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ABSTRACT

Many proteins perform their functions within mem-
braneless organelles, where they form a liquid-like
condensed state, also known as droplet state. The
FuzDrop method predicts the probability of sponta-
neous liquid–liquid phase separation of proteins and
provides a sequence-based score to identify the re-
gions that promote this process. Furthermore, the
FuzDrop method estimates the propensity of con-
version of proteins to the amyloid state, and iden-
tifies aggregation hot-spots, which can drive the ir-
reversible maturation of the liquid-like droplet state.
These predictions can also identify mutations that
can induce formation of amyloid aggregates, includ-
ing those implicated in human diseases. To facili-
tate the interpretation of the predictions, the droplet-
promoting and aggregation-promoting regions can
be visualized on protein structures generated by
AlphaFold. The FuzDrop server (https://fuzdrop.bio.
unipd.it) thus offers insights into the complex be-
havior of proteins in their condensed states and fa-
cilitates the understanding of the functional relation-
ships of proteins.

GRAPHICAL ABSTRACT

INTRODUCTION

Many proteins have been observed to form a dense, liquid-
like state (1–4), which can be accessed from the native state
in a reversible manner under cellular conditions (5), and
contribute to a wide range of cellular activities (6). This
state is thus emerging as a fundamental state of proteins
along with the native and amyloid states (7). Among its bi-
ological functions, the droplet state can: (i) increase the lo-
cal concentrations of different cellular components, which
can accelerate enzymatic reactions and amplify signals, as
in the case of cyclic GMP–AMP synthase (cGAS) in in-
nate immune signaling (8), (ii) form signaling clusters for
low-affinity effectors and ligands, such as in T-cell receptor
(9) and Wnt (10) signaling, (iii) facilitate nucleation in poly-
merization reactions, such as microtubulin for centrosome
formation (11,12), (iv) orchestrate components of a given
cellular pathway, such in the case of p53-binding protein 1
(53BP1) (13), where droplets concentrate components for
DNA repair, or of heterochromatin protein 1 (HP1), where
droplets regulate gene silencing (14).

Given the widespread nature of the phenomenon of
liquid–liquid phase separation, it is relevant to identify the
proteins that can form the droplet state spontaneously un-
der cellular conditions. In particular, many proteins ob-
served in membraneless organelles do not readily form
droplets in the test-tube by themselves (15,16). Thus, it
is important to classify droplet-driver proteins, which can
spontaneously undergo liquid–liquid phase separation, and
droplet-client proteins, which require interactions with
partners or specific cellular conditions to form the droplet
state. These classifications distinguish proteins comprising
droplet-promoting regions, and proteins with stable self-
assembly of droplet-promoting regions. Recently the Fuz-
Drop method was developed to address this problem (4).

Another important question concerns the tendency of
proteins to aggregate within the droplet state. Although the
liquid-like droplet state is functional in most cases, it can
prompt an irreversible transition to the dysfunctional solid-
like amyloid state (17,18). Familial mutations driving this
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process are associated with a wide variety of human dis-
eases (19), including neurological disorders (20), cancers
(21) and viral infections (22). Identifying regions where mu-
tations can drive the conversion from liquid-like to solid-
like condensates is likely to provide insights into the molec-
ular mechanisms of disease and help develop therapeutic
interventions. By analysing the context-dependence of the
interactions within the droplet state, the FuzDrop method
can also identify aggregation hot-spots (23), which are the
regions that initiate the irreversible maturation of conden-
sates leading to fibrillar aggregates.

In this article, we describe the FuzDrop server (https:
//fuzdrop.bio.unipd.it), which provides two key sequence-
based predictions concerning the condensed states of pro-
teins: (i) the probability to form the droplet state through
spontaneous liquid–liquid phase separation (4), and (ii) the
likelihood of regions to aggregate within the liquid droplets
(23) (Figure 1). The web server thus offer insights into the
complex behavior of proteins in their condensed states and
facilitates developing functional relationships based on the
condensed-state behavior.

PRINCIPLES TO ENABLE THE PREDICTION OF THE
CONDENSED STATE BEHAVIOR OF PROTEINS

Interactions in the droplet state of proteins

Because of its liquid–liquid nature, the droplet state is char-
acterized by a high conformational entropy. In this view, the
droplet state is a state where proteins interconvert rapidly
among many different binding configurations (7). Such dis-
ordered binding mode can be achieved through contacts via
multiple, alternative binding sites (24), a behaviour known
as multivalency (25,26). These binding sites, which are of-
ten associated with low-complexity or disordered regions
(27), however, are often difficult to identify from the amino
acid sequences (4). The presence of a complex code for
droplet formation is also suggested by the observation that
also structured, globular proteins can undergo liquid–liquid
phase separation (28,29).

The FuzDrop approach is based on a model in which
the droplet state is stabilized by disordered interactions (4).
Sequences sampling disordered binding modes lack the lo-
cal compositional bias that drives structural ordering upon
binding (24). Disordered binding modes are also observed
in stoichiometric protein complexes. Structures formed by
these sequences exhibit high density of frustrated contacts
in both free and bound forms (30,31). The FuzPred algo-
rithm (24) determines the degree of local sequence bias with
respect to composition, hydrophobicity and structural dis-
order examining large number of possible sequence contexts
(24). Determining these biases using different contexts en-
ables the method to provide robust results over many differ-
ent binding partners and cellular conditions.

The FuzDrop method (4) combines the prediction of dis-
ordered binding modes by the FuzPred method (24) with
the estimation of the degree of protein disorder by the Es-
pritz algorithm (32). The method consists in two main steps:
(i) determination of the probability of protein regions to
promote droplet formation and (ii) evaluation of the stabil-
ity of their self-interactions to predict the probability of the
protein to sample the droplet state. The first part of method

was trained on a set of 120 protein regions observed to drive
liquid–liquid phase separation (33). As a negative set, re-
gions from proteins not known to condensate with similar
length distribution as in the positive set were used (4). The
coefficients for disordered interactions and structural disor-
der were determined by logistic regression, resulting in AUC
values of 86% and 87% on the training and test set, respec-
tively (4).

The probability of proteins to form the droplet state was
based on estimating the propensity of droplet-promoting re-
gions as well as the stability of their self-interactions (4). The
latter term was based on hydrophobic motifs embedded in
disordered protein regions that stabilize self-assembly via
hydrophobic effects. To predict the probability of proteins
to form the droplet state, the method was trained on a set of
∼400 protein sequences observed to undergo liquid–liquid
separation in vitro or in vivo (4). As a negative set, all other
sequences of the same organisms not known to form con-
densates were used. The parameters were trained using lo-
gistic regression resulting in AUC values of 88% and 91%
on the training and test set, respectively (4).

Interactions driving aggregation of proteins within their
droplet state

Proteins in their droplet state may in some cases convert into
a more stable amyloid state (7). Since this process is associ-
ated with a wide range of human disorders (34), there is a
great interest in identifying regions that can drive this pro-
cess. The formation of both condensed states is driven by
non-native interactions (7), which are ordered in the amy-
loid state and disordered in the droplet state. Thus, pro-
tein regions that drive aggregation within liquid-like con-
densates are capable of switching between disordered and
ordered interactions (23). This interaction property, which
changes between interaction modes, is denoted as context-
dependence, which leads to a wide variety of cellular behav-
iors under different conditions (35,36).

The context-dependence of protein interactions can be
estimated by the FuzPred method (37). This approach is
based on the analysis of different interaction modes, which
are predicted with different possible binding interfaces, cor-
responding to different partners and cellular conditions.
The ability to sample different binding modes is quantified
by the Shannon entropy of the binding mode distribution
(37). Thus, the FuzPred method can estimate the interac-
tion behavior of protein regions at individual residue reso-
lution: (i) the most likely interaction mode, i.e. the extent
to which the protein residue remains ordered or disordered
upon binding (24) and (ii) the likelihood that the residue
samples other binding modes (37).

The FuzDrop method combines the prediction of the
probability to form the droplet state (4) with the estimation
of interaction context-dependence from the FuzPred algo-
rithm (37). This approach can evaluate the stability of in-
teraction modes in the droplet state, and thus identifies pro-
tein regions that can change disordered to ordered binding
modes and drive aggregation (23). The method was shown
to identify mutations associated with amyotrophic lateral
sclerosis (ALS) and distinguish them from mutations in the
same proteins, which are not pathological (38). For exam-
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Figure 1. Functional features predicted by the FuzDrop server (https://fuzdrop.bio.unipd.it). The FuzDrop method provides two key sequence-based
predictions concerning the condensed states of proteins: (i) the probability to form the droplet state through spontaneous liquid–liquid phase separation
(4) and (ii) the tendency of regions to aggregate within the liquid droplets (23). Thus, the FuzDrop server gives insights into the complex behavior of
proteins in their condensed states.

ple, the ALS-associated FUS G156E mutant has a much
higher context-dependence than the non-pathological FUS
G154 mutant, which corresponds to a higher likelihood of
the conversion to the ordered amyloid state (23).

PREDICTED CONDENSED-STATE CHARACTERIS-
TICS AVAILABLE FROM THE FUZDROP SERVER

Sequence-based probability of droplet formation

All predictions require a protein sequence, either the
UniProt code (39) or the FASTA file as an input. The results
are displayed on a separate page. On the top, the probabil-
ity of spontaneous liquid–liquid phase separation (pLLPS)
is shown, which informs on the ability of protein to drive
droplet formation (Figure 2A). Proteins with pLLPS ≥0.60
likely spontaneously phase separate and serve as droplet-
drivers. The threshold was determined upon parametriza-
tion of the FuzDrop method (4).

Below the droplet-promoting probabilities of residues
(pDP) are displayed (Figure 2A). These values vary between
0 and 1 and inform on the ability of residues to be involved
in droplet-interactions. Residues with pDP ≥0.60 values pro-
mote droplet formation, as indicated by a bold line (4). The
graph is interactive, as one can zoom on the region of in-
terest and then return to the original graph showing the
complete protein sequence. This feature facilitates the anal-
ysis of small variations in droplet propensities, for example
to guide the design of mutant forms with tailored droplet
propensities.

Droplet-promoting regions and aggregation hot-spots

Droplet-promoting regions (DPRs), which are defined
as sequence stretches of ≥ 10 consecutive residues with
pDP ≥0.60 values, are displayed below the graph showing

the pDP values (Figure 2A). Boundaries of DPRs are dis-
played above the blue boxes or by positioning the cursor
into any of the blue boxes.

Aggregation hot-spots are defined as parts of droplet-
promoting regions with large binding mode diversity (Ta-
ble 1). These are displayed as orange boxes with the bound-
aries shown above. Aggregation hot-spots have a minimum
length of 5 residues with a gap of maximum two residues
allowed.

Cellular context-dependence (binding mode entropy)

Protein regions often change binding modes depending on
the cellular conditions, partners, post-translational mod-
ifications (PTMs). We characterize the cellular context-
dependence, i.e. the ability of proteins to alter their binding
modes, by the binding mode entropy (Sbind). This quantity
can be determined as a Shannon entropy computed from
the frequencies of different binding modes in the presence
of different, hypothetical partners (37). Below the droplet-
promoting regions and aggregation hot-spots, the interac-
tive graph displays the binding mode diversity of residues
(Sbind) (Figure 2B). The threshold Sbind ≥2.20 is used to
identify aggregation hot-spots. Context-dependent regions,
defined as ≥10 consecutive residues with Sbind ≥2.20 are
displayed below the graph, with residue boundaries indi-
cated (Figure 2B). A more in-depth analysis of context-
dependence is performed in the FuzPred server (https://
fuzpred.bio.unipd.it).

Protein features and cross-links to other databases

Below the predicted results, sequence features, related to cel-
lular context dependence are displayed (Figure 3). Fuzzy
regions, which are regions where the structural disorder in
the bound state has a functional impact, are graphically dis-
played. This information is derived from FuzDB (40), and
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Figure 2. Predicted condensed-state characteristics (A) and cellular context-dependence (B) of the human p53 tumor suppressor (P04637). The pLLPS
value on the top informs on whether the protein can spontaneously phase separate and drive droplet formation (pLLPS≥ 0.60). (A) The droplet-promoting
probabilities of residues (pDP) are displayed on an interactive graph. Droplet-promoting regions (DPRs), which are defined as ≥ 10 consecutive residues
with pDP≥ 0.60, are displayed below the graph. Boundaries of DPRs are displayed above the blue boxes or by positioning the cursor into any of the blue
boxes. Aggregation hot-spots, which drive the conversion of the liquid-like droplet state to solid-like amyloid state, are also shown (orange boxes). These
regions have high interaction mode diversity and are capable of sampling both disordered and ordered binding modes. (B) Cellular context-dependence is
characterized by the binding mode diversity (SBIND) computed from the frequencies of different binding modes in the presence of different, hypothetical
partners (37). This quantity characterizes the ability of residues to switch between disordered and ordered interactions. Residues with a wide spectrum of
interaction behaviors will be most affected by the cellular conditions.

Table 1. Main applications of the FuzDrop server. The choices for the
thresholds were described in the original references (4,23)

Biological problem Parameter, threshold

Identification of proteins undergoing
liquid–liquid phase separation.

pLLPS ≥ 0.60

Identification of protein regions
promoting droplet formation or
partitioning in liquid droplets.

pDP≥ 0.60, l ≥ 10 aa

Identification of droplet-driver or
droplet-client proteins.

Droplet driver: pLLPS ≥ 0.60
Droplet client: pLLPS < 0.60;
pDP ≥ 0.60 for at least 10
consecutive residues

Identification of aggregation
hot-spots within the droplet state.

pDP ≥ 0.60; Sbind ≥ 2.2; l ≥ 5
aa

the overlap of droplet-promoting region with known fuzzy
regions indicates different functional behaviors under dif-
ferent cellular conditions. In addition, a further layer of reg-
ulation can be provided by PTMs, which can interfere with

the formation of protein droplets or modulate biophysical
properties of the liquid-like state (41). PTMs derived from
UniProt (39) are shown by red dots, and positioning the cur-
sor above them will display the modified residue, the PTM
type and the modifying enzyme. These data may inform on
which enzymes regulate liquid–liquid phase separation of
the given sequence. In addition, the Pfam domains (42) are
displayed (Figure 3), so that their involvement in droplet
formation can be assessed. Showing the domains and PTM
sites together may distinguish PTMs that are likely to reg-
ulate domain functions and those that may be regulate the
process of liquid–liquid phase separation.

The FuzDrop server provides cross-links to databases of
liquid–liquid phase separation (Figure 3), PhaSepDB (43),
LLPSDB (44) and PhaSePro (33), where the user may re-
fer to experimental conditions and biomolecular partners
required for droplet formation. Experimental data on pro-
tein disorder can be obtained through cross-links to Dis-
Prot (45), FuzDB (40) and PED (46). DisProt provides ex-
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Figure 3. Protein information and cross-links to other databases. Protein features related to cellular context-dependence show fuzzy regions, derived from
FuzDB (40), and post-translational modifications (PTMs), derived from UniProt (39). PTMs are shown by red dots, and positioning the cursor above
them will display the modified residue, the PTM type and the modifying enzyme. In addition, the Pfam domains (42) are displayed (grey bars). Cross-links
to experimental databases on liquid–liquid phase separation, PhaSepDB (43), LLPSDB (44) and PhaSePro (33) are provided. Structural information on
protein disorder through cross-links to DisProt (45), FuzDB (40) and PED (46). DisProt reviews known experimental evidence on disorder in the free state
of protein, whereas FuzDB assembles experimental evidence for disorder in the bound state. PED provides a detailed analysis of conformational ensembles
in either free or bound states. for a limited number of systems.

perimental evidence on disorder in the free state of protein,
whereas FuzDB assembles experimental evidence for disor-
der in the bound state. Both databases provide links to the
Protein Data Bank for structural information. PED gives a
detailed analysis of conformational ensembles in either free
or bound states, for a limited number of systems.

Graphical representation of droplet-promoting regions and
aggregation hot-spots

The predicted droplet-promoting regions and aggregation
hot-spots are visualized by Mol* (47) on the structures pre-
dicted by AlphaFold (48) (AF, Figure 4A, B). The user can
select the required feature; droplet-promoting regions are
shown in blue and aggregation hot-spots in orange similarly
to the box representation (Figure 4A, B). Orientation and
size of the structures can be changed, and selected residues
can be highlighted. This option depends on the availability
of the predicted structure in the AlphaFold database (49).

In case no predicted structure is available, for example
if the sequence deviates from the canonical one, or the
UniProt code is not provided, the user is prompted to initi-
ate the structure predictions (Figure 4C). As described, the
AlphaFold prediction (48) is carried out in a separate web
page, and the resulted coordinate file has to be uploaded
onto the FuzDrop server (Figure 4C). The condensed state
properties can be displayed similarly to the structures avail-
able through the AF database (49).

We note that the AlphaFold method, by providing indi-
vidual structures, may not offer an accurate representation
of the disordered nature of droplet regions (Figure 4). In
principle structural ensembles would enable the visualiza-
tion of transient contacts that may be important to stabilize
the droplet state.

Download options

The FuzDrop prediction results, the residue-based pDP and
Sbind values can be downloaded in .tsv format via the
‘Download’ tab on the top right of the page. The coordi-
nates of the droplet-promoting and aggregation-promoting
regions can also be downloaded in .tsv format via the
‘Download’ tab on the top right of the page. The graph dis-
playing the pDP values and the graphical representation of
the droplet-promoting regions and aggregation hot-spots
can be saved as an image by the camera icon below the
‘Download’ tab.

The user can save the colored AlphaFold structures
representing different condensed state properties with the
‘Screenshot’ tab above the image. The coordinates of the
predicted structure can also be downloaded as indicated by
a separate tab. This feature enables the user to generate dif-
ferent graphical representations of the results.

FuzDrop server information

A detailed information on the background of FuzDrop pre-
dictions and a tutorial to the server are available through
the Help and Tutorial menu on the top right the FuzDrop
main page. The Help page describes the condensed states
of proteins, and presents the view that the droplet-state is
a fundamental state of proteins along with the native and
amyloid states (7). The Help page introduces the principles
of predicting the droplet state (4) and the aggregation hot-
spots, (23) which are detailed in the references, that are also
shown in the main page of the server.

The Tutorial provides a brief description of the data,
which are shown in the results page.

The FuzPred link points to the FuzPred server (http:
//fuzpred.bio.unipd.it) for analysis of detailed interaction

http://fuzpred.bio.unipd.it
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Figure 4. Visualization of condensed state features on structures predicted by AlphaFold. (A) Droplet-promoting regions (blue) and (B) aggregation hot-
spots (orange) can be displayed on the predicted structure of a protein from the AlphaFold Database (49). (C) When the predicted structure is not already
available, it can be predicted separately and uploaded to obtain the visualization.

characteristics (24,26,37). FuzPred identifies regions that
undergo disorder-to-order transition upon binding, as well
as regions predicted to remain disordered in the bound
state. Based on the degree of context-dependence, the
FuzPred server helps identify regions with stable and di-
verse binding modes.

FuzDrop server application areas

The FuzDrop server has four main application areas, de-
scribing different condensed state characterics (Table 1).

(1) Identification of proteins undergoing liquid–liquid phase
separation. The probability of the droplet state (pLLPS)
informs on the tendency of spontaneous liquid–liquid
phase separation. Proteins with pLLPS≥ 0.60 can act as
drivers of the droplet-forming process (Table 1).

(2) Identification of protein regions promoting droplet for-
mation or partitioning in liquid droplets. Droplet-driver
proteins may have low-specificity interaction motifs em-
bedded in disordered regions, repetitive sequence el-
ements serving as binding motifs in low-complexity
regions, multivalent signaling proteins, or structured
proteins sampling multiple binding modes. Droplet-
promoting regions are composed of residues with
pDP ≥0.60 (Table 1). Based on the analysis of the
available experimental data, a minimum length of 10
residues (with pDP ≥ 0.60) are required.

(3) Identification of droplet-driver or droplet-client proteins.
Droplet-client proteins, which cannot spontaneously
undergo liquid–liquid phase separation, but have at
least one droplet-promoting region can partition into
droplets via interacting with a partner (Table 1). Many
proteins that were observed as components of mem-
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braneless organelles cannot form droplets in the test
tube (15,16). Identification of droplet-promoting re-
gions may facilitate the design of modified constructs
with tailored droplet propensities.

(4) Identification of aggregation hot-spots within the droplet
state. Aggregation hot-spots, which can initiate the irre-
versible maturation of droplets, can be identified com-
bining the predictions on droplet-promoting regions
with the interaction diversity of FuzPred (Table 1).
These regions are automatically identified by the server,
and a more in-depth analysis of interaction character-
istics can be performed through the FuzPred approach,
which is accessible through the FuzDrop server.

CONCLUSIONS

The importance of the condensed states of proteins, both
the liquid-like droplet state and the solid-like amyloid state,
has been increasingly recognized in determining the biolog-
ical activity under cellular conditions (6,7). The FuzDrop
server enables users to obtain readily the probability of pro-
teins to sample the condensed states by predicting the prob-
ability of forming the droplet state of proteins and estimat-
ing the likelihood of the conversion towards the amyloid
state. Thus, the FuzDrop server can be used to identify pro-
tein regions that can drive liquid–liquid phase separation as
well as to predict aggregation hot-spots that can drive the
conversion of droplets to solid-like aggregates, which are
visualized on protein structures predicted by AlphaFold.
In summary, the FuzDrop server contributes to elaborating
of state-function relationship of proteins by characterizing
their complex condensed state behaviors in the cellular en-
vironment.
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