not affected by AID
overespression

Our biochemical data does not reveal a net trend of Tau

phosphorylation induced by AID overexpression. Nonetheless, we

wanted to ascertain if subtle changes could be seen at the tissue

level, in both the quantity and the distribution of Tau

phosphorylation. Furthermore, we have searched if any neuronal

loss would be evident and if any microglia activation would be

induced by AID overexpression. In Fig. 3, we show representative

hippocampal immunostaining with antibodies against total Tau

(DA9; Fig. 3A, B, C), pSer202 (CP13; Fig. 3D, E, F), pSer396/404

(PHF1; Fig. 3G, H, I). We could not detect any substantial

difference in the amount and pattern of Tau phosphorylation, in

the hippocampal area and parahippocampal cortex, attributable

to AID overexpression. When using NeuN (Fig. 3J, K) and Iba1

(Fig. 3L, M) antibodies, neither neuronal loss nor microglia

activation was seen. We did not perform unbiased stereological

neuronal counting [39], given the paucity of indications toward a

substantial loss of neurons in these mice. Microglia staining did not

show signs of either recruiting or activation [40]. Of note, these

mice show Tau distribution and phosphorylation similar to what

previously described [29].

GSK3a/b is not significantly upregulated by AID
overexpression

Although the data presented do not hint to a role for AID in

promoting Tau accumulation or deranged phosphorylation, it is

still possible that transgenic AID may cause hyperphosphorylation

of Tau at later time, by activating kinases. Another model of

AID59 overexpression [22,28] shows GSK3b activation as early as

4 months, heterogeneous Tau phosphorylation as early as 8

months, and neurodegeneration at 18 months. When we analyzed

our transgenic mice however, we could not detect any significant

and consistent activation of GSK3b (Fig. 4, column C). The AID

57 and 59 transgenic mice show some GSK3b activation at 4

months, which is however not seen in older mice.

Discussion

To directly examine the effects of AID in vivo, in the CNS, we

generated transgenic mice expressing CaMKIIa-AID, to target

AID expression to areas that are most relevant to Alzheimer’s

pathology [32]. We generated transgenic lines expressing either

the 59- 57- or 50-residue AID peptide, which would be produced

by c-cleavage together with either Ab40 or Ab42, respectively, or

the ‘‘e-cleavage’’ [41,42]. The AID50 is reputed the naturally

occurring AID fragment. We obtained two AID59 (AID59-4.4

and -1.1), four AID57 (AID57-13.3, -5.1, -5.2 and -8.1) and three

AID50 (AID50-3.4, -1.5 and 5.2) founder mice. Some of these

lines have been analyzed here (AID50.1.5, AID57 5.1 and 13.3,

AID59.4.4). When transgenic mice are used, it is important to

study lines derived from more then one founder. This precaution is

AID Does Not Induce AD Traits
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Figure 1. Western Blot analysis of Tau phosphorylation. Heat Stable Preparation of Tau, from forebrains of AID/hTau mice, were run on PAGE
(Column A) and probed with antibodies specific for total Tau (DA9), pSer202 (CP13), pThr231 (CP9), pSer396/Ser404 (PHF1) and conformational
modification of human Tau (MC1). Densitometric quantification, both raw (Column B) and over total Tau (DA9, Column C), shows no clear cut change
in the pattern of Tau phosphorylation due to AID overexpression, related neither to AID length, mouse line nor age. Experiments were repeated at
least 3 times on at least 2 mice/line. Quantifications units are arbitrary. *p,0.05; **p,0.01; ***P,0.001.
doi:10.1371/journal.pone.0011609.g001

AID Does Not Induce AD Traits
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Figure 2. ELISA analysis of Tau phosphorylation. Homogenate from forebrains of AID/hTau mice were anaylzed by mean of sandwich ELISA,
capturing with the total Tau DA9 antibody, and revealing with antibodies specific for total human Tau (CP27), total mouse and human Tau (TG5), or
for several Tau phosphorylations, pSer202 (CP13) (Column A), pThr231 (CP17) (Column B), pSer396/Ser404 (PHF1) (Column C) and conformational
modification of human Tau (MC1) (column D). The top 16 panels show scattered differences in the phosphorylation pattern, which do not seem to be
related to AID overexpression, length, mouse line or age. The bottom panel (E) shows how levels of total human and murine Tau are maintained in
the different mouse lines and ages. Experiments were repeated at least 3 times on at least 2 mice/line. Quantifications units are arbitrary. *p,0.05;
**p,0.01; ***P,0.001.
doi:10.1371/journal.pone.0011609.g002

AID Does Not Induce AD Traits
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necessary to avoid erroneously attributing a phenotype, caused by

an insertional effect on endogenous mouse genes, to the transgene

itself.

A previous analysis of these mice showed that overexpression of

AID did not affect gene transcription. However, cultured neuronal

cells derived from AID transgenic mice were more sensitive to

selective apoptotic and toxic stimuli. This evidence suggests that

AID overexpression may predispose to neuronal degeneration.

Thus, we tested whether in vivo AID expression could initiate

aspects of AD that precede and lead to neuronal loss.

Contrarily to previous reports however [22,28], we failed to see

an AID-dependent activation of GSK3b and the phosphorylation

of Tau phosphorylation typical of AD. What could the basis of

these discrepancies be? There are several possibilities, which do

not need to be mutually exclusive. The findings implicating AID

in GSK3b activation and Tau pathology are based on the use of

a single mouse line, and the double transgenic model expresses an

AID molecule (AID 59) that probably does not correspond to the

one produced in vivo by processing of APP-CTFs. This is

problematic, for the reasons explained above. Although some

evidence pointed to a role of AID as a ‘‘nuclear regulator’’ per se

[43], the animal model used in these studies expresses Fe65, an

APP binding protein, together with AID 59, [44]. Thus, the

effectual contribution of AID to the described phenotypes is not

obviously clear. Mice transgenic for AID alone would have

helped, in that specific setting, to clarify the relative contribution

of Fe65 and the intracellular domain of APP to the observed

phenotypes. AID is very short lived [12] and it has been argued

that Fe65 could potentiate AID functions by stabilizing it [45].

On the other side, it has been suggested that AID, recruiting

Fe65 to the plasma membrane, is then able to release it and allow

its transcriptional function to take part in the nucleus, with or

Figure 3. Immunohistochemical analysis of AID/hTau mice. Forebrains were stained with antibodies against total Tau (DA9, A, B, C), pSer202
(CP13; D, E, F), pSer396/404 (PHF1; G, H, I), the neuronal protein NeuN (J, K) and the microglia activation protein Iba1 (L, M). The expressed AID
transgene, together with hTau, and mouse are indicated in the panels. Selected samples are representative of the analysis conducted on all AID/hTau
transgenics, at all ages. We found no significant difference in the amount and pattern of distribution of total Tau and its phosphorylations, in
hippocampal and peri-hippocampal neuronal cellularity and microglia activation between controls and AID expressing mice.
doi:10.1371/journal.pone.0011609.g003

AID Does Not Induce AD Traits
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without Tip60 [11,17,46]. The relationships between AID, Fe65,

transcriptional control and induction of apoptosis are still

uncertain, but several facts are of note. AID overexpression in

our model is very high, as determined by Real Time PCR, and as

evident from WB analysis [27]. In particular, we have shown how

AID 57 and 59 are well expressed at the protein level, while AID

50 is not, although its mRNA is abundant. Such overexpression,

we can assume, would probably be sufficient to activate kinases

and promote Tau phosphorylation, even in the absence of Fe65

overexpression.

Figure 4. Western Blot analysis of GSK3b activation. Forebrain lysates from different lines of AID/hTau mice, at 4 different ages, were run on
PAGE (Column A) and probed with antibodies against total GSK3a and b, the inhibiting phosphorylation pSer9 and the activating phosphorylation
pTyra279/b216. Densitometric quantification over b-Actin only (Column B) and over total GSK3a/b (Column C), shows no clear cut activation or
inhibition of GSK3bby AID overexpression, related neither to AID length, mouse line nor age. Experiments were repeated at least 3 times on at least 2
mice/line. Quantifications units are arbitrary. *p,0.05; **p,0.01; ***P,0.001.
doi:10.1371/journal.pone.0011609.g004

AID Does Not Induce AD Traits
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Do our data exclude a role for AID in AD? A common view for

mechanisms underlying early pathophysiology of Alzheimer’s

disease (AD) includes axonopathy [47] and changes at synaptic

level leading to subtle amnesic symptoms at an early stage of

disease [48]. APP processing occurring in axonal extensions and/

or synapses, leading to regional production of AID, may play a

physiological role that, if disregulated, could lead to synaptic

disfunction. In transgenic animals, most of AID is produced in the

cell body, ‘‘far’’ from those neuronal compartments (axons/

synapses) were this peptide might play its pathophysiological role.

It is also likely that reduction in AID levels plays a pathogenic role

in AD. The evidence that mutations in PSEN1/PSEN2 that cause

Familial Alzheimer’s disease are loss of function mutants, and that

loss of PSEN1/PSEN2 function causes neurodegeneration in mice,

supports this hypothesis [49,50,51,52,53]. In these cases, AD

pathology coincides with lower production of total Ab, an increase

of the Ab42/Ab40 ratio, and a reduction of total AID.

In conclusion, our transgenic model shows that overexpression

of several isoforms of AID in the CNS fails to reproduce obvious

signs of AD-like pathology in mice. These data question whether a

generalized overexpression of this APP fragment can address its

role in both biology and disease if it is disjointed from the in vivo

physiopathological context in which it is generated. Given these

premises, AID and its functions should be investigated not much as

a source of AD pathology, but as a possible interesting intracellular

signaling pathway, much similar to NOTCH and NICD, that is

still obscure but highly likely to be effective in neurons, possibly

under stressing conditions.
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