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Abstract: Biochar has been widely used in the fields of environment and energy, and green prepa-
ration can make biochar-based materials more environmentally friendly. Particularly, in the low-
temperature pyrolysis of biochar, labile C with low biological toxicity is the main influencing factor
of bacteria in soil. Therefore, it is worth studying to develop the fabrication technology of low-
temperature pyrolysis biochar with rich pore structure. The mechanical effect of ultrasonic cavitation
is considered to be an effective strategy for the preparation of biochar. However, the sonochemical ef-
fects on biochar remain to be studied. In this review, ultrasonic modification and ultrasonic-chemical
modification on biochar has been reviewed. Metal oxide/biochar composites can also be obtained
by an ultrasonic-chemical method. It is worth mentioning that there have been some reports on the
regeneration of biochar by ultrasound. In addition to ultrasonic preparation of biochar, ultrasound
can also trigger the sonocatalytic performance and promote the adsorption ability of biochar for the
removal of harmful substances. The catalytic mechanism of ultrasound/biochar needs to be further
investigated. For application, biochar prepared by ultrasound has been used for the removal of heavy
metals in water, the adsorption of carbon dioxide, and soil remediation.

Keywords: ultrasound; biochar; cavitation; sonocatalyst; CO2 capture; soil remediation

1. Introduction

In the context of environmental protection, human society is committed to seeking
new materials that are “green”, low-cost, efficient, and sustainable. Among them, carbon
prepared from biomass has large reserves and is renewable. That makes it one of the most
promising new materials. In fact, biomass resources are abundant. Biochar is usually
prepared from plants that directly synthesize organic matter by photosynthesis—such as
crops [1], rice husks [2], and waste wood [3]—but also from urban waste [4]. Efficient and
comprehensive biomass utilization has been demonstrated in energy generation, ecological
agriculture, environment restoration, and building materials [5]. When biomass is burned,
it contains a lot of carbon and plant nutrients, which make it effective as a soil conditioner
to improve soil quality [6]. In addition, biomass carbon has a pore structure with a high
specific surface area and rich surface functional groups that adsorb heavy metals and
organic pollutants from water [7].

Recently, biochar has demonstrated broad applicability in the field of energy and
the environment. Its application in fuel cells has also been reported [8]. There are still
some problems in biochar’s comprehensive application, however. Today’s preservation
and transformation processes the waste of biomass resources. The worst is, of course, the
burning of agricultural wastes such as straw in the field, but sawdust is discarded in bulk in
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forestry-product processing, and food processing routinely sends shells and skin to a landfill.
Such practices pollute the environment and waste a considerable quantity of potentially useful
biomass resources [9–11]. This makes finding a new method for preparing biochar and new
large-scale uses for biomass an important research challenge. In today’s world, an important
constraint is that any solvents used must be environmentally “friendly”.

Biochar is a solid formed through the thermochemical decomposition of biomass. It is
a multifunctional material, which contains a lot of carbon and nutrients. It can be used as a
soil conditioner to improve soil fertility and further improve crop yield [6]. In addition,
biochar has a large specific surface area and contains more oxygen-containing active groups
on the surface, which can adsorb heavy metals and organic pollutants in soil or sewage [1].
At present, biochar is usually produced through the anoxic high-temperature pyrolysis of
biomass [12]. However, that thermal decomposition method has some shortcomings—slow
heating, long reaction time, large energy consumption, low heat transfer efficiency, and
uneven heating of the raw materials. This has led researchers to propose new methods.

One popular fabrication is hydrothermal carbonization. This is low-temperature
thermal decomposition with a short reaction time and high yield. The waste biomass (car-
bohydrates with other organic molecules), a catalyst and water are heated to a temperature
below 400 ◦C at elevated pressure. The elevated temperature and pressure accelerate the
physicochemical interaction between the biomass and the solvent, which promotes the
reaction between ions and acid or alkali. That decomposes the carbohydrate structure in
the biomass, forming a carbonaceous precipitate. The aqueous medium of hydrothermal
carbonization is conducive to the formation of oxygen-containing functional groups on the
surface of materials in the carbonization process, so the carbonization products generally
bear abundant surface functional groups.

Ultrasound is applicable to the preparation of carbonaceous materials from biomass.
Ultrasonic preparation has been shown to efficiently prepare high-purity micro- and
mesoporous and multistage porous carbonaceous products with a large specific surface
area [13,14]. Applying ultrasound in carbonization and activation alleviates problems
of low specific surface area and single pore structure. Indeed, ultrasound treatment can
efficiently prepare material with a multistage pore structure and an adjustable microp-
ore/mesopore ratio.

This review first introduces the effects of biochar on bacteria in soil. It then discusses
in detail the preparation of biochar using ultrasound and the material’s resulting structural
and catalytic properties. The latest research results will be reviewed, focusing on biochar’s
application in water treatment, soil remediation, and new energy. A new biochar prepa-
ration method using microwave sonochemistry will be described. Finally, the obstacles
to its implementation, directions for its further development and application, and some
other challenges will be discussed. This report is intended to serve as a good guide to
the rational use of biomass to prepare functional carbon materials and to improve their
practical performance.

2. Effects of Biochar on Bacteria in Soil
2.1. Main Physical and Chemical Properties of Biochar

For the soil environment, the main physical and chemical properties of biochar include
porosity, specific surface area, hydrophilicity/hydrophobicity, nutrient content, and pH.
Generally speaking, the porosity and surface area of biochar usually increases with the
increase in pyrolysis temperature. Appropriate porous structure can provide a good
place for bacterial to grow. However, more importantly, biochar’s adsorption capacity
for water and labile C should be considered [15]. Water and labile C provide essential
nutrients for bacterial growth. The aromatization degree of biomass carbon is deepened, the
hydrophobicity is enhanced, and the hydrophilicity is weakened. A review work pointed
out that labile C in biochar is considered to be the main factor affecting bacterial growth.
Interestingly, from the perspective of nutrients, the content of labile C will decrease with
the increase in pyrolysis temperature [15]. This poses a challenge for the preparation of
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biomass carbon, whether we can prepare materials with high specific surface area at low
pyrolysis temperature. In addition, not all labile C can be used as a carbon source for
bacterial growth [16]. For example, xylenol in labile C is toxic to most bacteria and may
stress the growth of bacteria. It is also worth noting that biochar is usually alkaline. In fact,
for the same material, the higher the pyrolysis temperature, the higher the pH of biochar
will increase. Alkaline biochar can bind hydrogen ions in soil solution, which may change
soil acidification, leading to improved soil properties for microbes and plants [17].

2.2. Bacterial Response

The response of bacteria in soil to biochar is mainly reflected in the impact of biochar
on bacterial diversity and community structure, which depends on the type of biochar,
soil type, crop type, and planting time. For example, low-concentration carbon treatment
promoted the plant height and biomass yield of rape, while high-concentration carbon treat-
ment did not promote the plant height and biomass of rape. Biochar increased the relative
abundance of Bacteroides in an acid purple soil [18]. Perhaps due to various influencing
factors, the reports on the impact of biochar on microbial diversity are inconsistent [15].
In fact, in terms of response to bacteria in soil, meta-analysis is an important technical
means that can reflect the impact of biochar on soil microbial enzyme activity. For example,
meta-analysis showed that biochar significantly increased urease and alkaline phosphatase
activities [19]. However, researchers have also observed the inhibition of biochar on urease
activity. This may be the result of the oxidation reaction between free radicals produced by
biochar and urease. Researchers believe that the effect of biochar on the activities of N and
P enzymes depends on the type of biochar and their dosages [20]. Labile C provided by
biochar may play an important role in this process.

Biochar can be used as a shelter for microorganisms because of its pore structure. Some
bacterial cells can attach to the surface of biochar in a very short time [19]. Biochar can also
provide nutrients for soil microorganisms through the adsorption of nutrient cations and
inorganic anions with surface functional groups of biochar. In addition, biochar as a soil
conditioner can reduce the toxicity of soil pollutants to soil microorganisms. Fixing soil
pollutants on biochar, thereby reducing their bioavailability, may be the main reason for
reducing the toxicity of soil pollutants to microorganisms and increasing microbial biomass.
For example, the application of straw biochar can lead to an increase in the organic binding
of heavy metals [21]. This can help bacteria survive in contaminated soil. However, some
compounds in biochar are called microbial inhibitors, including carboxylic acids, ketones,
furans, etc., which are usually considered as VOCs adsorbed on biochar [22]. In conclusion,
physical and chemical properties of biochar will affect bacterial growth (Figure 1), while
biochar’s promoting or inhibiting effect on bacteria is not very specific. This needs further
study to evaluate the environmental benefits and the risks of biochar application.

2.3. The Effect of Biochar on the Nutrient Cycling of Soil by Acting on Bacteria

The physical and chemical properties of biochar play an important role in regulating
the soil N cycle, changing the activity of nitrifiers and bacterial community composition,
and affecting the soil nitrification process and N2O emissions [23,24]. Biochar can improve
the availability of soil P by changing microbial communities, because it can provide suitable
growth conditions for microorganisms. A microcosm experiment showed that the applica-
tion of biochar increased soil orthophosphate and pyrophosphate, reduced the content of
monoesters, and thus improved soil P components as well as P availability. However, P
fixation is temporary and will be released again after microbial death [25].

At present, most studies have focused on the impact of biochar on bacterial communi-
ties in soil. However, in soil ecosystems, the cycles of C, N, and P usually occur together.
Regulation such as biochar addition may disturb the coupling of microbial C, N, and P
cycles and change the soil nutrient status. The microbial communities, dominant groups,
and functions of biochar still need further investigation. From the perspective of bacterial
growth, biochar prepared by high temperature can be used as a shelter for microorganisms
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because of its rich pore structure. However, in the low-temperature pyrolysis of biochar,
labile C with low biological toxicity is the main influencing factor of bacteria. Therefore,
it is worth studying to develop the fabrication technology of low-temperature pyrolysis
biochar with rich pore structure.
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3. Ultrasonic Modification of Biochar

Porous carbon materials have attracted a lot of research attention due to their large
specific surface area, easily accessed active sites, and easy regulation of pore structure.
They are widely used in energy storage, adsorption, water purification, and catalysis [26].
The preparation of porous carbon materials from biomass has been considered a green
path to solving the pollution problems posed by waste biomass. In the preparation process
and when the product serves as a catalyst, cavitation can achieve better mass transfer,
eliminate any uneven concentration at the microscale interfaces, accelerate the reactions,
and inhibit particle agglomeration. It has been reported that ultrasound can be used
to prepare biochar-based materials [27]. It is therefore of great scientific and economic
significance to understand the mechanisms involved in preparing porous carbon materials
from biochar using ultrasound. That could allow improving the porous carbon’s catalytic
and adsorption properties.

3.1. Ultrasound Modification

Equipment, the chemical environment, and parameters such as frequency and intensity
have critical impacts on reactions promoted using ultrasound. However, researchers have
not yet systematically investigated the effects of ultrasound frequency or intensity in biochar
modification. This review summarizes the optimization work to date seeking better ultrasonic
treatment conditions, which should help to improve biochar modification processing using
ultrasound. The ultrasonic modification on biochar is demonstrated in Figure 2.

Table 1 shows the work to date on ultrasonic modification of biochar. Most of it used
an ultrasound probe, but some used a low-frequency ultrasound bath. Low frequencies
at high power have been favored. The reported frequencies have ranged from 20 to
170 kHz, and the power from 20 to 700 W. The reports point out that the cavitation induced
by high-intensity ultrasound can cause exfoliation, which will significantly impact the
porosity and physical adsorption properties of biochar.
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Table 1. Effects of ultrasound parameters in biochar modification.

Material
Ultrasonic Conditions Biochar Properties after

Ultrasound Modification Ref.
Device Frequency Intensity Time (s)

Biomass from
mixed softwoods Bath 40 kHz

170 kHz
250 W

1000 W
3600
3600

Obtained a porous structure and
increased heterogeneity of the

surface
[27]

Woodchips Bath 40 kHz
170 kHz

250 W
1000 W

3600
7200 A better surface morphology [28]

Woodchips Bath 40 kHz
170 kHz

250 W
1000 W

3600
7200 s Enhanced surface area [29]

Pine wood Probe 20 kHz 700 W 30,60 Enhanced porosity [30]
Sludge-derived

biochar Probe 24 kHz 400 W 30 Enhanced pore
volume and surface area [31]

Pine wood Probe 20 kHz 475 W
700 W 30,60,180 Creating empty pores [32]

Pine wood Probe 20 kHz 700 W 30 A smooth surface with new circular
pores [33]

Pine wood-based
biochar Probe 20 kHz 700 W 30 Elevated adsorption capacity [34]

Caragana
korshinskii Bath 45, 80,

100 kHz
300 W

and 700 W 1800−14,640
Removed the ash content from the
biochar and increased the specific

surface area
[35]

Corn stover Probe 20 kHz 500 W 60 s Obtained multilayered and porous
structures [36]

Water bamboo
husks Probe 20 kHz 65 W 30−480 Improved the surface properties [3]

Biochar Bath 35 kHz 560 W 3600 Enhanced BET surface area [37]
Biochar prepared
from spent malt

rootlets
Probe 20 kHz 4.32 W n.a. Surface activation [38]

Milled miscanthus
particles Bath 40 kHz 300 W 3600 Synthesis of graphene oxide [39]

Biochar n.a. 20 kHz 475 W 300−
21,600

Exfoliation and enhanced reactivity
of the surface functional groups [40]

n.a.: Not available; BET: Brunauer, Emmett, and Teller.
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Cavitation corrosion can increase the surface area of biochar. Aneeshma’s group used
40 KHz, 1000 W ultrasound and 170 kHz, 1000 W ultrasound to treat biochar from mixed
softwoods as a pretreatment before pyrolysis [28]. They found that ultrasonic pretreatment
developed a more porous structure in the material and increased the biochar’s specific
surface area. It is worth noting that in that work, 170 kHz ultrasound was significantly
more effective than 40 kHz ultrasound in improving the biochar’s Brunauer, Emmett, and
Teller (BET) surface area. Experiments to further optimize the conditions are needed.

A group led by Sajjadi has reported that sonication times longer than 20 s did not
further enhance the surface area of biochar in their experiments [41]. Thus, the traditional
influencing factors of pyrolysis mainly include carbonization temperature and carboniza-
tion time, which have been investigated [42]. In terms of ultrasonication time, most of
the prior work experimented with relatively short treatments, possibly due to the use
of powerful ultrasound. For example, after pyrolysis, pinewood biomass was treated
at 20 kHz and 700 W intensity for 30 or 60 s. Even in such a short time, the porosity
was enhanced [30]. Biochar derived from sewage sludge was treated at 24 kHz and
400 W for 30 s, resulting in increased pore volume and surface area [31]. Thus, even ultra-
sonication for 30–60 s can effectively improve the surface area and even open holes on the
surface of carbon materials [30,31,33,43]. Shorter treatment time is of course an advantage
in commercial application of ultrasound.

3.2. Ultrasonic-Chemical Modification

There have been experiments mixing biochar deionized water and chemicals before
ultrasonication [31,41,44]. The urea can also help to generate an appropriate pore-size
distribution and high specific surface area. This needs to be further studied (Figure 3).

Only some research reports emphasize temperature control. For example, when an
ultrasonic cleaner was used to modify rice husk biochar, the temperature was controlled at
30 ◦C during 1.5 h of ultrasonication [2]. The atmosphere and temperature are important
treatment parameters. Higher temperatures can even inhibit some ultrasonic chemical reac-
tions. Work systematically exploring the role of atmosphere and temperature in ultrasonic
modification of biochar is badly needed.

Ultrasonic modification positively affects the specific surface area of carbon from
biomass, but it has no noticeable effect on the elemental composition or on the oxygen-
containing functional groups on the biochar’s surface. The principle of chemical modifi-
cation is to chemically change the functional groups on the material’s surface. The main
methods are acid and alkali modification. Acid modification enhances the hydrophilic-
ity of biomass carbon by increasing the surface concentration of acidic groups. Alkali
modification forms a positive charge on the surface which promotes the adsorption of
negatively-charged substances.

The combination of ultrasound and chemical modification can often better improve the
performance of biochar. For example, combining 20 kHz ultrasound with urea in biochar
activation was found to enhance the adsorption of heavy metals [41]. Biochar fabricated
from camphor leaves was sonicated with NaOH solution for 30 min and the combined
treatment resulted in more surface groups, larger surface area, and greater pore volume,
leading to higher sorption capacity for heavy metals [45]. In addition, a group led by Zhang
reports [46] that imidacloprid adsorption in aqueous solution on carbon from corn cob
treated with KOH was enhanced compared with the original carbon. Aswani has similarly
reported that ultrasound acid treatment improved the biosorption capacity of Merremia
vitifolia biomass [47]. Alternatively, ultrasound activation could be followed by a chemical
modification. Either EDC−HOBt or KOH improves the CO2 adsorption [34]. A group
led by Bispo has reported that using K3PO4 and sonication, biochar formation is reduced
while gas yield is enhanced [48]. When biochar from waste tea feedstock was mixed with
0.3 M citric acid and ultrasonically treated for 2 h the pore volume and pore size were
increased, leading to thermostability and high Hg0 removal (approximately 98.6%). The
sonication also improved the char’s surface morphology, thermal stability, and regeneration
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ability [49]. Various solvents have been applied in the ultrasonic exfoliation of biochar [50].
To obtain a small number of stacked layers from such exfoliation requires careful control of
the solvent’s properties, and biochar-solvent intermolecular interactions.
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When biochar from guava seeds was mixed with Ch2Cl2, KOH, or H3PO4 before 30 min
of sonication, CH2Cl2 enhanced the hydrolytic activity from 190 to 258 µmol g−1 min−1 while
the other two treatments reduced it [51].

To summarize, ultrasound combined with different chemicals can controllably adjust
biomass carbon’s physical and chemical properties.
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3.3. Metal Oxide-Biochar Composites

Combining ultrasound with acid treatment can generate a biochar with magnetization
saturation, which more quickly leaches NiCl2 and ZnCl2. In that process, pyrolyzed Sapelli
biochar was mixed with 0.1 M HCl and sonicated for 15 min at 20 kHz and 600 W [52].
Rice husk biochar modified with FeCl3 solution and 1 h of sonication can be used for
sludge dewatering [2]. Ultrasound-assisted in situ precipitation of Bi4O5Br2 has been used
to prepare a biochar/Bi4O5Br2 photocatalyst [53]. Using sonication, CaCO3 nanoscale
particles have been grown on tragacanth gum biochar for Pb2+ removal [54]. Furthermore,
40 min of sonication has been shown to enhance the SBET area and pore volume of metal
oxide/biochar complexes. Luo’s group used 0.5 h of sonication to precipitate zinc sulfide
on peach wood activated carbon, which then showed remarkable photocatalytic ability [55].
Magnetic Fe3O4 particles have been loaded on biochar, and the composite has used an
adsorbent in removing antibiotics from aqueous solution [56].

There is also sonocrystalization. Ultrasound is used in preparing crystalline
TiO2/lignocellulosic carbon for photocatalytic reactions [57]. A surfactant-free biochar
bearing TiO2 can be formed in an hour in a 35 kHz ultrasound bath at 560 W. The composite
can photocatalytically degrade 64.1% of the phenol in a liquid medium, and selectively
oxidize 90% of methanol in a gas phase reaction [37]. However, in fact, a 40 kHz bath
operating at only 50 W is capable of loading TiO2 nano-scale particles onto the surface of
porous biochar [58].

3.4. Microwave-Ultrasound Fabrication of Biochar

Microwaves heat by generating high-frequency reciprocating motion of polar molecules
in the heated body. Colliding molecules generate heat through friction, raising the tem-
perature of the internal and external parts of the body rapidly and evenly. Microwave
heating has been applied in the preparation of biochar [13]. Sonication helps the doping of
biochar with ZnS, while microwave heating is vital for giving the composite photocatalytic
activity [55]. Magnetic biochar is first activated using microwaves before the activated
biochar is sonicated for 40 min to reduce the particle size and disperse the magnetic iron
oxide [59]. Combining acid or base treatment with ultrasound and microwave irradiation
can remarkably enhance the surface area of biochar [60].

3.5. Ultrasonic Regeneration

The inactivation of a catalyst or adsorbent is a bottleneck in removing pollutants.
Fast and complete regeneration is important. At present, regeneration usually involves
either calcination, cleaning, oxidation-reduction, or resin adsorption. However, a group
led by Ma has reported the ultrasonic renewal of biochar. They combined ultrasound
with ethanol to regenerate magnetic biochar sludge. The first regeneration cycle reached
90.3% regeneration [4]. In other work (Figure 4a), hydroxyl-activated magnetic biochar
from sugarcane bagasse was regenerated using ultrasound and ethanol [61]. Ultrasonic
cavitation and ethanol extraction restored a stable adsorption capacity of 180 mg/g after
five reuse cycles, which was close to the capacity of the fresh biochar. More than 99% of the
adsorption capacity of magnetic microporous biochar from loofah sponge was similarly
retained (Figure 4b) after five reuse cycles [62]. Effective regeneration is important, but
relatively little is published on the subject, perhaps because of commercial considerations.
In addition, the mechanism of ultrasonic regeneration has not been fully explored.
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4. Pollutant Removal Using Ultrasound with Biochar
4.1. Heterogeneous Reactions

Heterogeneous sonocatalysis usually involves a solid catalyst sonoactivated through
cavitation. Shear force, microjetting and free radicals all degrade organic contaminants,
and solid particles of a catalyst such as Al2O3, ZnO, TiO2, or a carbonaceous material can
help [19]. It is believed that particles reduce the cavitation threshold [19].

Biochar is a catalyst with good biocompatibility, which is inexpensive and environmen-
tally friendly. It can play a significant role in environmental remediation [14,63]. The porous
and irregular surface of biochar may enhance catalytic processes [64–66]. The addition of
sludge biochar [67], pine wood-based biochar [68], and agroindustrial biochar [69] have all
been shown to enhance the generation of free radicals better than sonication alone.

There are inorganic sonosensitizers that promote the production of free radicals under
ultrasonication. Research in this area emphasizes regulating the physical and chemical
structure of sonosensitizers (Table 2).

Some of it aims to mediate hole–electron separation and generate free radicals. In a
sound field, a sound-sensitive agent with a gaseous core and semiconductor properties
generates carriers [79–82]. The carriers are separated and diffuse to the surface of the
sound-sensitive agent. O2 captures the electrons in its conduction band to generate copious
O2−. The holes of the valence band may generate OH− in water, and some O2− can also be
reduced to OH− [79–83] through electron induction.

Controlling the chemical composition of semiconductor materials and structural fea-
tures such as ultrathin sheet structures or defects can substantially improve dynamic
acoustic effects. Biomass has been used as a carrier for TiO2 in removing algae by applying
dynamic acoustic effects [58]. The results show that supplementing biochar with iron can
significantly reduce the sound pressure threshold, couple chemical dynamics, promote the
formation of free radicals, and enhance algae removal.

Another research objective has been to improve the free radical yields in Fenton and
Fenton-like reactions. A sound-sensitive agent with Fenton catalytic activity can enhance
the production of free radicals. For example, sludge biochar can catalyze persulfate in a
sound field to produce SO4

2− and OH− radicals [68]. The species cycling of the iron in
iron-doped biochar gives the catalyst a Fenton catalytic functionality, catalyzing H2O2’s
production of reactive oxygen species [71]. In a sound field, rice husk biochar with MnO2
catalyzed the generation of H2O2 and degraded 100%.

A catalyst with nanoscale channels can also improve the reaction rate of free radicals.
Qu has pointed out that the mass-transfer distance between the oxidant and the target
pollutant in a confined space is very short. The resulting rapid mass transfer can promote
the generation and accumulation of free radicals, which will then quickly collide with the
target pollutant molecules, oxidizing them [84]. Biochar has abundant pores and surface
functional groups, which can adsorb pollutants to the catalyst surface and react with
contaminants in the tiny pores.
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Table 2. Biochar-based sonocatalysts for contaminant removal.

Biochar-Based
Material Contaminants

Ultrasonic Conditions
Results Ref.

Device Frequency Intensity Time

1.5 g/L biochar from
sludge

80 mL of 40 mg/L Pb (II)
and/or 5 mg/L phenol

solution
Probe 20 kHz 50 W 60 min

98.9% of Pb (II) and
94.45% of phenol was

removed.
[67]

90 mg/L pine
wood-based biochar 250 µg/L sulfamethoxazole n.a. 20 kHz n.a. 30 min

100% of
sulfamethoxazole was
degraded (250 mg/L

persulfate).

[68]

125 mg/L
agroindustrial biochar

200 mL of 1 mg/L
propylparaben solution Probe 20 kHz 20–60 W/L 45 min 80% of propylparaben

was degraded. [69]

2 g/L Fe0 and
Al0@sludge biochar

60 mL of 20 mg/L
bisphenol A solution Probe n.a. 60 W 80 min 98.6% of bisphenol A was

degraded [PS]0 = 3 mM [70]

90 mg/L biochar 500 µg/L Probe 20 kHz 36 W/L 120 min 90% trimethoprim
(500 mg/L persulfate). [38]

0.7 g/L MnFe2O4 and
biochar derived from
polar wood powder

200 mL of 20.0 mg/L
methylene blue solution n.a. 40 kHz 665 W 20 min

95% of methylene blue
was degraded

(pH = 5, 15 mol/L H2O2).
[71]

0.5 g/L MnO2
with rice husk biochar

200 mL of 100 µM
bisphenol A solution Probe 20 kHz

130 W at
40%

amplitude
120 min

100% of bisphenol A was
degraded.

[H2O2]0 = 10 mM
[72]

2 g/L magnetic biochar
derived from food

waste

10 mL of 50 mg/L
methylene blue solution

10 mL of 50 mg/L methyl
orange solution

Bath 37 kHz 35.3 W/L 60 min,
180 min

methylene blue and
methyl orange 100%

degraded
(200 mM H2O2).

[73]

1 g/L magnetic biochar
from rice bran

200 mL of 0.1 mM
bisphenol A Probe 20 kHz 51.95 W/L 40 min

94.25% of bisphenol A
was degraded
(10 mM H2O2).

[74]

sodium alginate-coated
iron granules with

biochar

100 mL of 100 mg/L
ibuprofen Bath 40 kHz 250 W 8 h 74.72% of ibuprofen was

degraded. [75]

50 mg/L TiO2 loaded
on biochar

20 mL of 1.3 × 107 cells per
mL Microcystis aeruginosa

cells
Bath 600 kHz 0.3 W/mL 90 s

the number of
cyanobacteria

cells decreased to
0.8 × 105 cells per mL.

[58]

0.6 g/L ZnCr and LDH
biochar 15 mg/L rifampicin Bath 36 kHz 150 W 40min

100% of rifampicin was
degraded with

ultrasound and visible
light irradiation.

[76]

1 g/L CeO2 on biochar 100 mL of 10 mg/L
Reactive Red 84 n.a. n.a. 450 W 60 min 98.5% of Reactive Red 84

was degraded. [77]

43 mg/L Tamarix
hispida biochar

modified by lanthanum
chloride

50 mL of 86 mg/L phenol Bath 370 kHz n.a. 63 min
99.43 % of phenol was
degraded. (86 mg/L

persulfate)
[78]

n.a.: Not available.

Free-radical mass transfer over short distances is the essential theoretical basis for
regulating advanced oxidation reactions. The half-life of free radicals in water is about
10−6 to 10−9 seconds, so the limiting mass-transfer distance under ideal conditions is about
90 nm [85]. Free radicals’ short lifetimes do not allow for much diffusion. For advanced
oxidation reactions involving biochar and ultrasound, it is important to understand the
free radicals’ generation and mass transfer at the surface of the ultrasound generator. Will
the generation and accumulation of free radicals be sufficient to ensure that free radicals
will collide with pollutant molecules effectively? Can the sound generation parameters
effectively regulate free radicals’ formation and mass transfer?

4.2. Ultrasound-Assisted Adsorption

Although ultrasound is often used to enhance desorption, it can also improve the
adsorption of organic pollutants. Adsorption of reactive yellow dye 145 onto biochar from
marine Chlorella sp. promoted by 35 kHz ultrasound allowed 99% removal of solid waste
within 1 min [86]. Ultrasound-assisted adsorption has also been reported using porous
biochar from almond shells, and it removed 96.88% of sulfamethoxazole [86].
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The adsorption mechanism has been investigated using FTIR spectra. They showed
that the peaks of functional groups such as OH, C=C, C-OH, and C-H were enhanced
after sonication. Sonication may thus help fix pollutant molecules inside the adsorbent’s
pores. Biochar bearing Fe2O3 and activated with ultrasound actively adsorbs salicylic
acid and ketoprofen [87]. Diao reports that ultrasonic adsorption is the first step in Pb (II)
and phenol removal using sludge biochar and ultrasound in precipitation, reduction, and
Fenton-like oxidation [67]. Although there have been only limited experimental results
showing that ultrasound can enhance adsorption on biochar, the potential mechanism is that
ultrasound may drive organic molecules to the activated carbon. In any case, ultrasound
should effectively prevent agglomeration of the adsorbent, improving the contact area and
increasing the adsorption capacity.

5. Discussion

Biochar has a wide range of sources, and the successful preparation of functional
materials is conducive to alleviate environmental problems. At present, some researchers
have proposed adding biochar to soil, which can improve soil quality. However, several
reports also pointed out that the addition of biochar may have negative effects. In this
paper, the effect of biochar on soil bacteria was investigated from the perspective of bacteria
in soil. We found that in some reports, biochar can promote the growth of bacteria, and then
promote the degradation of organic matter, heavy metal passivation, and other beneficial
processes. However, some studies demonstrated that biochar also inhibits bacterial activity.
In general, it might be concluded as biochar prepared at low temperature contains labile
C, and some components in this mixture can become a carbon source for bacterial growth.
However, when the preparation temperature increases, the content of labile C decreases.
Then, such findings do not guide us to determine the existing biochar preparation process
as low-temperature preparation. Because the main advantages of biochar are consider-
able specific surface area and abundant pore structure, which could be used as sites for
adsorption and/or catalytic reactions. How to prepare biochar with high relative area at
low temperature is an interesting direction of biochar production in the future.

The report of ultrasonic preparation of porous carbon materials is not rare. Relatively
speaking, the temperature required for ultrasonic treatment can be slightly reduced. This
makes it possible to obtain biomass carbon with high specific surface area and rich in labile
C. However, during laboratory preparation, due to the varied parameters of sonochemistry,
if it is not accurately controlled, the preparation results may not be repeatable. Therefore,
in this paper, we reviewed the preparation of biochar by ultrasound, focusing on the
parameters related to sonochemistry such as ultrasonic frequency and intensity. In addition
to the physical and chemical effects of ultrasonic cavitation, we also introduced ultrasonic
coupled chemical treatment, and ultrasound combined microwave treatment, which are
potential and effective for low-temperature biochar fabrication. In order to better interpret
the effect of ultrasound on biochar, we also investigated the regeneration and catalytic
mechanism of ultrasound on biochar.

In future, environmental scientists and materials scientists should better communicate,
focus on how to retain the labile C of biochar, and try to develop the specific surface
area of materials. In addition, it is worth noting that labile C also contains some toxic
VOCs. Therefore, the regulation of labile C component is also a challenge to the biochar
preparation process.

6. Conclusions and Recommendations

Large-scale use of biomass is in many ways is a difficult problem. However, the work
reported in this review suggests that using it as biochar has many advantages. In particular,
labile C with low biological toxicity from biochar is the main influencing factor of bacteria
in soil, which may enhance the property of soil for plant growth, but the content of labile
C will be reduced under high-temperature pyrolysis. Therefore, it is worth studying to
develop the fabrication technology of low-temperature pyrolysis biochar with rich pore
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structure. In this regard, ultrasound modification can make many biochar applications
more attractive.

In the preparation process of biochar, cavitation can achieve better mass transfer,
eliminate any uneven concentration at the microscale interfaces, accelerate the reactions,
and inhibit particle agglomeration. Combining acid or base treatment with ultrasound
and microwave irradiation can remarkably enhance the surface area of biochar, which may
not require high-temperature pyrolysis. In addition, if larger-scale equipment were avail-
able, experiments using low-frequency sonication at high intensity would help determine
whether the promising results from ultrasonic modification of biochar in the laboratory can
be scaled up to pilot and industrial scales.

Biochar-based catalysts activated with ultrasound have also shown promise for contami-
nant removal, but most of the work has used low-frequency, high-intensity ultrasound. Biochar’s
adsorption has been amply demonstrated, but its catalytic mechanisms call for further study.
In particular, there may be some sonosensitive functional groups such as porphyrins on the
surface of biochar, which react with oxygen or water to form free radicals under the action of
ultrasound. This may provide a new idea for biochar modification and application.

The application of biochar in agriculture and soil remediation is receiving scholarly
attention, but more work is needed on which characteristics of biochar have the greatest
impact on soil chemistry and biology. Future research should experiment with biochar
with different physical and chemical properties developed through ultrasonic treatment,
and explore the impact of biochar properties on the physical and chemical properties of
soil. Such research should gradually reveal the function mechanisms involved, providing a
scientific basis for advances in agriculture and ecology management.

Further work is also required to determine the benefits of sonication in conjunction with
other current treatments such as microwave treatment, plasma treatment or gas activation.
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