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Abstract: The effect of holmium (Ho) addition on the glass-forming ability (GFA) and crystallization
behaviors of Zr54Cu29Al10Ni7 bulk metallic glass (BMGs) were studied by employing differential
scanning calorimetry (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM).
The characteristic temperatures and activation energies of crystallization were obtained from DSC
data. Classical kinetic modes were used to evaluate the crystallization processes of Zr54Cu29Al10Ni7
and Zr48Cu29Ni7Al10Ho6 BMGs. The results showed that Ho addition reduces the activation energy
in the original crystallization period of Zr-based BMG and improves the nucleation, which is due to
the formation of simpler compounds, such as CuZr2, Cu2Ho, and Al3Zr5.

Keywords: Zr-based metallic glasses; crystallization kinetic; holmium; activation energy

1. Introduction

Zr-based bulk metallic glasses (BMGs) are considered to possess a widely utilized fu-
ture as excellent structural materials in consumer electronics for their extraordinary fracture
strengths, corrosion, and wear resistance [1–4]. In addition, the good glass-forming ability
(GFA) of Zr-based BMGs allows thermoforming production above their glass transition
temperature (Tg) [5–10]. However, the plasticity of Zr-based BMGs needs some improve-
ment for commercial applications [11,12]. Recent investigations have reported that the
plasticity of BMGs is enhanced in an amorphous composite by separating out micro-nano
sized grains, which blocks the development of initial shear bands and forms abundant
small-scale shear bands [13–15]. It is well known that crystallization of glasses is a very
effective way of getting bulk nanocrystalline materials and crystal/glass composite [16–18].
Therefore, it is necessary to study the crystallization behavior of BMGs for the controllable
preparation of crystal/glass composite.

Microalloying is widely used to improve the properties of alloys, especially those
of metallic glasses [19–25]. Due to special chemical properties, rare earth elements are
usually used as beneficial alloys additives to obtain better performance and are called
“industrial monosodium glutamate” [26–29]. In our previous work, 1 at.% addition of
rare earth Y was found to improve the GFA of Zr-based BMGs effectively and change the
first crystallization phase of Zr53.8Cu29.1Ni7.3Al9.8 BMG from Cu10Zr7 to CuZr2, which
is beneficial to controlling the crystallization process and preparing bulk nanocrystalline
alloys [30]. Microalloying of rare earth holmium (Ho) element was investigated to show
beneficial effects on the GFA of Fe-based and Zr-based metallic glasses [26–29,31,32]. How-
ever, the addition of Ho in the literature is minimal and displayed limited understanding
of microalloying effects of Ho [26–29,32]. In addition, the influence of Ho addition on the
crystallization of metallic glasses has not been studied yet.
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In this work, metallic glasses with composition of Zr54−xCu29Ni7Al10Hox (x = 0, 1, 2, 4,
6) were prepared and the influence of Ho addition on the GFA and crystallization behavior
was systematically investigated. The characteristic temperatures and corresponding acti-
vation energies were calculated. Crystallization kinetics equations were fitted to evaluate
the crystallization processes, and the phase changes were researched by employing X-ray
diffraction (XRD) and transmission electron microscopy (TEM).

2. Materials and Methods

The Zr54−xCu29Ni7Al10Hox (x = 0, 1, 2, 4, 6) master alloy ingots were prepared with
purity metals (99.99%), and designated as Zr54, Zr53Ho1, Zr52Ho2, Zr50Ho4, and Zr48Ho6.
Each prepared ingot was remelted five times by electric arc melting. The Ti ingot was melted
to ensure an oxygen-free atmosphere. Later, as-cast rods (diameter of 3 mm and length
of 80 mm) were obtained by suction casting into a water-cooled copper mold following
induction smelting. The amorphous structure of these alloys was identified by X-ray
diffraction (XRD, Bruker D8, Bruker AXS, Karlsruhe, Germany, Cu-Kα radiation). The
crystallization peaks were measured by differential scanning calorimetry (DSC, STA449F3,
Netzsch, Selb, Gemany). The DSC tests of BMGs with different Ho additions were carried
at a fixed heating rate of 10 K/min and the non-isothermal tests were carried at various
heating rates of 5, 10, 20, 30, 40, and 50 K/min. The crystallization experiments in different
duration were carried at 500 ◦C, and the corresponding phase changes were investigated
by XRD and TEM (G20, FEI, Hillsboro, OR, USA). TEM samples were prepared by ion
milling with the ion-beam voltage of 3.5 keV under the temperature of −40 ◦C to avoid
structural change.

3. Results and Discussion
3.1. Structure and GFA of Metallic Glasses

Figure 1 is the XRD patterns of as cast Zr54−xCu29Ni7Al10Hox (x = 0, 1, 2, 4, 6) BMGs.
All the patterns display the broad diffraction peaks in the range of 2θ = 30–50◦, and there is
no sharp peak observed in the patterns, implying the amorphous structure. To study the
influence of Ho alloying on the GFA of Zr54Cu29Ni7Al10 BMG, DSC tests were conducted
and the resulting curves are displayed in Figure 2. The glass transition temperature
(Tg) and initial crystallization temperature (Tx) can be obtained from the DSC curves
and summarized in Table 1. The super-cooled liquid region ∆Tx (=Tx − Tg) can also be
calculated and listed in Table 1. It can be found that Tg and Tx both decrease with the
increasing Ho addition. However, the drop of Tg is larger than that of Tx, leading to
an increase of ∆Tx. The largest ∆Tx value of Zr48Ho6 BMG implies the greatest GFA.
Based on the results of GFA, Zr48Ho6 BMG was selected to carry the further studies about
crystallization kinetic of Zr54Cu29Ni7Al10 BMG.
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Figure 2. DSC curves of Zr54−xCu29Ni7Al10Hox (x = 0, 1, 2, 4, 6) BMGs.

Table 1. Thermal parameters of Zr54-xCu29Ni7Al10Hox (x = 0, 1, 2, 4, 6) BMGs.

Composition (in at.%) Tg (K) Tx (K) ∆Tx (K)

Zr54Cu29Ni7Al10 718.7 780.1 61.4
Zr53Cu29Ni7Al10Ho1 703.5 767.2 63.7
Zr52Cu29Ni7Al10Ho2 700.1 765.3 65.2
Zr50Cu29Ni7Al10Ho4 679.7 746.2 66.5
Zr48Cu29Ni7Al10Ho6 669.5 739.4 69.9

3.2. Non-Isothermal Crystallization Kinetics

Figure 3 shows the DSC traces of Zr54 and Zr48Ho6 BMGs achieved at various heating
rates. All the DSC traces show the glass transition characters and exothermic peaks of
crystallization. The characteristic temperatures are pointed in Figure 3 and listed in Table 2.
As seen in Figure 3, the exothermic peaks move to higher temperatures with the raising
heating rate. The characteristic temperatures also become higher at the faster heating rate,
indicating an obvious correlation between crystallization and the heating rate, because the
crystallization consists of the nucleation and the growth of grains, which are the thermally
activated process. In addition, it can also be found in Table 2 that Tg increases more slowly
than Tx, leading to the improved ∆Tx.
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Table 2. Characteristic temperatures of Zr54 BMG and Zr48Ho6 BMG at various heating rates.

Heating Rate (K/min)
Zr54Cu29Ni7Al10 Zr48Cu29Ni7Al10Ho6

Tg (K) Tx (K) Tp (K) ∆Tx (K) Tg (K) Tx (K) Tp (K) ∆Tx (K)

5 716.2 775.4 783.79 59.2 663.3 731.4 736.71 68.1
10 718.7 780.1 787.1 61.4 669.5 739.4 744.65 69.9
20 719.4 783.6 792.39 64.2 674.65 746.25 752.59 71.6
30 721 787.7 796.47 66.7 677.97 751.27 755.87 73.3
40 722.4 791.4 800.57 69 679.39 754.89 758.51 75.5
50 722.5 791.6 802.93 69.1 680.04 756.84 761.51 76.8

The volume fraction of crystallization, x, could be calculated using DSC results by
taking the line integral of the crystallization peak. When temperature T is fixed, the
corresponding x can be obtained by x = ST/Sp, where Sp represents the total area of
exothermic peak, and ST represents the area below the peak curve between the initial
temperature and the fixed temperature T. The obtained crystallized fraction x is plotted in
Figure 4 and displays the classic S-shape, which illustrates the process of non-isothermal
crystallization [33–35].
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3.3. Effective Activation Energy

The effective activation energy, E, can be calculated from DSC results by using a
Kissinger Equation (1) [36] and Ozawa Equation (2) [37]:

ln
(

β/T2
)
= −E/RT + C (1)

ln β = −E/RT + C (2)

In the equations, β is the rate of raising temperature, T is characteristic temperature,
and R is gas constant. The Kissinger results ln(β/T2) and Ozawa results ln(β) against
1000/RT are shown as scattered points in Figure 5. Each set of data is linearly fitted, and
the corresponding results are also displayed in Figure 5. According to the Kissinger and
Ozawa equations above, the slope obtained from linear fitting is E/R, and the correspond-
ing activation energies for Zr54 and Zr48Ho6 BMGs are calculated from the slopes and
summarized in Table 3. As seen in Table 3, the values obtained by Ozawa equation are
in good agreement with those obtained by a Kissinger equation, and are merely a little
bit higher.
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Table 3. Activation energies obtained by two equations for Zr54 BMG and Zr48Ho6 BMG.

Equations Zr54Cu29Ni7Al10 Zr48Cu29Ni7Al10Ho6

Eg
(kJ/mol)

Ex
(kJ/mol)

Ep
(kJ/mol)

Eg
(kJ/mol)

Ex
(kJ/mol)

Ep
(kJ/mol)

Kissinger 1525.07 675.67 590.68 488.87 402.43 427.39
Ozawa 1537.03 688.71 603.87 500.04 414.80 439.84

It is known that Eg, Ex, and Ep represent the energy barriers to overcome for grass tran-
sition, nucleation, and growth of crystal. It can be found in Table 3 that Eg is much greater
than others, implying the greater energy barrier to overcome for atomic rearrangement.
Comparing with Eg of Zr48Ho6 (488.87 kJ/mol and 500.04 kJ/mol), Eg of Zr54 obtained by
Kissinger and Ozawa methods are 1525.07 kJ/mol and 1537.03 kJ/mol, and much larger,
implying a more difficult atomic rearrangement. It can also be found that Ex is larger than
Ep for Zr54 BMG, indicating the hard nucleation and easy grain growth. However, Ex is
smaller than Ep for Zr48Ho6 BMG, implying the easy nucleation and hard growth. The
transformation should be attributed to the changes of crystallization products caused by
Ho alloying.

3.4. Effective Activation Energy

The activation energy obtained from Tp just roughly evaluates the crystallization
process. However, as the nucleation and growth of metallic glass are complicated, the
activation energy over the total crystallization process is not fixed. The local activation
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energy against crystallized fraction x, Ec(x), was proposed to evaluate the whole crystalliza-
tion process. It can be calculated by the Doyle–Ozawa isoconversional equation (seen in
Equation (3)) [38,39]. The results are displayed in Figure 6 and show two quite different
tendencies of Ec(x) for two BMGs. Ec(x) for Zr54 reaches a peak point of 660.40 kJ/mol
in the original period and next declines immediately to 600.84 kJ/mol at x = 1%; there-
after, it unceasingly declines with the increasing x and lastly finishes at 174.06 kJ/mol
(x = 99.5%). Meanwhile, Ec(x) for Zr48Ho6 drops from the peak point of 412.17 kJ/mol at
the original point to 385.50 kJ/mol at x reaches 1%; next, Ec(x) declines continuously in the
following process and ends up with 222.92 kJ/mol at x = 99.4%. The mean activation energy
for Zr54 and Zr48Ho6 BMGs during the whole crystallization process are 366.43 kJ/mol
and 332.33 kJ/mol, respectively, less than the values calculated by the Kissinger and Ozawa
equations. Similar results are reported in the crystallization behaviors of some other metal-
lic glasses [38–40]. Comparing with Zr54 BMG, Ec(x) for Zr48Ho6 is smaller in the original
period and larger in the second half process, implying an easier nucleation and more diffi-
cult development. These are in good agreement with the results obtained from Kissinger
and Ozawa methods:

ln β = −1.0516Ec(x)/RT + C (3)
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3.5. Crystallization Mechanism

The solid-state reaction can be described by the following equation:

dx/dt = k(T) f (x) (4)

where x is the crystallized fraction, t is the duration, T is the reaction temperature, f (x) is
set as an expression describing the crystallization process, and k(T) is a constant dependent
on temperature and can be obtained by the Arrhenius model [41]:
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k(T) = A exp(−Ec/RT), (5)

where A is frequency factor, and Ec is crystallization activation energy. Combining
Equation (4) with Equation (5), the following equation can be obtained:

ln(dx/dt) + Ec/RT = ln[A f (x)]. (6)

Based on Equation (6), the value of ln[Af (x)] can be obtained from crystallized fraction
and activation energy of Tp (calculated by the Kissinger equation and seen in Table 3).
Because the curves of crystallized fraction were varied at various heating rates, the mean
values of ln[Af (x)] were taken to describe the crystallization and plotted as scatters (hollow
circles) in Figure 7. The Johnson–Mehl–Avrami (JMA) mode and normal grain growth
(NGG) mode in Table 4 were employed to evaluate the experimental data [42,43]. The fitted
curves are in red and dotted lines, and the corresponding results are listed in Figure 7.
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Table 4. Theoretical kinetic modes considered.

Model f (x) Label

Johnson–Mehl–Avrami (JMA) n(1 − x)[−ln(1 − x)](n − 1)/n n
Normal grain growth (NGG) (1 − x)m + 1 m

As seen in Figure 7a that the crystallization of Zr54 BMG firstly obeys the JMA-mode
with n = 1.8075 for x < 0.16, then the crystallization transforms to obey two NGG-modes
(m = 3.0311 and 2.4087). As seen in Figure 7b, the crystallization of Zr48Ho6 BMG starts
with the JMA-mode with a greater n = 2.5154 for x < 0.21; later, the remaining crystallization
follows two NGG straight lines with less m = 2.3204 and 1.9803, respectively.

As is known to all, the JMA mode describes the precipitation process from nucleation
to growth, which commonly takes place in the original period of precipitation. The value
of JMA exponent n for Zr54 BMG is <2.5, suggesting a growth in three dimensions and
a lowering nucleation controlled by diffusion [43]. However, the JMA exponent value
of Zr48Ho6 BMG is >2.5, implying a growth in three dimensions and rising nucleation
controlled by diffusion. Comparing with Zr54 BMG, the greater JMA exponent of Zr48Ho6
BMG implies a faster nucleation rate. Moreover, the JMA-mode stage of Zr48Ho6 BMG
keeps to x = 0.21 and is longer than that of Zr54 BMG (x = 0.16), suggesting the more
nucleation in Zr48Ho6 BMG. This result is consistent with the less Ex for Zr48Ho6 BMG
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achieved by the Kissinger method and the Doyle–Ozawa isoconversional method. The
developed nucleation should be due to micro-alloying of rare earth, which raises the
viscosity of super cooled liquid and lowers the driving force of nucleation [44].

In the follow-up period, the crystallization of Zr54 and Zr48Ho6 BMGs both follow
the NGG-mode. Comparing with Zr54 BMG, the lesser NGG exponent of Zr48Ho6 BMG
suggests decelerated growth of grain. It indicates that 6 at.% addition of Ho has the
tardiness effect on the growth of grain and is beneficial to prepare bulk nanocrystalline
alloys by controlling the crystallization process [45].

3.6. Structural Analysis of the Crystallized Alloys

To explain the different crystallization mechanisms of two BMGs, the structure of two
alloys annealed at 500 ◦C was investigated by XRD, and the obtained spectra are analyzed
in Figure 8. There is a large amount of CuZr2, Ni10Zr7, Cu2Ho, Al3Zr5, and Al3Zr were
formed on Zr48Ho6 BMG annealed at 500 ◦C for 20 min, while Cu10Zr7 and few Al2Zr were
detected on Zr54 BMG after 20 min annealing treatment. The results of 40 min annealing
indicate that these primary grains grow up with the continuous annealing. It is obvious
that the crystallization processes of two BMGs are essentially different. The formation of
Cu2Ho on Zr48Ho6 BMG is attributed to the addition of Ho, which leads to the reduced Cu
atoms combining with Zr atoms, and then causes the precipitation of CuZr2, Ni10Zr7, and
Al3Zr5. The results indicate that Ho tends to combine with Cu rather than other elements.
According to the mixing enthalpy between elements in Figure 9, the mixing enthalpies of
Ni-Ho and Al-Ho are more negative than that of Cu-Ho, but less negative than those of
Ni-Zr, Ni-Al, and Zr-Al. Ni will combine preferentially with Zr and Al, and Al will combine
preferentially with Zr and Ni, rather than Ho. Therefore, Ho combined preferentially with
Cu to form precipitates. Meanwhile, Zr-Cu, Zr-Ni, and Zr-Al also preferentially form the
corresponding compounds, which is consistent with the XRD results.
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Figure 10 exhibits the TEM photographs of Zr54 and Zr48Ho6 BMGs after 20 min
of annealing at 500 ◦C, and the corresponding selected area electron diffraction (SAED)
patterns are inset in the upper right corner. As shown in Figure 10a, there are scattered
precipitates, roughly 3050 nm, that appear in Zr54 BMG. The SAED pattern shows many
diffraction spots and indicates the formation of Cu10Zr7 and Al2Zr. The TEM image of
Zr48Ho6 in Figure 10b also shows a well-ordered polycrystalline structure with immense
amounts of precipitates. The SAED pattern indicates the existence of CuZr2, Ni10Zr7, and
Cu2Ho phases. Compared with the XRD analysis of annealed alloys, it could be inferred
that the crystallization mechanism of Zr54 BMG is changed by Ho addition. It has been
found in the nucleation mechanism of Zr-Cu-Al BMGs, which could be divided into two
categories: CuZr2-type and Cu10Zr7-type [46]. CuZr2-type represents the lower free energy
barrier and easy nucleation, attributing to the simple space unit of CuZr2. A Cu10Zr7-type
implies a more chemically and topologically disordered crystal structure, resulting in much
harder nucleation. The similar result has also been found in our previous work about the
influence of Y alloying on the crystallization behavior of Zr-based BMGs [30]. In this work,
it is clear that Ho addition reduces the free energy barrier of nucleation and leads to the
formation of simple phases, such as CuZr2 and Cu2Ho. This is in good agreement with
the less activation energy Ex and the improved nucleation in JMA mode obtained above.
As the initial crystallized phase is mainly of Cu10Zr7, the crystallization of Zr54 BMG
belongs to Cu10Zr7-type. Compared with the addition of Y, the alloying of Ho led to the
different precipitates Cu2Ho, which resulted in the difference of crystallized products and
the corresponding proportion [30]. Then, the nanocrystalline alloy with different structures
and properties can be obtained.
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4. Conclusions

The influences of Ho addition on the GFA and crystallization process of Zr54Cu29Al10Ni7
BMGs were studied. The results were concluded to be as follows:

(1) The crystallization behavior of Zr54 BMG was changed by Ho addition. The non-
isothermal DSC studies showed a good correlation between characteristic tempera-
tures and heating rate.

(2) The Kissinger, Ozawa, and Doyle–Ozawa isoconversional methods all provided less
activation energy at the initial crystallization point of Zr48Ho6 BMG, indicating the
much easier nucleation.

(3) The crystallization of Zr54 and Zr48Ho6 BMG both firstly obeyed the JMA-mode
and then changed to obey the NGG-mode. The larger JMA exponent of Zr48Ho6
BMG implies the improved nucleation. The smaller NGG exponents for the following
crystallization of Zr48Ho6 BMG mean a slower growth rate of precipitates.

(4) The XRD and TEM analyses indicated that the initial crystallized products of Zr48Ho6
BMG were simple compounds, such as CuZr2, Cu2Ho, and Al3Zr5, while the initial
crystallization of Zr54 BMG was the formation of Cu10Zr7 with a complex structure.
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