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Resistive Switching Memory 
Phenomena in PEDOT PSS: 
Coexistence of Switchable Diode 
Effect and Write Once Read Many 
Memory
Viet Cuong Nguyen & Pooi See Lee

We study resistive switching memory phenomena in conducting polymer PEDOT PSS. In the same film, 
there are two types of memory behavior coexisting; namely, the switchable diode effect and write 
once read many memory. This is the first report on switchable diode phenomenon based on conducting 
organic materials. The effect was explained as charge trapping of PEDOT PSS film and movement of 
proton. The same PEDOT PSS device also exhibits write once read many memory (WORM) phenomenon 
which arises due to redox reaction that reduces PEDOT PSS and renders it non-conducting. The 
revelation of these two types of memory phenomena in PEDOT PSS highlights the remarkable 
versatility of this conducting conjugated polymer.

Organic materials have been investigated intensely for memory applications due to their low cost, flexibility and 
versatility. Coupling with the two terminals resistive memory architecture, the organic resistive memory device 
offers simple structure and flexibility for applications such as RFID tag and data archives1. Various works have 
demonstrated interesting resistive memory phenomena in polymer and composites such as Dynamic Random 
access memory (DRAM)2, Static Random Access Memory (SRAM)3, Write Once Read Many Memory (WORM)4 
and Rewritable memory (FLASH)5. The mechanisms behind these memory phenomena are often complex and 
depend strongly on the top electrode materials or deposition condition; the mechanisms are normally suggested 
by first principle calculations6. There are various mechanisms suggested for resistive switching phenomena in 
organic materials namely, donor-acceptor charge transfer complex3, charge trapping due to redox reaction7 and 
modulation of dopant in conjugated polymer8 or electrode metal migration9,10.

In this work, we study resistive switching phenomena in conducting polymer poly (3,4-ethylene 
-dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) where poly styrenesulfonate acid PSS H provides doping 
for conjugated polymer poly (3,4-ethylene-dioxythiophene) PEDOT and makes it water dispersible. The WORM 
memory characteristic of PEDOT : PSS can be attributed to the modulation of dopant PSS H and redox reaction11. 
Recently, we have also shown that PSS H doped polyaniline (PANI) also demonstrated WORM memory charac-
teristic12. Alongside with WORM memory, PEDOT PSS has been investigated for applications such as rewritable 
memory/synapsis activities13–15. In most cases13–17, the role of PEDOT PSS was minor while memory function was 
driven by active electrodes such as Ag or metal oxide of Ti, Ta or Al. In this work, we show that switchable diode 
effect can be observed in micrometer thick PEDOT PSS film through charge trapping and cation movement 
characteristics in the thick PEDOT PSS; these activities were originated from PSS phase separated regions within 
the PEDOT PSS film. Fundamentally, this switchable diode effect is very different from those observed in fer-
roelectric diode, or metal oxide such as WO3, TiO2 and SnO2

18–21. Furthermore, WORM memory phenomenon 
was also observed in the same device configuration due to the redox reactions that reduces PEDOT+ to PEDOT0.
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Results and Discussion
Original resistance state and Write Once Read Many Memory. The current voltage (I-V) character-
istic collected using metal probe as top electrode in the Au-PEDOT PSS-Au configuration was shown in Fig. 1a. 
Originally, the film was in its high conducting state with Ohmic behavior. Figure 1b shows the I-V sweep from 
0 V to − 5 V which exhibits a hysteresis where current transits from high conducting state to low conducting 
state which is similar with I-V hysteresis of PANI PSS12 and PEDOT PSS observed by Bhansali et al.22. After this 
sweep, read voltage at lower bias of 0.5 V shows a low conducting state. The device was unable to resume to the 
conducting pristine state by applying higher negative or positive bias. The result indicates a write once read many 
memory phenomenon where the pristine state can be written, but the written state cannot be erased. The long 
retention of the write once read many memory is shown in Fig. 1c where conducting state of the pristine film 
(ON state) and film after applying − 5 V (OFF state) can be maintained for more than 5000 s with no degradation; 
the states were read at − 0.5 V. The retention was monitored again after 3 months and shows no change as shown 
in supplementary information Fig. S1. The write once read many memory mechanism in PEDOT PSS has been 
attributed to redox reactions that reduce PEDOT+ to PEDOTo in the bulk film11. We recorded optical image of 
the pristine PEDOT PSS film and after biasing − 5 V as shown in Fig. S2a. The region biased by − 5 V showed a 
darker color compared with pristine region which implies the occurance of electrochemical reduction. It is noted 
that the dark region is not due to mechanical means such as probing process but due to electrical biasing at − 5 V. 
We did not observe the black region after biasing 5 V. Raman spectroscopy is a convenient and powerful tool to 
investigate electronic properties of conducting polymer after biasing. Intensities of Raman peak at 1267 cm−1 
and band shape near 1450 cm−1 can be useful indicator of doping and dedoping of PEDOT PSS23. Subsequent 
investigation of the dark area by Raman spectroscopy showed the disappearance of Raman peak at 1267 cm−1 and 
shoulder peak at 1400 cm−1 (Fig. S2b) after biasing − 5 V; this fact further indicates that the biased area has been 
reduced23,24. Furthermore, as shown in Fig. S3, current density peak at − 2 V in Fig. 1b is sensitive to the rate of 
voltage sweep. As the sweep speed is increased, the current density level at − 2 V will increase which suggests that 
the electrochemical reactions play an important role.

Switchable diode memory effect. The switchable diode effect arose only after negative voltage sweep in 
Fig. 1b where original high conducting state (pristine state) at low bias (− 1 V or − 0.5 V) was suppressed irre-
versibly. To correlate these two effects, we applied voltage sweep from − 1 V to 1 V and from − 5 V to 5 V to the 
pristine film independently. We show in Fig. 2a, the I-V characteristic of the pristine film after voltage sweeping 
from − 1 V to 1 V and voltage sweeping from − 5 V to 5 V. As seen from Fig. 2a, the I-V characteristic has Ohmic 
conduction at low bias (0.5 V) when voltage was swept from − 1 V to 1 V; however sweeping from − 5 V to 5 V 
indicates bistable hysteresis and almost zero current at low bias (0.5 V). Zooming in very low voltage regime 
(− 50 mV to 50 mV), we observe that for voltage sweep from − 1 V to 1 V, the I-V curve exhibits Ohmic properties 

Figure 1. (a) Experimental set up configuration. (b) Continuous voltage sweep from 0 V to − 5 V of pristine 
PEDOT PSS film (c) long retention characteristic of the WORM device.
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with the I-V curve crosses axis origin while after voltage sweep from − 5 to 5 V, the I-V curve does not cross axis 
origin as shown in inset of Fig. 2a. As seen from Fig. 2a, the switchable diode effect arises after biasing from − 5 V 
to 5 V. Continuous voltage sweep from − 5 to 5 V indicates two current peaks at positive and negative bias regime 
which are the characteristics of negative differential resistance (NDR). The NDR is often observed in trap/detrap 
resistive switching device25 or molecular junction with redox centers26. For better representation, we measured 
I-V at low voltage (from − 1.5 V to 1.5 V) after writing with 0.1 s duration rectangular pulse of − 5 V and 5 V; the 
switchable diode effect was observed as shown in Fig. 2b. After applying voltage to the device by 5 V or − 5 V, 
reversing of rectification can be seen by small reading voltage sweep from − 1.5 V to 1.5 V with rectification ratio 
of 10 and 3.5 for pulse of 5 V and − 5 V, respectively.

Unlike the similar phenomenon in ferroelectric diode18 where no NDR was observed, in this case the switch-
able diode effect is accompanied by two NDR regions. Furthermore, in Fig. 2b, the diode forward polarity is 
opposite to the writing pulse polarity which is in contrast with the similar phenomenon in ferroelectric diode 
where the diode forward direction follows the writing pulse polarity18. It is the first time switchable diode effect 
was observed in conducting polymer system such as PEDOT PSS.

The states retention and write/erase cycles were shown in Fig. 3. We recorded ON/OFF ratio and states reten-
tion at − 1.7 V after writing 5 V or − 5 V respectively for 60 seconds. ON and OFF state can be switched for more 
than 50 times and resistive states can be maintained for more than 3000 seconds. The data lost in Fig. 3b repli-
cates the short term memory discussed largely in memristive systems such as WO3 and SnO2

19,21. The short term 
memory fits to category of organic static random access memory discussed in ref. 3. In static random access 
memory, memory states can be retained for hours and eventually lost if device is not powered. Similar trend of 
state retention was also observed in switchable diode of WO3 and SnO2

19,21. The results are highly repeatable with 
100% device yield for 20 tested junctions from different batches. The above retention and cycling results indicate 
nonvolatility of this memory phenomenon. In Fig. S4, distribution of On state current and Off state current over 
20 tested devices from different batches is shown. The On state and Off state current can be clearly distinguished.

To understand the working mechanism of this switchable diode memory phenomenon, the junction was 
further tested in vacuum at 10−4  torr; the I-V shape as shown in Fig. 4 is almost a straight line when voltage was 
swept from − 5 to 5 V. Compared with device tested in air, the lack of I-V nonlinearity and hysteresis suggests that 
water molecules or oxygen traps in the film may have contributed to the observed switchable diode and bistable 
switching. After testing in vacuum, the device was tested in air again; the voltage was swept from − 5 to 5 V and 

Figure 2. (a) Continuous voltage sweep from − 1 V to 1 V and − 5 V to 5 V applying on pristine film 
independently (b) Voltage sweep at low bias (− 1.5 V to 1.5 V) after applying voltage on the device by 5 V or 
− 5 V.



www.nature.com/scientificreports/

4Scientific RepoRts | 6:19594 | DOI: 10.1038/srep19594

the I-V shape returned completely to its original form as shown in Fig. 2a. Therefore, we deduce that the adsorbed 
water molecules are possibly the main reason for switchable diode effect in Fig. 2a,b. Observation of I-V hysteresis 
in some hygroscopic insulator field effect transistor device in humid air was reported and the phenomenon was 
extinct when device was tested in N2 gas27. Similarly, adsorbed water molecules induced memory phenomenon 
was also reported in carbon nanotube field effect devices28; in this scenario, I-V hysteresis was observed when 
device was tested in air and extinct when it was done in vacuum.

We performed control experiments to validate this phenomenon. I-V response of Poly(4-styrenesulfonic acid) 
(PSSH) was recorded. In Fig. S4a, the I-V sweep from − 5 V to 5 V of PSSH is shown. Similar I-V shape with 
Fig. 4b was observed in this PSSH system. Hence, we deduce that the observed switchable diode phenomenon 
arises from the PSSH phase separated regions inside the film of PEDOT PSS. However, the unipolar I-V sweep 
from 0 V up to − 15 V of PSSH pristine film did not display hysteresis as shown in Fig. S4b; this fact suggests that 
the WORM phenomenon observed in Fig. 1a is not related solely to the PSSH regions.

The switchable diode effect in Fig. 2a,b cannot be explained by voltage modulating injection barrier discussed 
in various publications18,19 because the diode forward direction is antiparallel with applied voltage direction. We 
propose the following mechanism based on hole trapping and cation movements as discussed by Xie et al.29. The 
trapping of holes are possibly induced by redox reaction (electrolysis) of the adsorbed water in the film since 
PEDOT PSS is a hygroscopic material. The non-crossing to axis origin of IV curve after voltage sweeping from 
− 5 V to 5 V shown in Fig. 2a inset indicated the presence of cation movements. When − 5 V poling voltage is 
applied on top electrode, holes injected from bottom electrode will be trapped at the interface and protons H+ will 
be transported to cathode. The charges are trapped and protons are transported via the water molecules within 
the PEDOT PSS film through Grotthus mechanism where protons will be transported from one water molecule 
to another water molecule through Hydrogen bonding30. It is noteworthy that electrolysis of water in the film31 
and the acidic PSS H in PEDOT PSS film are the possible sources of protons. At small voltage sweep from − 1.5 V 
to 0 V (applied to top electrode), trapped holes hinder further injection which results in reverse- bias-like I-V in 
Fig. 2b. When voltage is swept from 0 V to 1.5 V, holes will be injected from anode and trapped holes are extracted 
at the cathode; this results in forward-bias- like I-V in Fig. 2b. The above discussed charge transport events 
occurred in the PSSH phase separation regions of PEDOT PSS film as revealed by control experiment Fig. S3a.

The reason for the moderate retention in Fig. 3b is possibly due to relaxation of trapped holes. Similarly, relax-
ation of accumulated oxygen vacancy was also proposed as the possible reason for short retention time in switch-
able diode in WO3

19. A similar scenario was also employed to explain symmetrical NDR and switchable diode in 
TiO2 as discussed by Du et al.32. We also note similar I-V characteristic observed in water- redox based memory 
device of metal organic framework (MOF)33 and hydrated/Nickel decorated DNA34. However, in those systems 

Figure 3. Cycling and retention characteristics of Au-PEDOT PSS-Au junction. (a) ON-OFF state cycling 
(b) retention characteristics of the Junction.
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(MOF and DNA), coexistence with WORM memory can hardly be achieved. Therefore, the coexistence of switch-
able diode and WORM memory in PEDOT PSS is a unique culmination of this class of memory material.

Conclusion
In this work, we study the memory phenomena in PEDOT PSS. In the same film, there are two memory effects 
coexisted, namely the switchable diode effect and write once read many times memory. Originally, the pristine 
state of the device is in its high conducting state with Ohmic behaviour. After reduction voltage of − 5 V, the 
junction switches to OFF state with low conduction and pristine state cannot be set back to high conducting state 
even after applying high positive or negative voltage. The drop in conduction is due to redox reaction that reduces 
PEDOT+ to PEDOT0 in the bulk film. After the film was reduced, the switchable diode arose. The switchable 
diode was explained due to the trapping of holes and proton transport in PEDOT PSS film under redox reaction 
of adsorbed water in the film. The switchable diode effect was originated from PSS H phase separated regions in 
the PEDOT PSS film.

The presented results broaden and deepen the understanding of memory phenomena in PEDOT PSS and 
extend further its applications in electronics and ionics devices including WORM nonvolatile memory, ionic 
diode and synapsis activity11,35–37.

Methods
PEDOT PSS with 0.5 wt% PEDOT and 0.8 wt% PSS was purchased from Sigma Aldrich under code name 483095 
Aldrich. The dark blue solution was filtered through 0.5 μ m PTFE membrane to produce more homogenous 
solution; after that it was dilated in HCl and Deionized water for 1 day to further purify. The 6 μ l solution was 
then drop-casted on gold coated Si substrate with 2 nm Ti adhesion layer to achieve a maximum 5 μ m thick 
film with dark blue color; the standard deviation of measured thickness is about 1.71 μ m. The film thickness 
was determined by surface profiler meter. The film was dried in air at about 60% humidity without heating. The 
Poly(4-styrenesulfonic acid) film (thickness of 60 μ m) in control experiment was casted on Au substrate from 
18 wt% in water solution purchased from Sigma Alrich under code name 561223 Alrich. The Deionized (DI) 
water in control experiment was obtained from Millipore system.

We conducted transport measurement using Keithley 4200 semiconductor analyser using bended gold metal 
probes with thickness of 300 μ m and curvature arc of 40 μ m pressing on the PEDOT PSS film as top electrode to 
study the physics of the memory switching phenomena. This avoids the interference of sputtered electrodes on 

Figure 4. (a) I-V measurement at 10−4 torr (b) I-V measurement in air immediately after taking out the sample 
from vacuum.
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resistive switching of the film. The contact area was 0.00005 cm2. We note that such strategy was also employed to 
study resistive switching in metal-organic framework38.

The film was characterized using micro Raman Spectroscopy with excitation laser wavelength of 488 nm, 
before and after electrical biasing . Optical image of pristine region and − 5 V biased region was collected using 
Olympus optical microscopy. All of the experiments were performed at room temperature condition and 60% 
humidity.
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