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Abstract
The notions of degeneracy and redundancy are important constructs in many areas, ranging from genomics through to
network science. Degeneracy finds a powerful role in neuroscience, explaining key aspects of distributed processing and
structure–function relationships in the brain. For example, degeneracy accounts for the superadditive effect of lesions on
functional deficits in terms of a “many-to-one” structure–function mapping. In this paper, we offer a principled account of
degeneracy and redundancy, when function is operationalized in terms of active inference, namely, a formulation of
perception and action as belief updating under generative models of the world. In brief, “degeneracy” is quantified by the
“entropy” of posterior beliefs about the causes of sensations, while “redundancy” is the “complexity” cost incurred by
forming those beliefs. From this perspective, degeneracy and redundancy are complementary: Active inference tries to
minimize redundancy while maintaining degeneracy. This formulation is substantiated using statistical and mathematical
notions of degenerate mappings and statistical efficiency. We then illustrate changes in degeneracy and redundancy during
the learning of a word repetition task. Finally, we characterize the effects of lesions—to intrinsic and extrinsic
connections—using in silico disconnections. These numerical analyses highlight the fundamental difference between
degeneracy and redundancy—and how they score distinct imperatives for perceptual inference and structure learning that
are relevant to synthetic and biological intelligence.
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Introduction
Degenerate functional architectures generally feature multiple
pathways that are available to fulfill a particular functional
endpoint (Tononi et al. 1999; Price and Friston 2002; Friston and
Price 2003). A simple example would be that either the left or
right hand could be used to “lift a cup.” This provides a degen-
erate structure–function relationship that preserves function
following damage because, in this example, the ability to lift a
cup is conserved if only one hand is damaged. The basic idea
pursued in this paper is that degeneracy affords a flexibility
that offsets the cost of redundancy. For example, being able
to lift a cup with the right or left hand keeps “options open,”
while using both hands would be redundant. Furthermore, when
multiple functions can be supported by the same structures (i.e.,
when there is a many-to-many mapping between structure and

function), the trade-off between degeneracy and redundancy
becomes even more pronounced. For example, when conducting
fine-control tasks like painting or surgery, is it more efficient for
both hands to be equally dextrous or is one “preferred hand”
sufficient? In what follows, we try to answer this question using
notions of Bayes optimality inherent in active inference (Friston,
FitzGerald, et al. 2017a).

Degeneracy is often mistakenly confused with redundancy
(Whitacre and Bender 2010). Redundancy is the counterpart
of “efficiency” (Barlow 1961, 1974; Laughlin 2001) and implies
an inefficient use of a system’s degrees of freedom to achieve
a particular functional endpoint. As noted above, it would be
redundant to use both hands to “lift a cup,” when one was
sufficient. The purpose of this paper is to disambiguate degen-
eracy and redundancy in formal and quantitative terms—and
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establish the validity of these definitions at complementary
levels using the free energy principle. The free energy principle
is, put simply, a technical way of articulating the Bayesian brain
hypothesis (Knill and Pouget 2004; Daw et al. 2005; Doya et al.
2007; Friston 2009). In virtue of committing to the Bayesian brain
hypothesis, we also commit to the complete class theorem (Wald
1947). This means that—by definition—any observable behavior
under some specifiable loss function can be cast as free energy
minimization.

In the first section, we consider the theoretical basis of
degeneracy and redundancy in the context of the free energy
principle and active inference (Friston et al. 2006). In short,
degeneracy is formulated as the flexibility afforded by our
internal explanations for sensory outcomes, while redundancy
becomes the complexity cost incurred by constructing those
explanations. By operationalizing function as such, we assume
some functional constraints—on synthetic and biological
intelligence supervenes. This section concludes by rehearsing
some straightforward but revealing insights—under this
formulation—about the nature of degeneracy and redundancy
and how they stand in relation to each other.

The formulation presented provides a Bayesian formalism of
the intuitions (Price and Friston 2002; Friston and Price 2003),
natural (and principled) extensions to the mutual information
(i.e., complexity) parameterization (Tononi et al. 1999; Man et al.
2016), and conceptual treatments of the fundamental rationale
for degeneracy (i.e., self-organizing processes) in (Kelso 2012).
It provides a potentially useful way of investigating degeneracy
and redundancy—within synthetic and biological intelligence—
beyond structural quantification.

The second section uses simulations and numerical analy-
ses to illustrate how degeneracy and redundancy depend upon
the structure of a generative model—and the implicit neuronal
connectivity. As an illustrative example, we investigated the
relationship between redundancy and degeneracy in a gener-
ative model of word repetition (i.e., the ability to repeat back
a heard word). The key argument of this section rests on a
series of model comparisons that quantify changes in degen-
eracy and redundancy following removal of particular connec-
tions or model parameters (i.e., in silico lesions). Specifically,
we removed connections that were redundant in relation to the
task at hand. This removal is consistent with formulations of
redundancy in the context of synaptic homoeostasis (Tononi
and Cirelli 2006) and the elimination of redundant model param-
eters during sleep (Hobson and Friston 2012). We hypothesized
that removing redundant connections would increase model
evidence by reducing redundancy, relative to degeneracy.

The third section focuses on another type of in silico lesion
experiments: removal of nonredundant connections as might
happen in pathological disorders. Here, we associate different
sorts of pathology with a selective impairment of extrinsic
(between-region) and intrinsic (within-region) connectivity. Our
expectation was that lesions to both intrinsic and extrinsic
connections would show a superadditive effect on behavioral
performance. Here, superadditive refers to increased (negative)
effects on accuracy as a result of a dual lesion, in contrast to
combined effects of single lesions. Furthermore—due to tightly
coupled connection between redundancy and degeneracy—we
hoped to show that pathological disconnections “increased”
redundancy—and that this increase was greater than the
accompanying increases in degeneracy. Crucially, the effect of
lesions can also be used to identify the neuronal correlates
of belief updating. This allowed us to make some empirical

predictions about electrophysiological responses to word
repetition under different lesion loads.

We conclude with a brief discussion about the implications
of this formulation of degeneracy (and redundancy) for active
Bayesian inference in the brain and lesion studies.

Degeneracy, Redundancy, and Active Inference
The definitions of degeneracy and redundancy on offer in this
work rest upon a commitment to the free energy principle,
namely, that the functional imperative for any sentient system—
in particular the brain—is to minimize variational free energy
(Friston 2019; Sajid et al. 2019). This is equivalent to maximizing
the evidence for internal generative models of how sensations
are caused (Dayan et al. 1995). This evidence is also known as the
marginal likelihood. In short, brain function can be measured in
terms of its ability to self-evidence (Hohwy 2016). There is a large
literature on the free energy principle, active inference, and sta-
tistical physics that underwrites this formulation of action and
perception in the brain, which is usually referred to as “active
inference” (a.k.a. predictive processing) (Clark 2016). Here, vari-
ational free energy is an information theoretic construct that,
while related to homologous concepts in physics, should not be
interpreted directly in terms of metabolic energy.

For those people unfamiliar with the free energy principle, it
can be read as a general principle that subsumes most (arguably
all) normative theories of sentience and self-organization in
the neurosciences, for example, the Bayesian brain hypoth-
esis, predictive processing, active inference, reinforcement
learning, Bayesian decision theory, universal computation, and
treatments based upon information theory (i.e., the principle
of minimum redundancy, the principle of maximum efficiency,
and so on) (Barlow 1961; Optican and Richmond 1987; Sutton and
Barto 1998; Knill and Pouget 2004; Hutter 2006; Doya et al. 2007;
Gershman and Daw 2017; Stachenfeld et al. 2017). In other words,
it is an optimality principle (based upon Hamilton’s principle
of least action) that furnishes a description of perception and
action in formal (information theoretic) terms. In and of itself,
it is not central to the arguments of this paper—it simply
provides a formal specification of “function” in the sense of
“structure–function” relationships.

Central to this treatment is the notion of a “generative model”
that can generate predictions of the sensory consequences
of plausible causes—usually referred to as “hidden states” of
the world. The form or structure of this generative model can
then be adopted as the “structure” in understanding structure–
function relationships. This structure underwrites functional
brain architectures, which realize active inference (Friston
and Buzsaki 2016). Our focus here is on how degeneracy and
redundancy manifest in terms of active inference and implicit
structure–function relationships. To understand the formal
nature of degeneracy and redundancy, it is useful to unpack
free energy in terms of its constituent parts. In what follows,
we will use free energy and surprisal synonymously to refer to
the negative logarithm of the probability of any sensory input
under a generative model. This probability is the Bayesian model
evidence or marginal likelihood that has to be maximized by
any system that perceives, acts, and learns in a changing world
(Friston 2019). Additionally, at a neuronal level, Isomura and
Friston (2018) have shown that even in vitro neural networks
minimize their (variational) free energy.

Statistically speaking, free energy can always be expressed
in terms of “accuracy” and “complexity.” In other words, the log
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evidence associated with any pattern of sensory outcomes—at
any point in time—can be separated into accuracy and complex-
ity, where the (log) evidence is accuracy minus complexity. In
terms of free energy:

F = EQ [ln Q(s) − ln P (s, o)]

= DKL

[
Q(s)

∥∥∥P (s|o)
]

︸ ︷︷ ︸
evidence bound

− ln P(o)︸ ︷︷ ︸
log evidence

= DKL

[
Q(s)

∥∥∥P(s)
]

︸ ︷︷ ︸
complexity

−EQ

[
ln P (o|s)

︸ ︷︷ ︸
accuracy

]

= EQ [− ln P (s, o)]︸ ︷︷ ︸
energy

−EQ

[
− ln Q(s)

︸ ︷︷ ︸
entropy

]

These expressions show that free energy depends on a gen-
erative model P(s, o), which describes the relationships between
(hidden) states (s) that cause (observed) outcomes (o), and pos-
terior beliefs about the causes Q(s). This means that to self-
evidence, it is necessary to find an accurate explanation for
sensory observations that incurs the least complexity cost (as
indicated by the third equality above). Formally, the accuracy is
the expected log likelihood of the sensory outcomes, given some
posterior beliefs about the causes of those data. Complexity is
the difference between these posterior beliefs and prior beliefs,
that is, prior to seeing the outcomes. In essence, complexity
scores the degree to which posterior beliefs have to move away
from prior beliefs to explain the data at hand. Alternatively, they
can be thought of as the degrees of freedom that are used to
provide an accurate account of sensory data. The imperative to
minimize complexity is manifest in many guises, most com-
monly referred to in terms of “Occam’s principle,” namely, the
simplest of equally accurate explanations is the best (Maisto
et al. 2015).

An alternative way of carving up free energy is in terms
of “energy” and “entropy” (see the last equality above). These
terms inherit, by analogy, from free energy functionals in sta-
tistical physics. The energy here is the expected log probabil-
ity of both the sensory consequences and their causes, under
posterior beliefs. The entropy is the uncertainty of those poste-
rior beliefs. The imperative to maximize entropy is commonly
referred to in terms of “Jaynes maximum entropy principle”
(Jaynes 1957). Heuristically, it refers to the importance of “keep-
ing one’s options open” (Klyubin et al. 2008; van der Meer et al.
2012; Schwartenbeck et al. 2015) or avoiding a commitment to
a particular account of how some data were caused. A failure
to minimize entropy, and indeed complexity, in statistics is
reflected in an over parameterization of the generative model,
which leads to overfitting and a failure to generalize to some
new (sensory) data. This is a pernicious sort of failure that
plagues many applications in machine learning (Hochreiter and
Schmidhuber 1997; Lin et al. 2017).

The free energy formulation of degeneracy and redundancy is
elemental, and therein lies its significance. Free energy is simply
a way to articulate what function means, in relation to degen-
erate or redundant function. Function here entails maximizing
model evidence. This licenses the use of belief updating—with
an overtly representational stance—to define degeneracy and
redundancy mathematically. In what follows below, we relate
these concepts—of entropy and complexity—to degeneracy and
redundancy.

Degeneracy Explained

If we consider the mathematical and statistical definitions
of degenerate mappings and redundancy, we see a clear
relationship between “complexity” and “redundancy”—and
between “entropy” and “degeneracy.” Degenerate solutions,
functions, or mappings refer to the nonuniqueness of a solution
or a “many-to-one” (injective, nonsurjective) relationship. For
example, degenerate eigenvalue solutions in quantum physics
mean that there are many linearly independent eigenstates
that have the same eigenvalue (Wheeler 1989; Garriga and
Vilenkin 2001; Goold et al. 2016). This indeterminacy is seen
in the area of ill-posed inverse problems: Returning to the cup
lifting example above, not only is there a heuristic degeneracy
implied by the use of one hand or the other, the trajectory of
the hands during the act of grasping is itself a degenerate or ill-
posed problem, known as Bernstein’s problem (Bernstein 1967).
In other words, there are an infinite number of ways that “I
can move my hand to lift a cup.” This poses a problem when
issuing motor commands or predictions to realize a particular
functional endpoint. Solving this problem underwrites nearly all
Bayesian inference, namely, using (prior) constraints to resolve
ill-posed problems, characterized by degenerate mappings
between causes and consequences.

To measure this sort of degeneracy, we will associate function
with self-evidencing. Then, the essence of degeneracy lies in the
“many-to-one” mapping between causal structures in the gener-
ative model (i.e., representations or constructs) and the observ-
able outcomes (i.e., sensory data). This means that degeneracy is
measured by the number or variety of distinct causes that could
produce the same outcome. Mathematically, high degeneracy
implies that the posterior probability or belief about causes (i.e.,
hidden states) will—in the context of a degenerate mapping
between causes and consequences—have a large entropy. This
is precisely the entropy part of the free energy above. In short,
this means that we can associate the entropy of posterior beliefs
about the causes of our sensorium with degeneracy. Minimizing
free energy therefore requires the maximization of degeneracy,
under constraints of energy minimization. This is a ubiquitous
conclusion that is found throughout statistics and physics, often
referred to as the maximum entropy principle (Jaynes 1957;
Banavar et al. 2010; Seifert 2012).

Intuitively, suppose we wanted to infer the causes of some
outcome—say “lifting a cup.” Given the observation or goal of
“lifting a cup,” there is no implicit information to disambiguate
between right- or left-handed lifting movement. Formally, this
means our representations (i.e., posterior beliefs) are uniformly
distributed over the causes of this “cup lifting” consequence. A
completely degenerative mapping from causes to consequences
has the highest entropy: here, a 50:50 posterior over two (mutu-
ally exclusive) causes. To link this example to lesion studies, if I
wanted to use some posterior beliefs to predict what I am going
to do, the accompanying structural representations of a right- or
left-handed movement are sufficient to produce that outcome.
However, if I am unable to represent either cause, I will be unable
to realize the outcome.

Redundancy Explained

In the statistics and neuroscience literature, “redundancy” is
the complement of “efficiency” (Barlow 1961; Laughlin 2001;
Still et al. 2012; Sengupta et al. 2013). Returning to Bernstein’s
problem above, there is one especially efficient trajectory that
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takes my hand to the cup, with the minimum expenditure of
energy. This follows from variational principles of least action,
speaking to a unique and maximally efficient movement. The
average efficiency can, in the present setting, be associated with
redundancy via the equivalence of the principles of maximum
efficiency (Barlow 1974; Linsker 1990) and minimum redundancy
(Mohan and Morasso 2011). In terms of self-evidencing and
free energy minimization, maximizing efficiency corresponds to
minimizing the complexity of an inference (possibly about the
action that we are currently taking).

Previously, we have defined complexity as the difference
between posterior and prior beliefs, that is, beliefs before and
after seeing the outcomes (Friston 2009; Kanwal et al. 2017; Da
Costa et al. 2020). Therefore, large divergences from prior beliefs
to posterior beliefs would incur a greater complexity cost, that is,
have a larger redundancy. Taking the example of “lifting a cup,”
I can use my right hand, left hand, or both. If a priori I believed I
might use either hand—and in witnessing my action, I only used
one—the difference between posterior and prior beliefs would
be large (high complexity cost). In contrast, if my prior beliefs
suggest that I use the hand nearest to the cup, and I use that
hand, the difference between posterior and prior beliefs would
be small (low complexity cost).

This complexity is another important part of free energy;
therefore, minimizing free energy requires a minimization
of complexity or redundancy. This minimization manifests
in many ways and—under some simplifying assumptions—
directly implies the principles of maximum mutual information
or the Infomax principle (Linsker 1990). From our perspective, we
just need to note that complexity is redundancy and, everything
else being the same, redundancy has to be minimized, as
dictated by Occam’s principle (Ay 2015; Maisto et al. 2015).

Degeneracy and Redundancy

This formulation of degeneracy and redundancy has several
consequences, some of which are quite revealing. Firstly, degen-
eracy and redundancy are well-defined measurable quantities,
given some outcomes—and a generative model—under ideal
(active) Bayesian observer assumptions. Furthermore, they have
the same units of measurement (i.e., natural units, if we use
natural logarithms of probabilities, bits, if we use binary loga-
rithms). This means degeneracy and complexity are measured
in the same currency and can be compared quantitatively. Addi-
tionally, they are both attributes of posterior (probabilistic, sub-
personal) beliefs. Degeneracy is a statement about the uncer-
tainty (i.e., entropy) of a posterior belief, while complexity is
a measure of the relative uncertainty (i.e., relative entropy) of
a posterior belief “in relation to a prior belief.” In this sense,
redundancy reflects the degree of belief updating, often called
“Bayesian surprise” in the visual neurosciences (Itti and Baldi
2009; Sun et al. 2011).

In virtue of the fact that one can measure the expected
degeneracy and redundancy (i.e., entropy and complexity)
during belief updating, one can associate degeneracy and
redundancy with a particular generative model. In turn, this
means that degeneracy and redundancy are context-sensitive
attributes of a generative model—because belief updating
depends upon the data or outcomes at hand. This context
sensitivity is important. In other words, what may be redundant
in one context or experimental setting may not be redundant in
another.

Furthermore, the imperatives to reduce degeneracy and com-
plexity are in opposition. If function is defined in terms of
minimizing free energy—or maximizing model evidence—then
function entails a “minimization” of redundancy and a “maxi-
mization” of degeneracy, under accuracy and energy constraints,
respectively. These constraints mean that neither degeneracy
nor redundancy is a complete specification of function, when
defined in terms of self-evidencing. This means that one can-
not talk about minimizing degeneracy or redundancy without
knowing the implications for how changes in posterior beliefs
affect accuracy and energy. Having said this, there is one impor-
tant exception. In the absence of sensory data, the free energy
reduces to redundancy, because the accuracy term disappears,
leaving only complexity. This means that optimizing a genera-
tive model offline (e.g., during introspection or sleep) affords the
opportunity to minimize redundancy (Hinton et al. 1995; Hobson
and Friston 2012).

Crucially, one cannot change degeneracy without changing
redundancy—and vice versa. This follows naturally from the free
energy formulation above, which means that redundancy equals
“cost” minus degeneracy, where cost is the negative expected
value of the inferred state of affairs—and value is the logarithm
of prior preferences (Friston et al. 2015):

DKL

[
Q(s)

∥∥∥P(s)
]

︸ ︷︷ ︸
redundancy

= EQ [− ln P(s)]︸ ︷︷ ︸
cost

−EQ

[
− ln Q(s)

︸ ︷︷ ︸
degeneracy

]

In other words, redundancy can be interpreted as a cost
that is offset by degeneracy, highlighting the opposing roles of
redundancy and degeneracy. This relationship also speaks to
the pre-eminent role of prior beliefs in defining the relation-
ship between degeneracy and redundancy—and their contribu-
tions to evidence or marginal likelihood. These prior beliefs are
the quantities that are optimized during learning, for exam-
ple, experience-dependent plasticity (Gershman and Niv 2010;
Tervo et al. 2016; Testolin and Zorzi 2016; Gershman 2017) and,
importantly, changes to the structure of the generative model
due to lesions. In short, changes to the structure can always be
articulated in terms of changes to a prior (Friston and Penny
2011). Thus, the changes to the priors necessarily change the
posterior (following belief updating), and changes in the two
necessarily mean a change in redundancy and degeneracy.

From a practical perspective, given these definitions, it is
clear that to quantify degeneracy and redundancy, one needs the
entire belief structure—and belief updating—that accompanies
experience-dependent learning. In turn, this means that it is
necessary to measure the distributed aspects of probabilistic
representations in the brain. Put another way, redundancy and
degeneracy cannot be localized to a particular representation or
neuronal system; they are properties of distributed representa-
tions that underwrite belief updating throughout (hierarchical)
generative models or cortical structures. By distributed repre-
sentations we are referring to how sensory features of observed
outcomes are being encoded neuronally. This may have impor-
tant implications for understanding the impact of lesions—as
scored through changes in degeneracy and redundancy. Note
that in this quantitative treatment, degeneracy and redundancy
are attributes of a function, namely, some perceptual recog-
nition or overt action. As noted above, this kind of degener-
acy (and redundancy) can be context-sensitive and therefore
cannot be inferred from anatomical connections alone—it can
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only be inferred from the functional message passing along
these connections. In this sense, the empirical measurement of
degeneracy and redundancy necessarily relies upon some form
of functional neuroimaging or electrophysiology.

In the remainder of this paper, we unpack some of the above
points and pursue their construct validation using simulations
of active inference, where we know exactly the form of belief
updating and can measure degeneracy and redundancy. Our aim
is to illustrate the correspondence between these mathematical
quantities and the use of these terms in the context of lesion
studies.

Simulations of Word Repetition
In this section, our objective was to illustrate how learning or
experience-dependent plasticity in neuronal structures (i.e., the
brain’s generative model) produces changes in degeneracy and
redundancy. For this, we chose a canonical paradigm in the neu-
ropsychology of language, namely, word repetition (Burton et al.
2001; Hope et al. 2014). The first step was to specify a generative
model and active inference scheme that is apt for simulating
this paradigm. We used a (Markov decision process) generative
model of discrete outcomes that are caused by discrete hidden
states: described extensively in Friston, FitzGerald, et al. (2017a),
Friston, Lin, et al. (2017b). For technically minded readers, we
have included a detailed description of the generative model and
accompanying belief updates in the Appendix. These equations
are a bit involved; however, the generative model on which they
are based is very general—and can be applied in most settings—
where outcomes and their causes can be expressed in terms of
distinct (i.e., discrete) states.

Through our simulations, we evaluated the minimization of
redundancy, using a formulation of structure learning. In other
words, after some suitable experience with—and learning of—
a word repetition task, we withheld sensory information and
adjusted the parameters of the generative model (i.e., connec-
tion strengths) to minimize complexity and thereby eliminate
redundant parameters. We then repeated the paradigm to quan-
tify the effects of complexity and degeneracy. We anticipated
that this targeted elimination of redundant parameters would
selectively suppress redundancy in relation to degeneracy. In the
subsequent section, we use a similar manipulation but reduce
nonspurious connectivity to simulate synthetic lesions.

The Generative Model

The paradigm used to illustrate the differences between degen-
eracy and redundancy was a word repetition task: The subject is
presented with a single word (e.g., triangle, red, etc.), at each trial,
and asked to repeat it. If the agent repeats the word correctly,
they are given a positive evaluation (and negative otherwise).
The generative model—comprising appropriate probability dis-
tributions—was deliberately minimal to illustrate the role of
redundancy and degeneracy (Fig. 1). The (categorical) probability
distributions were based on an empirical understanding of how
subjects respond in a word repetition paradigm (Hope et al.
2014). Specifically, it is an expression of how experimental stim-
uli are generated during an experiment (conditioned upon sub-
ject responses). We assume that subjects adopt similar models
to mirror this process. This model can be plausibly scaled to
account for larger lexical content (i.e., words) or equipped with
lower hierarchical levels to model articulation.

The generative model has three (hidden) state factors,
“epoch, target word, and repeated word,” along with three
outcome modalities, “proprioception, evaluation, and audition.”
The “epoch” factor covers stages of the trial: listening to target
word (i.e., epoch 1), repeating the target word (i.e., epoch 2),
and receiving performance evaluation (i.e., epoch 3). The “target
word” factor has states corresponding to a heard word: red,
blue, triangle, or square. The “repeated word” factor’s states
covered what should be repeated: blue, triangle, square, red,
and a spurious level “read” (to model redundancy). The level
“read”—past tense of read and pronounced in the same way as
red—is spurious within our model specification. This is because
despite having the same phonetic form as “red,” it denotes
something quite different (study instead of a color). The spurious
level “read” has been included to introduce some redundancy
within the belief space. In terms of outcome modalities, the
“proprioception” outcome reports whether my mouth moved
or not. The “audition” outcome reports the current (spoken
or heard) word: red, blue, triangle, or square. The “evaluation”
outcome represents the positive or negative response received
(only provided at the third epoch). In Figure 1, the lines represent
plausible connections (and their absence reflects implausible
connections), with the arrow denoting direction. For example,
the line mapping hidden state epoch “1” to outcome modality
proprioception “ . . . ” suggests that “ . . . ” is only plausible at
epoch “1,” but not “2” or “3.” Similarly, the line for hidden state
target word “blue” to itself reflects that level “blue” can only
transition to itself and no other word, throughout the trial.

The likelihood (A)—mapping between states (i.e., causes or
structures) and outcomes (i.e., consequences or functions)—
is represented by the lines connecting states to outcomes in
Figure 1. When inversion of a model is formulated in terms
of neuronal message passing, these connections take the form
of extrinsic connections (i.e., between brain regions or neu-
ronal populations encoding posterior expectations). Each sen-
sory (outcome) modality is associated with its own likelihood.
The “proprioceptive” likelihood depends on the “epoch” factor;
if I believe it is epoch 1 and I am listening to the target word, then
my mouth is not moving. If I believe it is epoch 2 and I am repeat-
ing the target word, then my mouth is moving. The “audition”
likelihood depends on either “repeated word” (for epoch 2) or
“target word” (for epoch 1) factors. Which of these is responsible
for generating auditory input depends on the epoch in play?: For
example, in epoch 1, the “audition” likelihood maps the target
word (square) to auditory input (square). For state “red/read,”
both the original and spurious are mapped to the same auditory
outcome (“red”) for when I am speaking, as shown in Figure 1.
The likelihood is defined as a one-to-one mapping between the
“target word” and “audition,” if I believe I am at epoch 1 of the
trial. Conversely, if I believe I am at epoch 2 or 3, there is a
one-to-one mapping between “repeated word” and “audition.”
The “evaluation” likelihood depends on all the hidden states.
Positive evaluation is given at epoch 3, if I am repeating the
previously heard word correctly. For example, if I am repeating
triangle—after hearing triangle (resp. square)—I will get positive
(resp. N. negative) evaluation. The likelihood is defined as map-
ping to 1) neutral feedback—regardless of “target” and “repeated
word”—if the epoch is 1 or 2; 2) positive feedback, if the repeated
and target word match at epoch 3; and 3) negative otherwise.

The transition matrices, B—transitions among the hidden
states encoding prior beliefs about trajectories or narratives—
are represented by lines modeling transitions among states
within each factor in Figure 1. When interpreted as message

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa148#supplementary-data


Degeneracy and Redundancy in Active Inference Sajid et al. 5755

Figure 1. Generative model. Graphical representation of the generative model for word repetition. There are three (hidden) state factors, epoch, target word, and
repeated word, and three outcome modalities, proprioception, evaluation, and audition. The hidden state factors had the following levels (i.e., possible alternative
states). Epoch (three levels) indexes the phase of the trial. During the first epoch, the target word is heard. The second epoch involves repeating the word. The third

phase elicits a positive evaluation, if the repeated word matches the target word and a negative evaluation otherwise. The repeated word factor includes the words
that our (synthetic) subject can choose to say (five levels). Note the deliberate inclusion of the spurious word “read” (darker green). The target word factor (four levels)
lists the words the experimenter can ask the participant to repeat. The lines from states to outcomes represent the likelihood mapping, and lines mapping states
within a factor represent allowable state transitions. For clarity, we have highlighted likelihoods and transition probabilities that are conserved over state factors and

outcome modalities. For example, the “audition” likelihood mapping the target word (square) to audition (square) is shown for epoch 1, but similar mappings apply,
when mapping between “blue” and “blue.” It is important to note the spurious repeated word “read” (darker green) is treated the same as other levels for this particular
factor; that is, for the audition likelihood, it maps directly to audition modality “red” for epoch 2. One (out of a total of five) example transition probability is highlighted

for the repeated word; that is, the transition is always to blue, regardless of previously spoken word (red, read, triangle, square, or blue). This transition represents the
choice to say “blue.” Similar mappings are applied when choosing to say “triangle,” regardless of the previous word. Alternative actions then correspond to alternative
choices of transition probability.

passing between neural populations, these denote intrinsic con-
nections (i.e., connectivity within brain regions or neuronal
populations encoding posterior expectations) as they map from
and to the same set of states. For the “epoch” factor, the tran-
sitions are from 1 to 2 and 2 to 3 with 3 being an absorbing
state (i.e., the final epoch is of the third epoch type). For the
“repeated word” factor, there are five possible transitions. These
involve transitions to a specific word, where the word depends
upon which action is selected. An example transition would
be that when I choose to say “blue,” regardless of previous
word (red, triangle, etc.), I transition to blue (highlighted in
Fig. 1). The transition matrix for the “target word” is an identity
matrix. This means the target word stays the same over all
epochs.

The likelihood and transition matrices outlined above can
themselves be learned over multiple trials of the word repeti-
tion task, resulting in changes in degeneracy and redundancy
associated with belief updating. This rests upon accumulation
of Dirichlet parameters that act as “pseudocounts” and encode
synaptic connection strengths. The more often a given pairing
(of state and outcome or past and present state) is observed,
the greater the number of counts attributed to that pairing.
By dividing the number of counts for each by their total, we

arrive at the new (learned) probability distributions. It is worth
emphasizing two aspects of this accumulative process. The first
is that it closely resembles Hebbian plasticity, where synaptic
efficacy is incremented upon the simultaneous firing of a pre-
and postsynaptic neuron. The second is that this plastic poten-
tial depends upon the number of Dirichlet counts assumed at
first exposure to the task. This number may be thought of as
quantifying the confidence in prior beliefs about these condi-
tional probability distributions and the resistance to moving
away from these priors. To ensure learning the initial Dirichlet
concentration parameters, of both the likelihood and transition
prior distributions, were set to 1 for plausible and 0.5 for implau-
sible elements. During learning, we hoped to demonstrate an
overall reduction in redundancy—in relation to accuracy—and
an increase in degeneracy, in relation to energy. This allows us
to explicitly represent how redundancy may evolve over time
within a system; our model learns to understand its environ-
ment allowing for redundancy to go down (with appropriate
evidence accumulation) until it plateaus. Please see Friston et al.
(2016) for a discussion of learning under these active inference
schemes.

The simulated subject was equipped with strong preferences
(measured in nats, i.e., natural logarithm) for receiving positive
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evaluation (0.5 nats). Additionally, the subject was allowed to
choose from a set of five different deep policies (sequences
of actions), each of which is a different permutation of how
(controlled) state transitions might play out. The prior beliefs
about the initial states were initialized to 10 for all “repeated”
and “target word” levels, epoch 1 for the “epoch” factor and zero
otherwise. The precision over action selection (α) was specified
as a relatively high level of 16 (Schwartenbeck et al. 2015). Hence-
forth, any mention of “subjects” refers specifically to simulated
active inference models, based on random initialization.

Evaluating Redundancy

We have associated redundancy with complexity, namely, the
difference between posterior beliefs and prior beliefs about hid-
den states generating outcomes. Using this definition, we can
measure redundancy (via complexity), given some outcomes
and specified generative model, under ideal Bayesian observer
assumptions. We start with a simple setup. The generative
model—with the spurious level (“read”) as described above—
was used to simulate 500 trials for 50 different subjects (based
on random initialization seeds). For each trial the subject had
to repeat one of the four possible words (i.e., “red,” “square,”
“triangle,” or “blue”).

To illustrate the effects of learning on degeneracy and redun-
dancy, we computed the free energy, posterior entropy (i.e.,
degeneracy) and complexity (i.e., redundancy) for each trial
(averaged over epochs, hidden factors, and subjects). The results
are shown in Figure 2 as a function of trials. As anticipated, there
is a gradual reduction in free energy, that is, a large increase in
model evidence due to experience-dependent learning. This is
accompanied by a reduction in redundancy and a small reduc-
tion in degeneracy. In other words, skill acquisition or structural
learning under this word repetition task increases model evi-
dence by reducing redundancy. In what follows, we turn to the
effect of changing connections, not by experience-dependent
learning but by selectively removing certain connections. To
examine this, we precluded (further) learning by preventing any
further updates to the model parameters (i.e., connectivity).

We next examined the effects of removing redundant model
parameters or connections. In brief, we simulated structure
learning by removing the spurious hidden state (i.e., “read”). This
was implemented by setting the Dirichlet concentration to the
same value (i.e., 10), for all the likelihood mappings associated
with the repeated word, “read.” This means the model makes
imprecise predictions for all sensory outcomes that are gener-
ated by “read.” In effect, this disconnects the representations of
a hidden state from representations of sensory outcomes. An
example of the difference in Dirichlet parameters between the
spurious and nonspurious generative model for the “repeated
word” factor mapping to “audition” is shown in the top row of
Figure 3 (with respect to target word “red,” at epoch 3).

We reran the experimental paradigm in the absence of redun-
dant connections (i.e., disconnected the spurious level)—for 50
simulated subjects across 10 trials. Here the Dirichlet concen-
tration—excluding the likelihood mappings associated with the
spurious repeated word “read”—was parameterized using the
postlearning (i.e., after the 500 trials) probability distribution
from the prior simulations. We then measured the total redun-
dancy and degeneracy (averaged over epochs, trials, hidden
factors, and subjects). The results are shown in the first two
rows of Table 1, eight simulations with (Y) and without (N)
spurious connections. For ease of visualization, the free energy,

redundancy, and degeneracy are also shown as bar plots in
Figure 4, with and without the removal of spurious connections.

The targeted elimination of spurious (connectivity) parame-
ters selectively reduced redundancy in relation to degeneracy:
The decrease in redundancy (of 3.88 nats)—when comparing
the spurious and nonspurious structures—was driven by cost
(reduced by 4.52 nats), as opposed to degeneracy (reduced by 0.64
nats). This is consistent with the interpretation of redundancy as
a cost that is offset by degeneracy. It also demonstrates how prior
beliefs define the relationship between degeneracy and redun-
dancy: Differences in priors produce differences in posteriors—
as exemplified by the second row of Figure 3 (posterior beliefs
in the spurious model are less precise, compared to posterior
beliefs in the model without spurious representation). In short,
changes in priors and posteriors necessarily entail changes in
redundancy and degeneracy. Furthermore, minimizing redun-
dancy by changing posterior beliefs has a direct impact on
accuracy of the generative model, here, an increase in accuracy
of 0.09 nats. However, as detailed below, this has little impact on
behavior (postlearning), due to the very similar belief updating
under the two models (Fig. 5).

In Silico Lesion Studies
This section looks more closely at the effects of lesions on func-
tion, as scored by changes in free energy, degeneracy, and redun-
dancy—and accompanying neuronal and behavioral (i.e., accu-
racy) responses. Lesions were simulated by changing the priors
of the generative model (i.e., Dirichlet concentration param-
eters) in the same way as the redundant connections were
removed in the previous section. However, here, we are remov-
ing the “wrong kind” of connections to simulate a lesion—as
opposed to removing the “right kind” of (redundant) connections
to simulate structure learning. Our aim was to demonstrate a
profound “increase” in redundancy and concomitant accuracy
deficits, particularly with dual (synthetic) lesions.

Here a “lesion” corresponds to removing synaptic connec-
tions that encode the likelihood and prior transition probabili-
ties (in the A and B matrices). Given that the likelihood mapping
couples adjacent levels of hierarchical generative models, we
can associate the A matrix with the extrinsic (between-region)
connectivity (i.e., adjacency) matrix describing the anatomi-
cal connections between levels in cortical hierarchies. In other
words, we assume that the A matrix embodies extrinsic con-
nectivity. Conversely, because the probability transition matrices
are local to any given hierarchical level, we associated the cor-
responding Dirichlet parameters with intrinsic (within-region)
connectivity. These structural assumptions mean that we can
regard lesions to the A matrix as reproducing the kind of dis-
connections that would follow a stroke that impinges upon
white matter tracts. Conversely, any neurodegenerative pro-
cesses that involve a loss of synaptic connections can be asso-
ciated with lesions to the probability transitions or B matrices.
Clearly, lesions might entail the changes to both A and B connec-
tivity parameters. To motivate the neural anatomical distinction
between the parameters of the likelihood and transition proba-
bilities, we now briefly consider the functional neuroanatomy of
word repetition.

Computational Architecture of Word Repetition

To associate in silico lesions to neurological disorders and neu-
rodegenerative process, the belief updates have to be associated
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Figure 2. Learning-dependent changes in degeneracy and redundancy. This figure plots trial-specific estimates of free energy, degeneracy (i.e., posterior entropy), and
redundancy (i.e., complexity)—averaged over all hidden factors, epochs, and subjects as a function of exposure to the word repetition task (over 500 trials) for the
model with the spurious specification.

Table 1 Free energy and its components

Group type Spurious Trials per agent Free energy Redundancy Degeneracy Cost Energy Accuracy
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Control Y 500 5.803 5.631 1.981 7.611 7.784 −0.173
Control N 10 1.831 1.752 1.340 3.092 3.172 −0.080
B Y 10 6.871 6.871 3.590 10.461 10.461 0.000
B N 10 2.805 2.742 2.986 5.728 5.790 −0.063
A Y 10 13.252 5.800 2.028 7.828 15.280 −7.452
A N 10 16.324 8.717 1.561 10.279 17.886 −7.607
A and B Y 10 14.876 7.075 4.825 11.900 19.700 −7.801
A and B N 10 19.942 11.918 4.303 16.221 24.245 −8.024

This table summarizes the simulations in terms of the respective free energy, redundancy (complexity), accuracy, degeneracy (entropy), energy, and cost measurements.
These are measured in natural units. There are four sorts of simulations: control (with no lesions), intrinsic lesions, extrinsic lesions, and both intrinsic and extrinsic
lesions. The simulations were repeated with (Y) or without (N) spurious representations. The values are averages calculated for all the state factors across each epoch
and simulated subjects. Note that in order to appropriately simulate learning, 500 trials were simulated per agent for the control group with the spurious level, relative
to the 10 trials simulated for all other groups.

with neuronal circuits. At the level of canonical microcircuits,
there is an established process theory that allows us to map
message passing on to intrinsic connectivity within gray matter:
for details see (Bastos et al. 2012; Shipp 2016a, 2016b; Friston,
FitzGerald, et al. 2017a; Friston, Parr, et al. 2017c). However,
to associate the simulated belief updating with functional
neuroanatomy, it would be necessary to assign different
neuronal populations to particular brain structures. These are
hypothesis-generating assignments and allow us to retain the
potential to speak to neuroimaging studies in future work.
In the discussion, we consider how this could be done using
dynamic causal modeling—based upon the kinds of simulations
reported below. At present, we will briefly consider the form

of the cortical hierarchies implied by the generative model in
Figure 1.

Having specified the generative model, standard message
passing schemes effectively define the requisite computational
anatomy in terms of nodes (e.g., neuronal populations) and
edges (e.g., neuronal connections) along which messages (e.g.,
neuronal firing) are passed (Friston, Parr, et al. 2017c). There
are certain aspects of this computational anatomy that can be
mapped onto the functional anatomy in the brain, particularly,
those components involved in policy selection (Friston et al.
2014; Friston, FitzGerald, et al. 2017a). Figure 6 presents a prob-
abilistic graphical model (PGM) to illustrate the computational
architecture (i.e., graph) implied by our generative model. Nodes
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Figure 3. Dirichlet concentration parameters. This graphic shows the Dirichlet concentration parameters (that encode synaptic connection strengths) for the “audition”
likelihood, that is, for “repeated” word factor mapping to “audition” with respect to “target word” triangle, at epoch 3. The scale goes from white (high concentration)

to black (low concentration), and gray indicates gradations between these. The top row represents the prior beliefs for both the generative model with (A) and without
(C) the spurious level: The key difference to note is the prior beliefs for the model without the spurious level (i.e., “read”) are completely uniform. The bottom row
represents the posterior beliefs, after learning, for the model with (B) and without (D) the spurious level: The key difference to note here is that the posterior beliefs
for the model with spuriousness are less precise due to two plausible options, highlighted by the white in the first two columns (the first “red” and second “read” in

panel B). In contrast, the posterior beliefs for the first “red” in the model—without spurious connections—are very precise due to only one plausible option (i.e., first
“red” in panel D).

represent hidden states (see Fig. 1), and the edges denote con-
ditional dependencies. These edges contain the parameters of
the generative model and correspond to (intrinsic and extrinsic)
anatomical connections in the brain. To emphasize the distinc-
tion between our disconnections (i.e., lesions) of extrinsic (A)
and intrinsic (B) connectivity, we have equipped this PGM with
recurrent (i.e., self) connections that stand in for the proba-
bility transition parameters of the generative model. The red
crosses indicate where we have, effectively, lesioned a particular
pathway.

The assignment of nodes in this graphical model to
anatomical regions is speculative—as with all neuronal process
theories that attend free energy minimization (Gu et al. 2018).
However, it illustrates that message passing between neuronal
representations, under certain assumptions, can be plausibly
associated with extrinsic connections in the brain. Specifically,
under the assumption that neuronal populations encode the
statistics of posterior probabilities, transition probabilities can
be regarded as being parameterized by neuronal connections
(Friston et al. 2016). This allows one to consider functional
deficits following synthetic lesions in relation to axonal
disconnections or degenerative neuronal loss. For example,
see (Parr and Friston 2017) and (Parr, Benrimoh, et al. 2018),
respectively.

To simulate lesions, we selectively reduced the strength of
the strongest connections—and increased the strength of the
weakest connections—via a decrease in the precision hyperpa-
rameter. Mathematically, this decreases the overall precision of
the associated likelihood or prior distribution (over outcomes
or states, respectively). We were particularly interested in the
cumulative effect of increasing the extent of (extrinsic (A) or
intrinsic (B) or both) lesions on function, as scored by degen-
eracy and redundancy—and the accompanying behavioral and
neuronal responses.

We examined the interaction between both kinds of (intrinsic
and extrinsic) lesions, noting that typical neurological disorders
probably involve both. Specifically, to mimic the kind of discon-
nection that would follow a stroke, we lesioned the mapping
between the evaluation outcome modality and all hidden states
(Fig. 4: black circle with smiley face icon). Secondly, we lesioned
the “target word” B transition matrix, with and without lesions
to the A matrix. This limits the subject’s ability to track the target
word, resulting in perceptual impairment and the production
of incorrect words. Our aim was to demonstrate an increase in
redundancy following lesions that was not compensated for by
an increase in degeneracy. Furthermore, we hoped to demon-
strate a nonlinear effect on accuracy, namely, that the cumula-
tive effect of introducing more lesions would be superadditive,
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Figure 4. The effects of structure learning. This figure reproduces the data in the first two rows of Table 1. It highlights the effects of removing redundant connections
(i.e., parameters) of the generative model on redundancy, degeneracy, and free energy. The key point to take from these results is that selective removal of redundant
connections decreases free energy (increases model evidence) driven by the decrease in redundancy.

producing performance deficits, with a sufficient lesion load.
This speaks to the notion that particular combinations of dis-
tributed lesions are necessary to produce a deficit—a hallmark
of a degenerate functional anatomy.

Quantitative Evaluations

We start with lesions to the intrinsic connections (in the B
matrix): The strength of the largest connections was reduced,
and strength of the smallest connection was increased via a
decrease in the precision hyperparameter from 1 to 0.5. The
lesion is performed on the generative model that has already
learnt the appropriate probability distributions via structure
learning (see previous section). We then simulated the word
repetition paradigm using the lesioned model—with and with-
out spurious representations from the previous section—for 50
different subjects across 10 trials. From this, we measured the
total redundancy and degeneracy: The results are shown in the
third and fourth row of Table 1 and Fig. 7. The lesion increased
degeneracy by ∼1.6 nats, for both spurious and nonspurious
models. The effects of these lesions on redundancy were of a
slightly lower magnitude at ∼1 nats.

To lesion the extrinsic connections mediating messages
between regions (i.e., the A matrix), the strength of the largest
connections was reduced, and the strength of the smallest
connection was increased via a decrease in the precision
hyperparameter for A from 1 to 0.4. As above, the lesioned
generative model with and without spuriousness was simulated
for 50 different subjects across 10 trials. The results are shown
in the fifth and sixth row of Table 1 and illustrated in Figure 7.
The key result here is a profound increase in redundancy that
is not matched by an accompanying increase in degeneracy for
the model without the spurious level. In summary, lesioning the

intrinsic connections had a slightly greater effect on degeneracy
than redundancy, whereas lesioning the extrinsic connections
had a much greater effect on redundancy (which reflects an
increase in the degree of belief updating required).

Finally, we implemented a combination of distributed
lesions—on both A and B matrices—via changes in the connec-
tivity parameters as specified above. The results are shown in
the last two rows of Table 1 and illustrated in Figure 7. Two things
are immediately evident from these results: Distributed lesions
to both extrinsic and intrinsic lesions produced the highest
redundancy and degeneracy and the worst performing models
in relation to statistical accuracy (a proxy for performance). Both
effects have a clear explanation. Uncertain posterior beliefs
about causes—in the context of a degenerate mapping between
causes and consequences—result in higher degeneracy. The low
levels of accuracy are a consequence of these less confident
beliefs about what is causing outcomes.

Finally, we evaluated behavioral responses—as measured
by behavioral and statistical accuracy—for our stimulated
groups: each with 50 patients, performing 10 trials (Fig. 8).
Here, behavioral accuracy is measured by percentage of correct
responses over the course of the trial. Our aim here was to
test for superadditive effects of behavioral performance in a
degenerate architecture. The behavioral accuracy for the control,
B lesion and A lesion groups, was good (mean: ∼70%) across
both model specifications (see Fig. 8) even though the A lesion
group had much lower statistical accuracy (mean: −7.5 nats,
see Fig. 7). However, lesions to both the extrinsic and intrinsic
connections (A and B) had much worse performance (mean
behavioral accuracy of ∼26%, Fig. 8) than lesions to the extrinsic
lesions alone, despite comparable statistical accuracy (Fig. 7).
This is because of the increase in degeneracy associated with
uncertain mappings between causes and outcomes. From a
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Figure 5. Belief updating for model with (left panels) and without (right panels) the spurious level. Each panel reports belief updating over three epochs of a single trial,
for the factors (epoch, target word, repeated word) when repeating the word red. The x-axis represents time in seconds (divided into 3 epochs), and the y-axis represents
posterior expectations about each of the associated states at different epochs (in the past or future). For example, for the spoken (repeated) word factor (E, F), there are

5 states, and a total of 5 × 3 (states times epochs) posterior expectations – similarly, for the epoch factor (A, B), there are three levels, and total of 3 × 3 expectations.
For epoch target word factor (C, D), there are 4 states, and total of 4 × 3 posterior expectations. White is an expected probability of zero, black of one, and grey indicates
gradations between these. For example, the first five rows in panel E, correspond to expectations about the repeated word, in terms of five alternatives for the first epoch.

The second five rows are the equivalent expectations for the second epoch. This means that at the beginning of the trial the second five rows express beliefs about the
future; namely, the next epoch. However, later in time, these beliefs refer to the past; i.e., beliefs currently held about the first epoch. This aspect of (deep temporal)
inference is effectively an implementation of working memory that enables our subject to remember what she has heard—and accumulate evidence for the target
word that is subsequently articulated. Note that most beliefs persist through time (along the x-axis). For example, the target word reveals itself almost immediately

in panel C and this prospective belief is propagated into the future. Note further that the belief updating is similar across the two generative models, except for the
repeated word factor—where even at the first epoch–the subject believes that the spurious state (“read”) is an implausible hypothesis, for the present and the future
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Figure 6. The computational architecture for word repetition. This graphic illustrates idealized message passing—as defined by the generative model—for word
repetition. The outcomes (blue with icons), hidden states (pink with icons), and model variables (G, expected free energy; π , expected policies; γ , expected precision;
and u, action) are assigned to neuronal populations. The icons correspond to the hidden factors and outcome modalities in Figure 1. The black arrows denote message

passing, and the white circular dots indicate a modulatory weighting between neuronal populations. The smiley face icon (in the auditory cortex) represents processing
of auditory inputs from the ear. The target icon (in Wernicke’s area) represents the target word (i.e., speech sounds that are recognized and need to be repeated), and
stopwatch icon (in the hippocampus) is responsible for the temporal representation of each trial. The cross-box icon (in Broca’s area) represents an internal model
of the intended speech that drives motor output (in the motor cortex controlling the mouth and larynx) and predicts how motor activity will change proprioception

in the postcentral gyrus (mouth icon) and auditory processing in the auditory cortex (smiley icon). The red crosses represent the site of in silico lesions—A (extrinsic
connections) represents a disconnection from the representations of evaluations, and B (intrinsic connections) represents target word transitions. Expectations about
policies per se and the precision of these beliefs have been attributed to striatum and substantia nigra pars compacta areas to indicate a putative role for dopamine
in encoding precision (Friston, FitzGerald et al. 2017a).

lesion-deficit study perspective, the behavioral performance
reflects the superadditive effect of lesions on functional deficits,
in terms of a “many-to-one” structure–function mapping, such
that when multiple pathways are lesioned, it is difficult to
perform the task accurately. This is despite only incremental
effects on statistical accuracy, redundancy, and degeneracy.

In summary, using numerical analyses, we have illustrated
how degeneracy differs from redundancy—and how these mea-
sures of processing respond differentially to changes in the
structure or connectivity of a generative model. Specifically, we
have seen that decreasing the precision of likelihood mappings
(by lesioning extrinsic connections) can have profound effects
on redundancy. Heuristically, if I am unable to represent the
causes of my sensations, I will be unable to realize preferred
outcomes and will evince a functional deficit. This is not the
case, for when I can use posterior beliefs to predict what I am
going to do; the accompanying structural representations of
“epoch,” “repeated,” and “target” word are sufficient to produce

that outcome—for this particular paradigm and accompanying
generative model. In the final section, we consider the physio-
logical correlates of belief updating that would enable some of
the predictions entailed by this formulation of degeneracy and
redundancy to be assessed empirically.

Physiological Predictions

To characterize the effect of lesions on belief updating, we
examined the (synthetic) subject’s responses to unexpected out-
comes; i.e., a “wrong” evaluation. This allowed us to simulate
mismatch negativity (MMN) (Garrido et al. 2009; Morlet and
Fischer 2014) or P300 (Donchin and Coles 1988) waveform dif-
ferences. We report these simulations to show how the message
passing scheme can be used to make predictions about empiri-
cal neuronal responses. Our specific hypothesis was that a suf-
ficient reduction in degeneracy (i.e., increasing posterior uncer-
tainty) would attenuate responses to violations that mediate
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Figure 7. Effects of lesions. This bar chart reproduces some of the data in Table 1 to highlight the effects of combined (extrinsic and intrinsic) disconnections on
redundancy, degeneracy, and accuracy. Note that these measures are directly interpretable in terms of their statistical evidence. By convention, a difference in log
evidence (i.e., a log Bayes factor) of three is considered strong evidence (corresponding to a log odds ratio of 20:1) (Kass and Raftery 1995). Please see Figure 8 for a more

comprehensive analysis of (behavioral and statistical) accuracy.

Figure 8. Simulated performance accuracy. The left y-axis represents the behavioral accuracy as measured by percentage of correct responses, the right y-axis represents
natural units, and the x-axis represents the different groups. Each group is separated based on model specifications, with (Y) or without (N) the spurious level. For the

control group with spurious specification, we report the performance accuracy postlearning (i.e., the last 10 trials). The stars represent the average statistical accuracy
for each group (see Table 1 for details). Both control and intrinsic (B) lesion groups perform well with an average statistical accuracy of 0.00 nats and an average
behavioral accuracy of 70–100%. The group with extrinsic (A) lesion performs reasonably well in terms of average behavioral accuracy (∼70%) despite significantly
lower average statistical accuracy at ∼7.5 nats (Fig. 7). However, the group with lesions to both extrinsic (A) and intrinsic (B) connections performs badly, with the

distribution spread out anywhere between 0% and 60%, an average behavioral performance of ∼26% (black arrow) despite a statistical accuracy (∼7.9 nats) that is
comparable to that of the A lesion group (Fig. 7).
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belief updating. Put simply, with imprecise likelihood and prior
mappings, patients may find everything surprising resulting in
no difference between expected and unexpected outcomes.

The violation paradigm was modeled, using the nonspurious
specification, by giving each synthetic subject the evaluation
“wrong” at epoch 3 of the trial. Apart from this, everything
else remained the same. This allowed us to stimulate an odd-
ball paradigm in which the subject, expecting an evaluation of
“correct,” was now exposed to an unexpected evaluation. Any
differences in responses to the standard and deviances can be
considered as a simulated MMN (Näätänen et al. 2007). Mis-
match responses were simulated for the four different groups:
control, extrinsic (B) lesion, intrinsic (A) lesion, and both (A and
B) lesions. For each simulation, we simulated two trials: one
where the synthetic subject heard the correct evaluation and a
second where it was given the unexpected “wrong” evaluation.
The subject’s internal state, for the “target word,” was always
“red” (only one plausible representation).

We simulated local field potential responses based upon
a simple form of belief updating cast as a neuronally plausi-
ble gradient descent on variational free energy (Fig. 5). A more
detailed discussion of how the underlying belief updating trans-
lates into neurophysiology can be found in (Friston, FitzGerald,
et al. 2017a). The results of the simulated electrophysiological
responses of a single neuronal population responding to the
“correct” evaluation are shown in Figure 9. The shape of the
waveform completely flips when the subject is exposed to unex-
pected, compared to expected, evaluation. These findings are
consistent for the intrinsic lesion subject, where the intensity of
impairment is limited to state transitions over time (highlighted
through the changes in the responses at peristimulus time
200–400 ms ; Fig. 9A and C). However, when evaluation ability is
completely impaired (associated with extrinsic lesion), the sub-
ject is unable to distinguish between expected and unexpected
evaluations resulting in little to no evoked response. In future
work we hope to test empirically the links between stimulated
evoked responses and the particular neuronal populations in
(Fig. 6).

Concluding Comments
In this paper, we used the free energy principle (a.k.a. active
inference) (Friston 2019) to specify precise, quantitative roles for
redundancy and degeneracy. We have shown how redundancy
and degeneracy change, singly and in concert, both during learn-
ing and after damage to the cognitive system. This was achieved
by associating degeneracy with entropy—and redundancy with
complexity—during active inference under a given generative
model (i.e., structure) and associated belief updating (i.e., func-
tion). This characterization of degeneracy and redundancy may
have practical utility: 1) It measures degeneracy and redundancy
in the same (natural) units of information, and 2) the same
model can predict behavioral performance (i.e., accuracy) and its
electrophysiological concomitants—by appealing to planning as
(active) inference, when selecting a behavioral response. Using
this model, we offer a principled way to assess the functional
integrity of word repetition in control and patient subjects,
where both behavior and electrophysiology can be recorded
simultaneously. In principle, it is possible to estimate the prior
beliefs (e.g., connectivity parameters) of a subject’s generative
model that best explains their responses by finding the param-
eters of the generative model that maximizes the likelihood of
the responses. This is known as computational phenotyping

Figure 9. Simulated mismatch negativity responses. The left panel reports
simulated electrophysiological responses of a neuronal population responding
to the correct evaluation at epoch 3 with (red lines) and without (blue lines) the

expected outcome. The differences between these two responses are shown in
the right panel and can be read in the spirit of a mismatch negativity or P300
waveform difference. Each row is for a different group: control (A–B), intrinsic

lesion (C–D), extrinsic lesion (E–F), and both intrinsic and extrinsic lesions (G–H).
The y-axis is the response to stimuli in arbitrary units. The x-axis represents
time in seconds. The responses for control and B-lesion simulations are similar:
negative-going wave response for “correct” expected outcomes and positive-

going wave to unexpected outcomes. There is a slight dip in positive response
for the B-lesion simulation to unexpected outcomes, relative to the control (red
arrow), and no evoked response for both A-lesioned and A- and B-lesioned
subjects. This is due to the lesion reducing the precision of the evaluation

likelihood and impairing the synthetic subject’s ability to distinguish between
correct and incorrect evaluation. In contrast, there is a slight positive response
to the unexpected stimulus, compared to the expected for both these groups
(blue arrow).

(Schwartenbeck and Friston 2016; Parr, Rees, et al. 2018). Fur-
thermore, having electrophysiological predictions means that
one can associate belief updating with particular brain regions
via the dynamic casual modeling of neurophysiological data
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(see, e.g., Adams et al. (2016); Vincent et al. (2019)). This kind
of approach may illuminate the mechanics of degenerate func-
tional architecture that have previously been regarded as tight
regulators of neural network performance (Cropper et al. 2016).

The formulation, presented in this paper, enabled us to run a
series of simulations, where different forms of redundancy and
degeneracy were measured—using both structural learning and
in silico lesions. Through our numerical analyses, we show how
redundant structural parameterizations (in spurious connec-
tions) incur higher complexity cost and increasingly degenerate
mappings between causes and outcomes. Removing these
spurious connections decreases redundancy, while removing
nonspurious connections increases redundancy. These two
contrasting changes in connectivity can be associated with
structure learning and with lesions, respectively. Due to the
distributed nature of belief updating, multiple pathways (i.e.,
connectivity) participate in active inference. This is consistent
with lesion-deficit studies that often require distributed dis-
connections across multiple pathways to produce a functional
deficit.

The characterization of degeneracy and redundancy—in
terms of free energy components—transcends any specific
generative model. The purpose of the simulations is to illustrate
the consequences of this characterization in a synthetic setting
(where we know the form of the generative model). However, it
is worth considering the utility of this characterization and the
ways in which it could be used to pose empirical questions. This
would require the use of real data, to ask whether a system’s
degeneracy or redundancy changes following an intervention.
For example, “does a particular form of neurorehabilitative
therapy reduce redundancy during recovery from a neurological
insult?”.

We modeled the in silico lesions in terms of disconnections
and focused on the distinction between intrinsic (within-
region) and extrinsic (between-region) connections. Through
this, we hoped to demonstrate the degeneracy inherent in active
inference by showing that functional deficits were greater when
both extrinsic and intrinsic pathways were lesioned, as opposed
to either in isolation. In future work, we hope to use more
comprehensive generative models—with multiple extrinsic
(between-region) pathways and greater hierarchal depth—
that afford degenerate structure–function mappings in cortical
hierarchies. Additionally, this work lays the foundation for
formalizing the mechanisms of functional recovery after brain
damage, that is, quantifying changes in degenerate architectures
or perilesional activity after brain insult.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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Software Note
The generative model in these kind of simulations changes
from application to application; however, the belief updates
are generic and can be implemented using standard routines
(here spm_MDP_VB_X.m). These routines are available as Matlab
code in the SPM academic software: http://www.fil.ion.ucl.ac.
uk/spm/. The code for the simulations presented in this paper
can be accessed via https://github.com/ucbtns/degeneracy.
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