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Eukaryotic protein glycosylation is mediated by glycosyl- and oligosaccharyl-transferases.
Here, we describe how African trypanosomes exhibit both evolutionary conservation and
significant divergence compared with other eukaryotes in how they synthesise their gly-
coproteins. The kinetoplastid parasites have conserved components of the dolichol-cycle
and oligosaccharyltransferases (OSTs) of protein N-glycosylation, and of glycosylpho-
sphatidylinositol (GPI) anchor biosynthesis and transfer to protein. However, some com-
ponents are missing, and they process and decorate their N-glycans and GPI anchors in
unique ways. To do so, they appear to have evolved a distinct and functionally flexible
glycosyltransferases (GT) family, the GT67 family, from an ancestral eukaryotic β3GT
gene. The expansion and/or loss of GT67 genes appears to be dependent on parasite
biology. Some appear to correlate with the obligate passage of parasites through an
insect vector, suggesting they were acquired through GT67 gene expansion to assist
insect vector (tsetse fly) colonisation. Others appear to have been lost in species that
subsequently adopted contaminative transmission. We also highlight the recent discovery
of a novel and essential GT11 family of kinetoplastid parasite fucosyltransferases that are
uniquely localised to the mitochondria of Trypanosoma brucei and Leishmania major. The
origins of these kinetoplastid FUT1 genes, and additional putative mitochondrial GT
genes, are discussed.

Introduction
The protozoan parasite Trypanosoma brucei cause African animal trypanosomiasis (or nagana) in
cattle and human African trypanosomiasis (HAT) in humans. These diseases are generally fatal if not
treated and the available therapeutics, while improving for HAT, are far from optimal. Currently, with
tsetse fly control and test-and-treat surveillance, reported cases of HAT in sub-Saharan Africa are,
thankfully, low. However, the disease burden in cattle significantly affects economic output and agri-
cultural productivity [1].
Many African trypanosome species, for example, T. brucei spp., T. congolense and T. suis, have

complex life cycles that involve obligate differentiation events between proliferative (colonising) and
non-proliferating (transmissible) stages to occupy and pass between their mammalian hosts and tsetse
fly vectors. Others have lost the ability to infect tsetse vectors and transmit by either venereal
(T. equiperdum) or contaminative routes via haematophagous fly bites (T. evansi); T. vivax, which has
a limited lifecycle in tsetse, is also transmitted primarily by venereal and hematophagous fly bite
routes.
The bloodstream form (BSF) trypomastigote and procyclic form (PCF) promastigote lifecycle stages

that occupy mammalian host and insect vector niches, respectively, exhibit dramatic changes in cellu-
lar metabolism, morphology and cell surface molecular architecture. The latter is illustrated for
T. brucei in (Figure 1).
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Eukaryotic protein N-glycosylation involves the transfer of an oligosaccharide from a lipid-linked oligosac-
charide (LLO), made by the dolichol-cycle, to NXS/T acceptor sequons in proteins sequestered into the endo-
plasmic reticulum (ER). This transfer is mediated by an oligosaccharyltransferase (OST) [2,3]. GPI membrane

Figure 1. Summary of the glycan and GT repertoires of T. brucei.The tsetse midgut-dwelling procyclic form (PCF) cells express

GPI-anchored and N-glycosylated procyclin glycoproteins with simple Man5GlcNAc2 oligomannose N-glycans and GPI

anchors with extensively modified GPI-anchor glycans. The mammalian host-dwelling bloodstream form (BSF) cells express

variant surface glycoproteins (VSGs) that can contain oligomannose (triantennary Man9GlcNAc2 to Man5GlcNAc2),

paucimannose (biantennary Man5GlcNAc2 to Man3GlcNAc2) and small complex N-glycans. Some VSGs are also

O-glycosylated, as indicated. In addition, other flagellar pocket and endosomal/lysosomal glycoproteins, such as p67, bear

giant poly-LacNAc-containing N-glycans in the BSF lifecycle stage. In contrast, the BSF GPI-anchor sidechains are smaller

than those of PCF cells, containing up to 6 Gal residues.
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anchors are also pre-assembled in the ER and transferred en bloc via GPI-transamidase in the lumen of the ER
to a subset of proteins bearing a C-terminal peptide extension [4]. The core N-glycan and GPI structures are
then processed in the ER and in the Golgi apparatus to mature structures. Most of the genes encoding GTs
involved in the dolichol-cycle (ALG genes) and GPI precursor biosynthesis (GPI genes), which belong to the
GT-C fold class [5], have been found in the T. brucei genome by predicted amino acid sequence homology [6].
In a few cases, the functionalities of ALG and GPI GT genes have been experimentally confirmed [7–10].
However, the dolichol-cycle glucosyltransferases ALG6, ALG8 and ALG10 are notably missing, as are homolo-
gues of GTs that elaborate N-glycans and GPI-side chains in other organisms. This is despite many of the pro-
cessed parasite N-glycan structures being identical with those of higher eukaryotes. Thus, for example, one
cannot easily find orthologues of the genes GnTI and GnTII (which add GlcNAc to the 3- and 6-branches of
the conserved Man3GlcNAc2 core and thus initiate the formation of complex N-glycans) or of B4GalT that
makes Galβ1–4GlcNAc (LacNAc) structures.
Such processing GTs are generally type-2 membrane proteins localised to the Golgi apparatus and are

defined by their nucleotide sugar donor, the structure of their aglycone acceptor, the anomericity of the
transferred sugar (α or β) and the inter-sugar glycosidic linkage (e.g. 1–2, 1–3, 1–4 or 1–6). For example, a
UDP-Gal : βGlcNAc β1–4 Gal-transferase makes Galβ1–4GlcNAcβ1-O-R from a UDP-Gal donor and a
GlcNAcβ1-O-R acceptor. The genes encoding GTs often exhibit significant expansion through evolutionary
pressure to catalyse a repertoire of related glycosidic linkages [11]. Most GTs are classified based on their
3D fold topology, where GT-As have two closely adjoining β/α/β Rossmann domains whilst GT-Bs consist
of two facing β/α/β Rossmann domains that are linked flexibly [11]. Overall fold classification is not a pre-
dictor of the catalytic mechanism, as both inverting (β) and retaining (α) GTs have been characterised with
GT-A and GT-B topologies. Phylogenetic analyses of GT-A fold GTs indicate that inverting and retaining
mechanisms emerged independently many times during evolution [12]. The GTs are further categorised
into distinct GT families in the carbohydrate enzyme (CAZy) database, based on protein sequence and
structural similarities [13]. Experimental data on GT family members with respect to their inverting or
retaining transfer mechanisms and nucleotide sugar specificities allows conservative predictions on the speci-
ficities of unstudied fellow GT family members. The recent application of GT sequence deep mining and
machine learning approaches are showing promise in predicting the mechanistic function of GTs based on
alterations to their common core [14]. Nevertheless, mechanistic predictions from primary protein sequence
remain tentative.
The CAZy database contains over a hundred sequence-based GT families and many or all families are

encoded by most organisms. However, this is not the case in T. brucei where several common GT families are
missing and where a particular GT family (GT67), unique to kinetoplastids, has emerged and expanded. There
are twenty of these genes in the T. brucei genome and, so far, the functions of five of them have been studied
[15–20].
In this review we summarise our current knowledge of protein glycosylation in T. brucei, discuss the

kinetoplastid-specific GT67 family, and highlight recent discoveries on a novel kintepolastid-specific mitochon-
drial fucosyltransferase (FUT) and other putative mitochondrial GTs.

Protein glycosylation in T. brucei
Glycan structures in BSF T. brucei
In the mammalian host, the proliferative BSFs reside within the bloodstream, lymphatics and sub-cutaneous
and adipose tissue niches [21,22]. BSF trypanosomes survive by expressing around 5 million variant surface
glycoprotein (VSG) homodimers tethered to the cell surface via GPI anchors [23,24]. The VSGs produce a
dense, yet mobile [23], proteinaceous coat that protects the plasma membrane from components of the innate
immune response, such as complement, whilst enabling the diffusion of small nutrient molecules for uptake
into the cell via transmembrane transporters [23,25,26]. These VSG molecules are immunogenic and the para-
site survives the adaptive immune response by antigenic variation, whereby parasites express alternative VSGs
from a large repertoire of genes [27]. VSGs are classified on amino acid sequence motifs, and these sub-types
generally share glycosylation features, such the attachment of one, two or three N-linked oligomannose, pauci-
mannose or complex N-glycans and GPI-anchor sidechains of between zero to five α-linked Gal residues and
zero or one β-linked Gal residue (Figure 1) [25,26,28]. The N-glycosylation of VSG is an important modifica-
tion which insulates the protein core from intermolecular interactions with adjacent surface proteins, enabling
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dense packing to occur at a level approaching the molecular crowding threshold [29]. Additionally,
O-glycosylation of certain VSGs has been identified as a further mechanism by which African trypanosomes
generate additional antigenic variation. Here, a serine residue at the top of the VSG molecule bears an αGlc
residue that can be further modified by 1 or 2 hexose residues to generate heterogeneity that delays the onset of
a sterilising host immune response [30].
There are several other less-abundant glycoproteins expressed by BSF T. brucei, but only the flagellar pocket

VSG-like transferrin receptor (TfR) and the lysosomal/endosomal p67 hydrolase have been analysed in any
detail for carbohydrate structure. The TfR contains a VSG-type GPI anchor [31], albeit on only one of its two
subunits, and both TfR and BSF p67 contain oligomannose, paucimannose [32] and poly-N-acetyllactosamine,
i.e. poly-Galβ1–4GlcNAc (poly-LacNAc), containing complex N-glycans [33]. The latter include the largest
neutral N-glycan structures yet described in eukaryotes [34]. Thus, in contrast with their relatively short GPI
sidechain glycans, BSF T. brucei can express extremely large complex N-glycans. The poly-LacNAc N-glycans
have been suggested to play a role in endocytosis [35], but their exact function is unknown.

Glycan structures in PCF T. brucei
The PCF cell surface contains a partially characterised high-molecular mass glycoconjugate [36], abundant
GPI-anchored glycoproteins called procyclins [37] and free GPI glycolipids [38,39]. The procyclins are com-
posed of rod-like polyanionic dipeptide (EP) or pentapeptide (GPEET) repeats with or without a single tri-
antennary Man5GlcNAc2 N-linked oligomannose glycan [40] and without or with threonine phosphorylation
[41], respectively. Both types of procyclin share the largest and most complex GPI-anchor sidechains charac-
terised to date. These glycans are composed of branched poly-LacNAc and poly-lacto-N-biose (LNB; Galβ1–
3GlcNAc) containing structures terminating in βGal [40,42] that can be further modified by α2–3-linked
sialic acid residues by the action of cell surface GPI-anchored trans-sialidase [43]. Surface sialylation with
host blood meal-derived sialic acids plays a role in efficient tsetse fly colonisation [44] whilst the rod-like
procyclins are thought to shield susceptible surface proteins from proteolytic attack in the tsetse midgut
[45]. Therefore, in contrast with the densely packed, proteinaceous VSG coat of BSF cells, the PCF cells
express a surface glycocalyx composed of elaborate GPI sidechain glycans overlayed by polyanionic peptidic
rods and interlaced with high-molecular mass glycoconjugates. Significantly, while wild-type PCF parasites
express extremely complex GPI sidechains, they only express simple oligomannose N-glycans [28,40]
(Figure 1).
Of note, the tsetse midgut PCF of T. congolense expresses a different family of glycoproteins, called glutamic

acid and alanine-rich glycoproteins (GARPs), in place of procyclins. The GARPs are also GPI-anchored mole-
cules, but with small GPI sidechains, no N-linked glycans and Gal and Man containing glycans linked through
phosphate to Thr residues [46].

Glycan structures in other lifecycle stages
In T. brucei, the other lifecycle stages are less accessible than BSF and PCF but T. brucei epimastigote forms are
known to express a GPI-anchored alanine-rich protein called BARP [47,48] and metacyclic trypomastigote
forms express a related GPI-anchored metacyclic invariant surface protein (MISP) [49]. However, as for most
BSF and PCF glycoproteins, there are no structural data on their GPI sidechains and/or N-linked glycans.

Conserved and divergent aspects of protein N-glycosylation
and protein quality control in T. brucei
Eukaryotic OSTs are generally hetero-oligomeric complexes where the catalytic-subunit (STT3) is associated
with seven or eight additional subunits. These OSTs generally transfer Glc3Man9GlcNAc2 from the mature
LLO of the dolichol-cycle to NXS/T sequons in the lumen of the ER [2,3,50]. The transferred glycans then
undergo processing by ER glucosidase I and II and ER α-mannosidase I to generate oligomannose structures.
When these arrive in the Golgi apparatus, they can be further processed to complex and hybrid structures
through the action of Golgi α-mannosidase II and a variety of GTs [3,51].
In T. brucei this canonical pattern of protein N-glycosylation is modified, as first noted by Bangs, Englund

and colleagues who observed that some N-glycosylation sites in T. brucei VSGs are occupied by
endoglycosidase-H resistant N-glycans immediately after VSG synthesis in the ER [52]. The anomalies of
protein N-glycosylation in T. brucei are: Firstly, its OST activity is provided by STT3 gene products alone [53].
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Secondly, the largest LLO made by the parasite is Man9GlcNAc2 [8,54]. Thirdly, its three STT3 genes encode
OSTs with significantly different donor and acceptor specificities [8,10,53,55,56]. The consequence of this is a
radically different N-glycosylation system, whereby N-glycosylation efficiency is very high and the type of
mature glycans on specific N-glycosylation sites is primarily controlled by the net charge around the glycosyla-
tion site. Thus, TbSTT3A prefers sequons in an acidic environment and specifically transfers biantennary
Man5GlcNAc2 from the LLO Man5GlcNAc2-PP-dolichol, and TbSTT3B acts on all remaining sequons and spe-
cifically transfers triantennary Man9GlcNAc2 from the LLO Man9GlcNAc2-PP-dolichol. Since the organism
does not contain a Golgi α-mannosidase II activity, the consequence is that only TbSTT3A acidic sequon sites
are destined to be processed to paucimannose and/or complex N-glycans whereas TbSTT3B sequon sites are
destined to contain only oligomannose structures. Interestingly, neither TbSTT3A nor TbSTT3B appears to be
essential for BSF parasites in vitro, but both are essential in vivo [56]. The role of TbSTT3C is unclear as it has
not been detected at the protein level in BSF or PCF cells. However, its effects on protein glycosylation when
transferred to yeast suggest it has a hybrid specificity, preferring acidic sequons like TbSTT3A but transferring
Man9GlcNAc2 like TbSTT3B [57].
The preponderance of oligomannose N-glycans in PCF glycoproteins, versus both oligomannose and pauci-

mannose/complex N-glycans in BSF glycoproteins, is easily understood when the expression of TbSTT3A and
TbSTT3B are compared at the protein level (Figure 3). Thus, TbSTT3B is highly expressed in PCF and BSF,
whereas TbSTT3A is only highly expressed in BSF cells.
Since the T. brucei LLOs do not contain glucose, the parasites do not have an ER glucosidase I. However,

they do have UDP-Glc: glycoprotein glucosyltransferase (UGGT), ER glucosidase II and calreticulin so that
newly synthesised glycoproteins in the ER can undergo quality control cycles of N-glycan α-glucosylation (via
UGGT), attempts at protein folding via calreticulin and its associated oxidoreductases, and de-glucosylation
(via ER glucosidase II). The T. brucei UGGT shares a typical GT24 family domain at its C-terminus [58] but
the activity of TbUGGT has diverged from a strict specificity for Man9GlcNac2 to a broad specificity for any
N-glycan structure containing an intact A-branch [59]. In common with other organisms, TbUGGT plays a
role in protection from heat shock, such that BSF TbUGGT null mutants cannot tolerate a 37–40°C tempera-
ture shift [59]. However, unlike other organism such as Schizosaccharomyces pombe, the TbUGGT null mutant
does not up-regulate chaperones such as Grp78 or BiP upon heat shock or following tunicamycin treatment. It
appears, therefore, that the accumulation of unfolded proteins upon ER stress is not sensed in BSF T. brucei, a
conclusion also reached by Tiengwe et al. [60]. This ‘chaperones always on’ condition is likely a consequence of
the extremely high glycoprotein flux required to export VSG in BSF T. brucei to form a dense surface coat.
Consistent with this proposal of a T. brucei-specific adaptation, the T. cruzi UGGT null mutant does
up-regulate ER chaperones Grp78 and BiP [61].
An interesting phenomenon is that both BSF and PCF T. brucei show plasticity in protein N-glycosylation

when challenged with toxic lectins or other carbohydrate-binding agents. For example, PCF cells express small
hybrid N-glycans in place of oligomannose glycans when challenged with Concanavalin-A [54] and BSF cells
alter the expression of their TbSTT3 genes and create TbSTT3 chimeric genes when challenged with lectins
and other agents [62–64].

Divergent and convergent evolution of GT67 family GTs
As mentioned previously, despite conserved glycan structural motifs between T. brucei and other eukaryotes
one cannot find orthologues of the genes GnTI and GnTII (which add GlcNAc to the 3- and 6-branches of the
conserved Man3GlcNAc2 core and thus initiate the formation of complex N-glycans), or of B3GnTI that makes
GlcNacβ1–3Gal structures, or β3GalTI that makes Galβ1–3GlcNAc structures, or GCNT2 that makes
GlcNacβ1–6Gal structures. Each of these belong to distinct CAZy GT families. Instead, the genes encoding
these five activities belong to the kinetoplastid-unique GT67 family [13]. This GT-A fold family has three
motifs that are very similar to the (I/L)RXXWG, (F/Y)(V/L/M)XXX-DXD, (ED)D(A/V)(Y/F)XGX(C/S) motifs
conserved among members of the mammalian β3GT superfamily [16]. The comparable motifs in the T. brucei
genes are WG, Y(I,V,F)XKXDDD, and ED(A/V/I/L/M)(M/L)X(G/A). The GT67 family, therefore, appears to
have diverged from the normal eukaryotic β3GT lineages and then expanded and evolved such that GT67 GTs
can take the place of GT13 [17], GT14 [16], GT16 [18], GT31 [19] and GT49 [15] (and probably more) GT
family members.
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Phylogenetic analysis of the GT67 gene family reveals that it separates into two distinct clades, one for the
Leishmania (not discussed here but reviewed in [65]) and one for the trypanosomatids [66], indicative of the
disparate evolutionary pressures exerted on these parasite groups.
Fifteen of the twenty T. brucei GT67 gene products remain uncharacterised, and specificity predictions

based on sequence analyses alone are of limited value. In contrast, the elegant interspecies comparisons of
GT67 family members amongst trypanosomatids performed by Pereira and Jackson, referred to by them
as UDP-dependent GTs (UGTs) [66], provides some useful clues to TbGT function. Thus, we might
assume that GT genes in T. brucei that are shared with T. vivax are more likely to encode those required
for the synthesis of BSF structures, whereas those not shared with T. vivax (which does not have an obli-
gate transmission through the tsetse fly) are more likely to encode those required for the synthesis of
PCF structures.
We should note that while these inferred likelihoods of GT requirements in BSF and PCF lifecycle stages

are useful guides, they do not preclude predominantly BSF- or PCF-expressed GT activities appearing in
the other lifecycle stage. For example, under selective pressure from the lectin Concanavalin-A [54] or
mutagenesis of the TbALG12 gene [7], PCF cells stop making oligomannose N-glycans and the action
TbGnTI or TbGnTII on the paucimannose structures that replace them can be detected. Conversely, similar
GPI-anchor sidechains to those found in abundance on PCF procyclins can be found on certain substrates,
like the ESAG6 subunit of the transferrin receptor, in BSF cells when steric constraints around the GPI
anchor are relaxed [33].
The phylogenetic analysis of Pereira and Jackson revealed seven distinct trypanosomatid GT gene lineages

within the GT67 family. Here, we have performed similar analysis and included T. evansi [67], which does not
differentiate to the PCF stage due to the absence of a mitochondrial genome, and T. gambiense, the human
pathogenic strain closely related to T. b. brucei (Figure 2). We overlay and interpret this phylogenetic analysis
with the available data on T. brucei GT67 functions [15–19] and on TbGT, TbOST and glycan-processing
enzyme protein expression data from quantitative proteomics [68]. The latter expressed graphically in
(Figure 3) using the tools in described in [69].

Lineage 1
There is a single gene of this lineage in T. vivax which seems to have undergone expansion in T. b. brucei to
generate the TbGT4 (three copies) and TbGT16 (two copies) gene sub-families. These sub-families are also
present in T. b. gambiense and T. evansi. The greater expression at the protein level of this lineage in BSF com-
pared with PCF cells (Figure 3) suggests they may play a BSF-specific function. Given the notable absence of
UDP-Gal : βGlcNAc β1–4 Gal-transferases needed to synthesise the abundant N-linked poly-LacNAc structures
in BSF T. brucei [34], we postulate that one or more of these lineage 1 genes may encode GTs with GT7
β4GalTI-like activity.

Lineage 2
This is a T. vivax-specific gene family and structural data on T. vivax glycans is scant [70], making inferences
about the activity of the GTs they encode difficult. Furthermore, sequence analysis indicates they may be frag-
ment rather than functional sequences. We postulate that these gene products, if functional, may encode activ-
ities similar to their closest relatives in lineage 3.

Lineages 3 and 4
Lineage 3 contains the gene encoding TbGT11, which has been experimentally shown to be in the Golgi and to
perform the same function as GT13 family GnTI in other eukaryotes [17]. In other words, it adds βGlcNAc in
1–2 linkage to the 3-arm of the conserved Man3GlcNAc2 core. However, TbGnTI does so with unique acceptor
specificity: Whereas canonical GT13 GnTIs work on Man5GlcNAc2, which is then processed to
GlcNAc1Man3GlcNAc2 by Golgi α-mannosidase II (the latter is absent from T. brucei), GT67 TbGnTI works
directly on Man3GlcNAc2.
Lineage 4 contains the gene encoding TbGT15, a Golgi enzyme that performs the same function as GT16

family GnTII, adding βGlcNAc in 1–2 linkage to the 6-arm of the conserved Man3GlcNAc2 core [16].
However, whereas canonical GT16 GnTIIs work on GlcNAc1Man3GlcNAc2, GT67 TbGnTII can operate with
nothing or anything substituting the 3-arm αMan residue. This also means that TbGnTI and TbGnTII can
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Figure 2. GT repertoire of T. brucei.Phylogenetic analysis of T. b. brucei, T. b. gambiense, T. evansi and T. vivax GT genes. The

lineages within the GT67 family are according to [66] and the T. brucei GT sub-families within those lineages (e.g. TbGT1 to

TbGT15) are according to [15,18]. Those TbGTs that appear in proteomics data are shown in Figure 3.
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operate independently of each other, unlike the strict GnTI followed by Golgi α-mannosidase II followed by
GnTII sequence in other eukaryotes [71].
In mice, homozygous null mutants of GnTI (Mgat1−/−) or GnTII (Mgat2−/−) do not survive beyond embry-

onic day 10 or postnatal week 1, respectively [72,73]. In contrast, T. brucei BSF TbGnTI and TbGnTII null
mutants both survive in culture and in mice. However, the absence of either leads to compensation by exten-
sion and elaboration of the opposing arm. Thus, deletion of TbGnTI increases the decoration of the 6-arm [17]
and deletion of TbGnTII increases the decoration of the 3-arm [16]. Attempts to inhibit the formation of
complex N-glycans entirely in BSF T. brucei by generating a double null mutant for TbGnTI and TbGnTII have
been unsuccessful (unpublished data), suggesting that complex N-glycans per se are likely to be essential in BSF
T. brucei. Consistent with this, we were also unable to make a BSF TbSTT3A null mutant [74], even though we
could knock down TbSTT3A substantially by RNAi in a heterozygote [56]. These data also suggest that some
expression of TbSTT3A, and therefore at least some capacity to make complex and/or paucimannose
N-glycans, is essential.
Finally, lineage the 3 and 4 TbGnTI and TbGnTII enzymes are expressed predominantly in BSF cells, con-

sistent with their requirement for TbSTT3A co-expression to make complex N-glycans (Figure 3).

Lineages 5 and 6
All four trypanosome species contain one or two (T. vivax) copies of lineage 5 and 6 GTs. Lineage 5 contains
the gene encoding TbGT8, which performs the same function as GT49 family B3GnTI in other eukaryotes
[15]. It adds βGlcNAc in 1–3 linkage to βGal residues. Lineage 6 contains the gene encoding TbGT10, which
performs the same function as GT14 family GCNT, adding βGlcNAc in 1–6 linkage to βGal residues [18].
TbGT8 and TbGT10 are active in both BSF and PCF cells. Together, they synthesise -4GlcNAcβ1–6
(-4GlcNAcβ1–3)Galβ1-branch points in BSF complex N-glycans and in PCF GPI sidechains. Independently,
they extend linear chains of poly-LacNAc repeats in BSF complex N-glycans (both conventional Galβ1–
4GlcNAcβ1–3Galβ1–4GlcNAc repeats via TbGT8 and the less common Galβ1–4GlcNAcβ1–6Galβ1–4GlcNAc
repeats that predominate in BSF T. brucei via TbGT10), and the Galβ1–4GlcNAcβ1–6Galβ1–4GlcNAc
poly-LacNAc (via TbGT10) and Galβ1–3GlcNAcβ1–3Galβ1–3GlcNAc LNB repeats (via TbGT8) in PCF GPI
sidechains. Interestingly, while TbGT8 and TbGT10 both operate in BSF and PCF cells, and although TbGT8
protein levels are similar in BSF and PCF cells, TbGT10 protein levels are significantly lower in PCF cells
despite its role in GPI anchor elaboration (Figure 3).
There is interplay between TbGT8 and TbGT10 in that elimination of either not only reduces -4GlcNAcβ1–

6(-4GlcNAcβ1–3)Galβ1-branch points but also elicits compensatory linear glycosylation by the other [17], rem-
iniscent of the compensatory redundancy between TbGnTI and TbGnTII described above.
Analysis of the BSF TbGT10 null mutant [18] showed that impairment of Galβ1–4GlcNAcβ1–6Galβ1–

4GlcNAc poly-LacNAc synthesis also perturbs the proteolytic processing of the essential [75] lysosomal/endo-
somal glycoprotein p67. While this had a minor growth phenotype in culture, these parasites were still infec-
tious to mice. Thus, there does not appear to be any crucial role for Galβ1–4GlcNAcβ1–6Galβ1–4GlcNAc
poly-LacNAc synthesis, or indeed for wild-type p67 processing, in BSF T. brucei.

Lineage 7
Lineage 7 has undergone significant expansion in the genomes of T. brucei, T. b. gambiense and T. evansi but it
is absent from T. vivax. A single lineage 7 member (TbGT3) has been analysed to date and shown to be
expressed in both BSF and PCF cells (Figure 3). In BSF cells it plays some (undefined) role in glycoprotein pro-
cessing, as judged by wheat germ agglutinin (WGA) lectin blotting [19]. However, it is well characterised in
PCF T. brucei as a UDP-Gal : βGlcNAc-GPI β1–3 Gal-transferase elaborating GPI-anchor sidechains [19].
TbGT3 is, therefore, functionally related to GT31 family B3GALT1 that also makes LNB (Galβ1–3GlcNAc)
structures.
The absence of lineage 7 in T. vivax, the defined function of TbGT3 in PCF cells and the higher protein

expression of the lineage 7 TbGT2 sub-family (encoded by seven closely related genes) in PCF cells (Figure 3),
suggest that at least some lineage 7 GTs may be primarily involved in the decoration of the PCF stage
GPI-anchor sidechains. We further postulate that lineage 7 PCF expression-specific TbGT2 sub-family genes
may encode the elusive UDP-Gal : βGlcNAc-GPI β1–4 Gal-transferases required for the -6Galβ1–
4GlcNAcβ1-poly-LacNAc chains found in PCF GPI-anchor sidechains.
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Figure 3. Protein abundance data for enzymes and proteins involved in protein glycosylation in T. brucei.The subset of gene

products detected by proteomics associated with oligosaccharide transfer (purple), ER quality control (green) together with the

T. brucei GT67 glycosyltransferases (orange), GT11 and GT25 mitochondrial glycosyltransferases (yellow) and GT60

glycosyltransferase (cyan) are shown. Gene IDs, gene names and encoded activities (and abbreviated names) are shown in the

table. The latter are plotted according to quantitative proteomics values (iBAQ values) in the BSF (x-axis) and PCF (y-axis) total

cell proteomes [68] using the tool described in [69].
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The presence of lineage 7 genes in T. evansi, which does not have a PCF stage, runs counter to this argument
but may be a function of the phylogenetic proximity of T. evansi to T. brucei, such that lineage 7 GTs may yet
to be lost from the T. evensi genome, and/or it may reflect some need for lineage 7 GTs in T. evansi (but not T.
vivax), BSF cells.
The lineage 7 TbGT1 sub-family has been detected by proteomics in both BSF and PCF cells [68], but the

absolute expression levels are very low (Figure 3), and their specificities and functions are unknown.
Taken together, these data suggest the evolution of a large trypanosome GT67 gene family to generate

the UDP-GlcNAc/UDP-Gal glycosyltransferase repertoire necessary for the biosynthesis of substantial parts
of their uniquely complex N-linked and GPI-anchor side chain glycans. This serves as is a prime example
of convergent evolution, whereby the GT67 enzymes exhibit functional relatedness with several families of
metazoan GTs yet derive from an ancestrally distinct β3GT. Our assessments of lineages 3, 4, 5 and 6 indi-
cate that they encode BSF-specific trypanosomatid GTs necessary for complex N-linked glycan synthesis in
BSF cells. Furthermore, we propose that life cycle stage-dependent β1–4 Gal-transferases are encoded by
lineages 1 (in BSF cells) and 7 (in PCF cells). Reverse genetics experiments are required to confirm this
hypothesis.

Mitochondrial glycosyltransferases of kinetoplastea
GT11 family FUT1
The discovery that the biosynthesis of the nucleotide sugar GDP-fucose was required for parasite growth in
T. brucei [76] and in Leishmania major [77], suggested that these organisms contain one or more essential
FUT genes. A single GT11 family FUT, TbFUT1, was identified in the T. brucei genome and shown to be
essential in BSF and PCF cells [78]. Similarly, the L. major orthologue (LmjFUT1) is essential for cell
growth [79]. The most curious feature of TbFUT1 and LmjFUT1 is their localisation to the parasite mito-
chondria [78,79]. Recombinant TbFUT1 has GDP-Fuc : βGal α1–2-fucosyltransferase activity, common
amongst GT11 family enzymes, with an apparent preference for acceptor substrates containing a terminal
LNB (Galβ1–3GlcNAc) motif [78]. The origin of FUT1 is unlike that of the GT67 family which expanded
from a common eukaryotic β3GT ancestor. Instead, phylogenetic analysis of FUT1 genes in kinetoplastids
indicates it was inherited from a bacterial FUT1 by horizontal gene transfer via a nucleocytoplasmic large
DNA virus [80]. The fact that FUT1 is both mitochondrial and essential in both organisms studied to date,
and displays highly conserved sequence similarity and genomic synteny across the kinetoplastea, suggests
that the αFucT activity it encodes may play a common and crucial role in mitochondrial function in this
group of organisms.
Exactly what role(s) mitochondrial fucosylation might play in kinetoplastids remains to be determined.

Whereas recombinant TbFUT1 and LmjFUT1 have been shown to fucosylate exogenous peptide and/or
glycan substrates, their native mitochondrial substrates have not yet been identified. Phenotypic analysis of
a TbFUT1 conditional null mutant in BSF cells reveals that depleting TbFUT1 causes a loss of mitochon-
drial membrane potential, linked to the activity of the FoF1-ATP synthase [78]. BSF T. brucei lack the
proton pumping respiratory chain complexes normally expressed in mitochondria; instead the FoF1-ATP
synthase works in reverse mode such that catalytic rotation of the F1 moiety via ATP hydrolysis actively
pumps protons out of the mitochondrial matrix via the membrane multimeric Fo c-ring pore. The effect
of TbFUT1 depletion in insect stage PCF appears to be different. Here, cell death upon TbFUT1 condi-
tional depletion takes longer to manifest than in BSF cells [78]. However, the PCF form of T. brucei uses
FoF1-ATP more conventionally, generating ATP from the mitochondrial proton gradient, in conjunction
with fully expressed and functional respiratory chain composed of complexes I–IV [81]. Thus, the differ-
ences in the kinetics of cell death upon TbFUT1 depletion in the two lifecycle stages may be dependent
on their different mitochondrial bioenergetics and/or protein expression requirements. Furthermore, an
LmFUT1-null segregant mutant (Δfut1s) exhibits impaired mitochondrial function, including a reduced
mitochondrial membrane potential, abnormalities in mitochondrial structure and impaired biosynthesis of
the kinetoplast DNA network [79]. Together, these findings implicate a general requirement of FUT1 for
normal mitochondrial function in kinetoplastids. Work is ongoing to tease apart the functions of TbFUT1
in BSF and PCF T. brucei and LmFUT1 in L. major.
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Putative mitochondrial GT25 family enzymes
Since LNB is a substrate for recombinant TbFUT1 [78], we postulate that there may be other GTs that
assemble Galβ1–3GlcNAc on mitochondrial acceptor molecules (protein, lipid or other) on which TbFUT1
can act. These putative preceding GTs could be cytosolic, such that Galβ1–3GlcNAc primed molecules
could be imported into the mitochondrion for fucosylation, or they could be mitochondrial themselves.
Significantly, a GT25 family enzyme (TbGTX) is predicted to be mitochondrial by mitochondrial import
analysis [82] and both TbGTX and another GT25 family member (TbGTZ) have been localised to the
mitochondrion in T. brucei by C-terminal GFP tagging and fluorescence microscopy [83]. Our own
C-terminal epitope tagging studies also localise TbGTX and TbGTZ to the mitochondrion and RNAi
studies in BSF cells show that, like TbFUT1, they are both essential (unpublished data). We also find
proteomic evidence for the expression of TbGTX in both BSF and PCF cells (Figure 3). Thus, we
hypothesise that TbGTX, TbGTZ and TbFUT1 may be involved in the biosynthesis of Fucα1–2Galβ1–
3GlcNAc trisaccharide motifs attached to mitochondrial molecules in T. brucei. Further studies are required
to test this.
Phylogenetic analysis indicates that syntenic orthologues of TbGTX and TbGTZ occur in most kintoplastids,

with the exception that GTZ is absent from the ancestral, free-living and bacteriophagic kinetoplastid Bodo
saltans [84]. This might suggest that the GTX sequence has undergone duplication and evolution in the para-
sitic kinetoplastids. Given the similarity of TbGTX and TbGTZ to bacterial GT25 family members, we suggest
that they may have been inherited in a similar manner to TbFUT1, yielding enzymes with conserved function
but unique localisation.

Base J glucosyltransferase
Kinetoplastids, uniquely, contain small amounts of β-D-glucopyranosyloxymethyluracil (base J) in their
DNA. The synthesis of base J involves the formation of 5-hydroxymethyluracil (hmU) and its subsequent
glucosylation. The nuclear-localised, base J-specific GT ( JGT) [85] has a GT-A fold; however, it is not
currently assigned to any CAZy family. Base J does not appear to be essential for trypanosome survival
[85], but it appears to play a regulatory role in Pol II-mediated polycistronic gene regulation [86].

Functions looking for GTs and GTs looking for functions in
T. brucei
UDP-sugar: polypeptide GTs
In T. cruzi, a small gene family (TcOGNT1, TcOGNT2 and TcOGNTL), belonging to the CAZy GT60 family,
has been described [87,88]. TcOGNT1 has been shown to be a Golgi located UDP-GlcNAc : polypepetide
αGlcNAc-transferase, making GlcNAcα1-O-Thr linkages in the abundant surface GPI-anchored mucin-like
molecules of this parasite [87,88]. In these mucin-like glycoproteins, the O-linked GlcNAc residue can be vari-
ously substituted with βGal and β-galactofuranose (βGalf ) residues, where terminal βGal residues can be
capped with α2–3 linked sialic acid via trans-sialidase activity [89]. However, no such mucin-like molecules or
similar O-linked glycans have been found in T. brucei, begging the question as to what the GT60 TbOGNT1
gene product, which is lowly expressed in BSF and PCF cells (Figure 3), might be doing in this organism. One
possibility worth exploring is whether it might be involved in the formation of the novel Glcα1-O-Ser linkage
observed in several T. brucei VSGs [30], for which no GT gene has been assigned thus far. Similarly, the TbGT
(s) responsible for adding up to two more hexoses to Glcα1-O-Ser remain to be identified.

α-Galactosyltransferases
Since GTs within a given CAZy GT family generally encode either inverting (β) or retaining (α) GTs, and
since all GT67 family members thus far have proven to be β-glycosyltransferases, we most likely need to
look outside of the GT67 group for BSF-specific αGal-transferases. Such αGal-transferases must exist to cap
small complex N-glycans with Galα1–3Gal motifs, as found in some VSGs [90], and for the
αGal-transferases that decorate the BSF GPI anchors [24,91] (Figure 1). Searches for the former using
CAZy GT6, GT8 and GT77 family sequences fail to return convincing hits. There are no precedents for
αGal-transferases that decorate GPI anchors, nor do the trypanosome genomes contain anything like
PGAP4 that encodes a mammalian Golgi UDP-GalNAc : GPI β1–4GalNAc-transferase [92]. Although a
putative UDP-Gal : GPI αGaT activity was previously partially purified from T. brucei whole cell lysates
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[93], the protein and gene sequences were not identified. Thus, all of the trypanosome αGalT genes remain
to be identified and may constitute new GT families.

Summary
In this review, we have discussed
• The inversion of glycosylation complexity between the BSF cells (simple GPI sidechains and
complex N-glycans) and PCF cells (complex GPI sidechains and simple N-glycans) (Figure 1).

• How the selection of complex and/or simple N-glycans is made through the expression
TbSTT3A and/or TbSTT3B OSTs, and how ER quality control has been adapted in T. brucei to
cope with its prodigious flux of surface VSG molecules.

• The acquisition of an ancestral eukaryotic β3GT gene and its expansion to create the
kinetoplastid-specific GT67 family that has acquired numerous UDP-Gal/GlcNAc βGal/
GlcNAc-transferase functions, providing a clear example of GT convergent evolution.

• The speculation that certain GT67 sub-families may encode the elusive UDP-Gal : βGlcNAc β1–
4 Gal-transferases required for poly-LacNAc synthesis in BSF and PCF T. brucei.

• The identification of essential mitochondrial GTs of bacterial origin in the kinetoplastids, with
some speculation as to their function.

• The existence of a glucosyltransferase to make the kinetoplastid-specific modified DNA nucleo-
tide base J.

• The T. brucei GT67, GT25 and GT60 family TbGTs still looking for a function, and glycosidic linkages
in T. brucei still looking for the TbGTs that catalyse them (including several αGal-transferases).

These elements indicate the progress that has been made in understanding protein glycosylation
and glycosylation machinery in trypanosomes in recent years. Progress that has both unearthed
potential drug targets and led to the discovery of novel biology in T. brucei and its pathogenic
relatives.
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