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Abstract

In many physiological systems, real-time endogeneous and exogenous signals in living

organisms provide critical information and interpretations of physiological functions; how-

ever, these signals or variables of interest are not directly accessible and must be estimated

from noisy, measured signals. In this paper, we study an inverse problem of recovering gas

exchange signals of animals placed in a flow-through respirometry chamber from measured

gas concentrations. For large-scale experiments (e.g., long scans with high sampling rate)

that have many uncertainties (e.g., noise in the observations or an unknown impulse

response function), this is a computationally challenging inverse problem. We first describe

various computational tools that can be used for respirometry reconstruction and uncertainty

quantification when the impulse response function is known. Then, we address the more

challenging problem where the impulse response function is not known or only partially

known. We describe nonlinear optimization methods for reconstruction, where both the

unknown model parameters and the unknown signal are reconstructed simultaneously.

Numerical experiments show the benefits and potential impacts of these methods in

respirometry.

Introduction

The overarching goal of this work is to develop practical mathematical and computational

tools to advance reconstruction methodologies for the inverse problem of recovering signals in

physiological systems from flow-through respirometry chambers. In many areas of biology

and biomechanics, signals of interest cannot be measured directly, but instead must be esti-

mated from indirect, noisy observations. For example, rates of oxygen consumption and CO2

production are important for measuring energy expenditure associated with physiological

phenomena and can promote understandings of energy regulation systems, but recovering

such information generally requires indirect calorimetry using respiration chambers.

In flow-through respirometry systems, the goal is to determine the pattern of real instanta-

neous gas exchange of an animal that is put in a chamber. Air is pumped through the chamber
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and continuously mixes with the CO2 and water vapor produced by the animal. Then, air that

flows out of the chamber is brought to a gas analyzer that measures patterns of gas concentra-

tion. However, during this process the metabolic signals get distorted due to the washout

kinetics. The recorded signal in the gas analyzer is a convolution of the true/instantaneous sig-

nal and the impulse response of the system which contains all characteristics of the respirome-

try system. The instantaneous signals of interest can only be obtained by solving so-called

“input estimation” or “inverse” problems [1–3]. This problem like any other deconvolution or

input estimation problem is inherently ill-posed. Finding the instantaneous signal is particu-

larly important if we study the synchrony between the metabolic signals and other physiologi-

cal measurements such as locomotion, food or drug consumption, or circadian rhythms.

For problems where the impulse response function of the system is known, the inverse res-

pirometry reconstruction problem can be formulated as a linear inverse problem that resem-

bles the widely-studied problem of deconvolution. Since it is well known that the respirometry

problem is ill-posed, which means that small errors or measurement noise in the data may and

often do lead to large errors in the reconstruction, regularization must be used. Some previous

works that use Tikhonov regularization to solve the linear respirometry reconstruction prob-

lem include [3–5], among others. Since the forward model used in these regularized deconvo-

lution methods is defined by the choice of the impulse response function, using an inaccurate

impulse response function (e.g., one that is estimated experimentally) can result in significant

degradation of the reconstruction accuracy. In flow through respirometry systems the pattern

of the impulse response depends on the volume of the chamber, flow rate, size of the tubes

between the chamber and gas analyzer, and even the size and location of the specimen in the

chamber. Thus, it is important to consider methods that can either reconstruct the impulse

response function or improve on a given impulse response function, while simultaneously

reconstructing the desired signal. This problem is highly nonlinear and thus significantly more

challenging to solve due to non-uniqueness of the solution. Indeed, joint reconstruction of the

impulse response function and the physiological signal remains an open problem in the field

of respirometry [6, 7].

In this paper, we consider computational methods for both the linear and nonlinear respi-

rometry reconstruction problems, with a particular emphasis on large-scale problems. We

begin by describing the underlying mathematical model. Let h 2 Rn define the impulse

response function and let x 2 Rn
contain the desired signal. Let z ¼

x

h

" #

2 R2n
, then the

observed signal contained in b 2 Rn can be modeled as,

b ¼ f ðzÞ þ � with f ðzÞ ¼ HðhÞx; ð1Þ

where Hð�Þ : Rn ! Rn�n models the forward evolution process, and � 2 Rn represents noise

or measurement errors. A common assumption is that the noise is independent and identically

distributed from a Gaussian distribution with zero mean and variance σ−2, i.e.,

� � N ð0; s� 2IÞ. For a given h, the respirometry forward model can be represented with matrix

H(h), which is highly structured. Specific details regarding h and H will be provided (see

Mathematical Problem Set-up). Given b and H(�) the goal of the nonlinear (blind) respirome-

try problem is to reconstruct z (i.e., both h and x). Oftentimes, (1) is referred to as a separable
nonlinear inverse problem. Notice that if h is fixed, then we have a linear inverse problem.

There are many computational challenges to solving respirometry problems. First, due to

ill-posedness, an appropriate choice of regularization should be incorporated for stable solu-

tion computation, and this goes hand-in-hand with the challenging task of selecting a suitable

regularization parameter. More specifically, for classic variational regularization of the linear
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respirometry problem, solution approximations are obtained by solving optimization prob-

lems of the form,

min
x

1

2
kHx � bk2

2
þ
lp

2
OðxÞ ð2Þ

where λp> 0 is a regularization parameter and Oð�Þ : Rn
! R is a regularization functional

determined by the choice of the prior. Previous studies on respirometry reconstruction employ

standard Tikhonov regularization where OðxÞ ¼ kxk2

2
, and practitioners manually tune the

regularization parameter λp. Selecting a suitable regularization parameter involves finding a

good balance between introducing bias in the solution and preserving fidelity to the system

and the observed data. This can be an expensive and time consuming task that requires multi-

ple solves for various parameter choices [3–5]. Second, iterative methods provide an efficient

approach to handle very large problems (e.g., large signals with many unknown parameters),

but preconditioning techniques are needed to accelerate convergence and these precondi-

tioners need to be tailored to the structure of matrix H. Third, it may be desirable to go beyond

obtaining reconstructions to also provide uncertainty estimates for reconstructions, but this

process often requires many expensive solves. The fourth, and most difficult, challenge is that

methods need to be developed to handle nonlinearity in the problem (e.g., when the impulse

response function contains errors or uncertainty). Due to difficulties of the nonlinear problem,

previous respirometry studies do not formally consider this scenario. In this paper, we describe

various approaches to address these challenges.

Overview of contributions

For the linear respirometry problem, we present a Bayesian formulation of the inverse prob-

lem, where the unknown signal is modeled as a random variable with some probability distri-

bution representing the uncertainties in the parameters. By adopting a Bayesian framework,

we can not only compute reconstructions but also perform uncertainty quantification. We also

compare different types of regularization techniques for solving the linear problem, and we

propose efficient structure-exploiting preconditioners for accelerating iterative methods when

applied to very large problems. These preconditioners are tailored to the respirometry problem

since they exploit special structure in the model matrices. Then, we address the significantly

more challenging problem of nonlinear respirometry reconstruction. We describe efficient

nonlinear optimization methods to compute an approximation of h and x simultaneously, for

scenarios where the impulse response function is not known but its support and delay are pro-

vided or can be estimated. In particular, we show that an alternating optimization method can

be used with appropriate constraints (e.g., sparsity) to update both sets of parameters effi-

ciently. To summarize, the novelty of this work is two-fold: First, for the linear respirometry

problem, we provide a robust set of computational tools for solving the inverse problem (2).

Contrary to existing respirometry studies where Tikhonov regularization is used, we describe

methods that can include different regularizers, can accelerate iterate methods for large-scale

problems, can automatically select regularization parameters, and can provide quantification

of solution uncertainties. Second, for the nonlinear respirometry problem which has not been

previously considered for respirometry, we propose computational methods for joint estima-

tion of h and x. These methods distinguish the proposed work from existing studies on respi-

rometry reconstruction.

An outline of the paper is as follows. We begin with a description of the mathematical set-

up for the respirometry problem. We describe a Bayesian formulation of the linear respirome-

try problem and describe various tools for regularization and uncertainty quantification. We
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propose preconditioners for accelerating iterative methods. Then, we describe nonlinear opti-

mization methods that can be used for nonlinear respirometry reconstruction. Numerical

results for simulated and real respirometry data are provided to demonstrate the performance

and potential of our proposed approaches.

Mathematical problem set-up

We begin with a mathematical description of the forward model underlying respirometry. In a

continuous input estimation scenario, we assume that the system is linear and time-invariant,

such that the output signal can be written as a convolution of the instantaneous input signal

and the impulse response function of the system. More precisely, the output of the system at

time t is given by

bðtÞ ¼
Z t

0

hðt � tÞxðtÞdt

where x(τ) describes the state of the system at time τ and h is the impulse response function. In

a discrete formulation, we take observations at uniform time points 0 = t0 < t1 < . . .< tn<1
denoted as

bk ¼
Xk� 1

i¼0

hðtk � tiÞxidt þ �k; for k ¼ 1; . . . ; n

where bk and xk describe the output and input signals respectively at time tk, δt = tk+1 − tk is the

sampling interval, and �k � N ð0; s� 2Þ represent errors in the data. In matrix notation, we

have the discrete respirometry problem,

b ¼ Hx þ �; ð3Þ

where

b ¼

b1

b2

..

.

bn

2

6
6
6
6
6
4

3

7
7
7
7
7
5

; x ¼

x0

x1

..

.

xn� 1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

; � ¼

�1

�2

..

.

�n

2

6
6
6
6
6
4

3

7
7
7
7
7
5

; and H ¼ dt

hðdtÞ 0 � � � 0

hð2dtÞ hðdtÞ . .
. ..

.

..

. . .
. . .

.
0

hðndtÞ � � � hð2dtÞ hðdtÞ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

Notice that if we let h ¼ dt

hðdtÞ

..

.

hðndtÞ

2

6
6
4

3

7
7
5 2 R

n
be the discretized impulse response function,

then H = H(h) is a lower-triangular Toeplitz matrix with h as the first column and we get a

problem of the form (1).

For most respirometry problems, the impulse response function is not known in advance,

but must be estimated experimentally. In practice, a CO2 pulse is injected into an empty cham-

ber for a short time (e.g., 0.5 seconds) and the normalized recorded output serves as the

impulse response function. Due to various experimental errors and imperfections, this process

may result in an imprecise estimate of the impulse response function. Nevertheless, this is the

standard process used in practice. One could consider using blind deconvolution methods to

solve for h and x simultaneously given b, but this is a severely ill-posed problem where the

main challenge is the existence of many local minimizers. Furthermore, the number of
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unknown variables doubles (i.e., 2n total unknowns in x and h). We will assume that partial

information about the impulse response function is available and consider the so-called semi-
blind deconvolution problem. More specifically, we assume that the delay and the support of

the impulse response function are known. That is, let s 2 Zþ denote the support and d 2 Zþ

represent the delay, then we assume that h has the form

h ¼ ½ 0 � � � 0
|fflfflfflffl{zfflfflfflffl}

d

~h> 0 � � � 0
|fflfflfflffl{zfflfflfflffl}

n� d� s

�
> where ~h ¼ dt½ hdþ1 � � � hdþs �

>
2 Rs

has nonzero elements and hk = h(kδt). With these minor assumptions on the impulse response

function, the nonlinear problem (1) reduces to smaller system given by,

~b ¼ ~Hð~hÞ~x þ ~� ð4Þ

where b ¼ ½ �b>
|{z}

d

~b> �> and x ¼ ½~x> �x
|{z}

d

�
>
2 Rn� d with ~b; ~x; ~e 2 Rn� d, ~Hð�Þ : Rs !

Rðn� dÞ�ðn� dÞ
with ~Hð~hÞ being a lower-triangular Toeplitz matrix with ½~h> 0 . . . 0

|fflfflfflffl{zfflfflfflffl}
n� d� s

�
>

as the first

column. The time response of a chamber is roughly about V/F, where F is the air inflow rate

and V is the volume of the chamber [1, 4]. If there is no information about the support, we can

assume it to be approximately 3 to 5 times the time response.

An example of the delay and support of an impulse response function used in respirometry

is provided in Fig 1, along with an illustration of the impact on the resulting system due to the

delay and support. Notice that since x is replaced by ~x in the reduced system, the tail of x is not

being reconstructed. However, this is not a significant loss since it is common practice to

ignore the final points of the reconstruction even in the non-blind case. The physical reason is

that the released CO2 from the animal at the end of the experiment does not completely show

up in our observed measurements since we have stopped recording before those CO2 particles

leave the chamber and reach the gas analyzer.

We close this section with a few remarks. First of all, regarding our assumption of knowl-

edge of the delay and support of the impulse response function, we can typically obtain good

estimates of these values from the experimental impulse response function or from the respi-

rometry problem set-up. Second, contrary to previous respirometry reconstruction methods,

we do not assume any functional form for ~h. Third, we will describe various techniques to

Fig 1. Illustration of the delay and support of the impulse response function h(t) used in respirometry. The middle and right plots demonstrate the

change in structure from the original system in (1) to the reduced system in (4) that occurs due to the inclusion of delay and support assumptions.

https://doi.org/10.1371/journal.pone.0251926.g001

PLOS ONE Inversion and uncertainty estimation in respirometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0251926 May 21, 2021 5 / 27

https://doi.org/10.1371/journal.pone.0251926.g001
https://doi.org/10.1371/journal.pone.0251926


solve the reduced nonlinear system, and numerical results show that reconstructions are not

sensitive to the choice of these parameters.

Materials and methods

Respirometry with known impulse response function

In this section, we assume that h is fixed and focus on efficient computational tools for solving

the linear respirometry reconstruction problem (3) and for performing subsequent uncertainty

quantification. Since the linear reconstruction problem is ill-posed, some form of regulariza-

tion must be included. We employ a Bayesian framework, which is a statistically robust way to

include prior knowledge by treating x as a random variable. Furthermore, the Bayesian

approach provides a natural framework for performing uncertainty quantification. Good over-

views on Bayesian inverse problems, statistical inverse problems, and computational uncer-

tainty quantification can be found here [8–10].

Regularization and uncertainty quantification. Consider the stochastic extension of (3),

B ¼ HX þ E

where X, B and E are random variables and H is deterministic. We assume that X and E are

mutually independent and that the prior density function of X is given by πprior(x) and the con-

ditional density function of B given X is given by πlike(b j x). Using Bayes’ Theorem, the poste-

rior probability density function can be written as

ppostðx j bÞ ¼
plikeðb j xÞ ppriorðxÞ

pðbÞ
; ð5Þ

assuming the marginal density function π(b) 6¼ 0. Given observations in b, the solution of the

inverse problem in the Bayesian formulation is the posterior distribution (5). This is a main

distinction from classical inverse problems, where the solution is a single point estimate. The

Bayesian formulation provides a natural framework for computing a family of solutions (e.g.,

many point estimates) and for providing qualitative information about the solutions (e.g,.

measures of solution uncertainty).

A key component of the Bayesian formulation is the choice of the prior distribution func-

tion πprior(x), which incorporates any knowledge about the solution x prior to data being col-

lected. Various methods can be used to create the prior. For example, previous experiments

and reconstructions can be used to determine general features or characteristics of the solu-

tion. Priors can be learned from training data [11, 12] or can reflect knowledge about expected

smoothness properties. In this paper, we consider two priors: a Gaussian prior and a Laplace

prior. In both cases, we assume that the observation error can be modeled as � � N ð0; s� 2IÞ,
and thus the likelihood function can be written as

plikeðbjxÞ / exp �
s2

2
kHx � bk2

2

� �

:

We will see that a nice connection between the Bayesian and classical formulations for

inverse problems is that various point estimators in the Bayesian framework coincide with

classic regularized solutions that are obtained by solving optimization problems of the form

(2).

2-norm regularization. Gaussian priors are commonly used, and these priors are defined by

a known mean vector μ 2 Rn
and known symmetric positive definite covariance matrix Q̂,
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i.e., x � N ðμ;l� 2Q̂Þ. In this case, the prior density function is given by

ppriorðxÞ / exp �
l

2

2
ðx � μÞ>Q̂ � 1ðx � μÞ

� �

:

and the posterior density function πpost is a Gaussian distribution,

ppost ¼ N ðxMAP;ΓpostÞ; ð6Þ

where

xMAP ¼ Γpostðs
2H>bþ l2Q̂ � 1μÞ ð7Þ

with

Γpost ¼ ðs
2H>Hþ l2Q̂ � 1Þ

� 1
: ð8Þ

Let Q̂ � 1 ¼ Q>Q be a symmetric factorization (e.g., a Cholesky or eigenvalue decomposi-

tion), then the MAP estimate is the solution to the following optimization problem,

xMAP ¼ arg min
x

s2

2
kHx � bk2

2
þ
l

2

2
kQðx � μÞk2

2
ð9Þ

¼ arg min
x

1

2
kHx � bk2

2
þ
l

2

2

2
kQðx � μÞk2

2
ð10Þ

which is commonly known as Tikhonov regularization where l2 ¼
l

s
. Thus, the Tikhonov reg-

ularized solution is the point estimate that corresponds to the maximum value of the posterior

density function, or equivalently the minimizer of its negative log. Since the posterior density

function is Gaussian, variance estimates for the solution can be obtained by computing the

diagonal entries of Γpost. Furthermore, samples from the posterior can be obtained using effi-

cient Krylov subspace methods [13, 14].

Note that in the inverse problems community, Q is often referred to as the regularization

matrix and is chosen to force smoothness of the desired solution. There are many choices for

the regularization matrix Q. In respirometry common choices for Q include the identity

matrix Q = I or a discretization of the derivative operator where Q is a lower triangular Toe-

plitz matrix with [1 − 2 1 0 . . . 0]> as the first column or [1 − 1 0 . . . 0]> as the first column [4].

In addition to the choice of the regularization operator, the regularization parameter λ2

must be selected. There are various techniques to determine λ2 such as the discrepancy princi-

ple (DP), the L-curve, and the generalized cross validation (GCV) method [15]. Contrary to

the DP and L-curve, the GCV method does not require a prior estimate of the noise level to

determine the regularization parameter λ2. This is an advantage of the GCV method; however,

computing the GCV regularization parameter can get costly especially for large-scale problems

[16]. An alternative regularization technique is to use an iterative method (e.g., the Golub-

Kahan bidiagonalization) to project a large-scale linear problem onto small but growing sub-

spaces and to solve the projected problem using standard regularization techniques [17].

These are so-called hybrid methods. In [18], an implementation called HyBR combines the

Golub-Kahan bidiagonalization and a weighted GCV method to solve problem (10) for Q = I

that is efficient and can select the regularization parameter λ2 automatically. Various general-

ized Krylov techniques have been developed to handle the general form Tikhonov problem

where Q 6¼ I [19, 20], and various works have explored hybrid methods that can efficiently
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handle Gaussian priors by working directly with Q̂ [21] or by working with mixed Gaussian

priors [11].

1-norm regularization. An alternative assumption to a Gaussian prior is a Laplace prior,

where the signal is independent and identically Laplace distributed,

xi � Laplaceð0; d� 1
Þ; i ¼ 1; 2; . . . ; n ð11Þ

where the probability density function for a Laplace distribution is given by pðxÞ ¼
d

2
exp ð� djxjÞ for δ> 0. Thus, using the assumption of independence, the prior corresponding

to assumption (11) can be written as

ppriorðxÞ / exp ð� dkxk
1
Þ;

where k�k1 is the 1-norm of a vector. The posterior density function πpost is given by

ppostðx j bÞ / exp �
s2

2
kHx � bk2

2
� dkxk

1

� �

: ð12Þ

Notice that the posterior is no longer Gaussian; however, we can use various tools to

explore the posterior. The MAP estimate corresponds to the mode of the posterior distribution

and is given by

xMAP ¼ arg max
x

ppostðx j bÞ ð13Þ

¼ arg min
x

s2

2
kHx � bk2

2
þ dkxk

1
ð14Þ

¼ arg min
x

1

2
kHx � bk2

2
þ
l1

2
kxk1; ð15Þ

which is an ℓ1-regularized problem (2) with O(�) = k�k1 and l1 ¼
2d

s2.

It is common to use regularization terms of the form O(x) = kxk1 in signal and imaging

processing, since these regularizers enforce sparsity in the desired parameters. The main

computational difficulty with these regularizers is the absolute value, which has a discontinu-

ous first derivative at zero, causing challenges for optimization algorithms. For small to

medium size problems, it is well known that the problem can be reformulated as a quadratic

programming problem, and standard optimization software packages can be used. However,

the number of unknowns in the reformulated problem doubles, making this approach unreal-

istic for large-scale problems. A more computationally appealing approach is to solve ℓ1-regu-

larized problems using the proximal gradient. That is, methods such as the Fast Iterative

Shrinkage-Thresholding Algorithm (FISTA) [22] use iterative techniques to solve

min
x

1

2
kHx � bk2

2
þ
l1

2
kxk1: ð16Þ

A summary of FISTA with a constant step size is provided in Algorithm 1.

Algorithm 1 FISTA with constant stepsize
Choose λ1.

Compute L, a Lipschitz constant of
1

2
kHx � bk2

2
.

Set y
1
¼ x0 ¼ 0 2 Rn and t1 = 1.

for k = 1, 2, . . . do
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xk ¼ arg min
x

L
2
x � yk �

1

L
H>ðHyk � bÞ

� ��
�
�
�

�
�
�
�

2

2

þl1kxk1;

tkþ1 ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4t2

k

p

2
;

ykþ1
¼ xk þ

tk � 1

tkþ1

� �

ðxk � xk� 1Þ:

end for
In addition to the choice of the regularization parameter λ1 that must be selected in

advance, the Lipschitz constant L that depends on the maximum eigenvalue of H>H must be

estimated. It can be difficult to compute L when n is large, but an approach using backtracking

was described in [22]. Similar to FISTA, the Sparse Reconstruction by Separable Approxima-

tion (SpaRSA) method [23] is an iterative method that can be used to solve (16), which uses a

sequence of smooth approximations of the 1-norm. Although more general regularization

terms can be included, SpaRSA requires more user-defined input parameters so we do not

consider it here. Another class of methods for solving the ℓp-regularized problem is based on

flexible Krylov methods that use iterative techniques with flexible preconditioning within a

hybrid framework to improve the solution subspace. Methods such as FLSQR-R can be used

to solve ℓp-regularized problems where 1� p< 2, see [24].

Various methods for solving the ℓ1-regularized problem can be used to approximate the

MAP estimate, but subsequent uncertainty quantification for this case is significantly more

challenging. Although the posterior (12) is not Gaussian, we can approximate the posterior

with a Gaussian at the maximum a posterior (MAP) estimate using a linearization approach

[25]. Another approach to efficiently obtain samples from the posterior in this case is to use a

change of variables or transformation to turn a non-Gaussian distribution into a Gaussian

one, as described in [26]. More specifically, the transformation is defined by

x ¼ gðzÞ≔ g1Dðz1Þ � � � g1DðznÞ½ �
>

ð17Þ

where

g1DðzÞ ¼ L� 1GðzÞ ð18Þ

with L being the cumulative density function (cdf) of the Laplace distribution and G being the

cdf of a Gaussian distribution. With this definition, z � N ð0; IÞ and the transformation z =

g−1(x) generates

pðzÞ ¼ pðgðzÞÞjJgðzÞj ð19Þ

where

JgðzÞ ¼ diagðg0
1Dðz1Þ; . . . ; g 0

1DðznÞÞ: ð20Þ

From these transformations and from (12), we obtain

pðzjbÞ / exp �
1

2

HðgðzÞÞ

ffiffiffiffiffi
l1

p
z

2

4

3

5 �

b

0

2

4

3

5

�
�
�
�
�
�

�
�
�
�
�
�

2

2

0

B
@

1

C
A ð21Þ

Hence, we can generate samples from z and transform these samples to get samples of

p(x|b) via x = g(z). Although there are some known challenges with this approach, we found

that it worked well for the respirometry reconstruction problem.

By following a Bayesian framework for inversion, we have established a natural framework

not only for incorporating prior knowledge but also for quantifying solution uncertainties. In
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terms of software, IRTools [27] is a comprehensive package that contains many iterative regu-

larization routines for solving inverse problems along with various test problems. To the best

of our knowledge there is no unified software package for performing UQ for inverse prob-

lems. We point the interested reader to the following book and associated codes [10].

Accelerating iterative methods for signal reconstruction. In the previous section, we

considered various regularization techniques for solving the linear respirometry reconstruc-

tion problem. Next, we focus on Tikhonov regularization, and we investigate efficient methods

to accelerate the convergence of iterative methods when used to compute a solution,

xTik ¼ arg min
x

1

2
kHx � bk2

2
þ
l

2

2

2
kQðx � μÞk2

2
ð22Þ

¼ ðH>Hþ l2

2
Q>QÞ� 1

ðH>bþ l2

2
Q>QμÞ; ð23Þ

where (23) comes from setting the gradient of the function in (22) equal to zero. For small

problems, constructing the matrix and the solution in (23) is computationally feasible, and

many of the previous works in respirometry reconstruction follow this approach. For example,

Tikhonov methods described in [5] could be used here. However, more sophisticated iterative

techniques should be used for large-scale problems.

Iterative methods, in particular Krylov subspace methods, are computationally attractive

because each iteration only requires one matrix-vector-multiplication with H and perhaps H>

[28, 29]. Thus, the matrix representing the respirometry forward model never needs to be con-

structed, but instead can be accessed via operations or function evaluations. However, it is

widely known, especially in the numerical linear algebra community, that preconditioning is a

very important tool for accelerating convergence and improving the robustness of Krylov

methods [30]. The basic idea of preconditioning is to modify the problem by improving the

spectrum of the problem (so that eigenvalues or singular values of the preconditioned system

are clustered around one and bounded away from zero), thereby accelerating the convergence

of iterative methods.

For simplicity of presentation, we describe preconditioning techniques for the unregular-

ized problem (i.e., λ2 = 0) and focus on developing a good preconditioner for the respirometry

matrix H that can exploit the special structure of these matrices. We first describe the general

idea underlying preconditioning and then describe how to apply preconditioning to the regu-

larized problem.

Assume that we have a preconditioner M 2 Rn�n such that M−1�H−1 and solving systems

involving M can be done easily and quickly. Then rather than solve (22), consider solving the

right-preconditioned problem,

min
y
kHM� 1y � bk2

2
where y ¼ Mx;

or the left-preconditioned problem,

min
x
kM� 1Hx � M� 1bk2

2

using an iterative method such as the conjugate gradient for least-squares (CGLS) method

[31]. Notice that each iteration requires one matrix-vector multiplication with M−1 H and its

transpose. Typical choices for M are based on incomplete matrix factorizations or multigrid

methods [30]. However, for the respirometry problem, these approaches are not ideal for two

main reasons. First, matrix H is large and construction of H is not possible. Instead, we access

it via function evaluations. Second, H is severely ill-conditioned, so we would like to
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approximate a regularized pseudoinverse of H rather than H−1. Obtaining a good approxima-

tion of H−1 would result in very fast convergence to the undesired inverse solution.

For respirometry reconstruction problems, we propose various preconditioners that can be

used to accelerate the convergence of iterative methods. Recall that H is a Toeplitz matrix with

h as the first column. For large-scale problems, we have constructed an object class in

MATLAB called convMatrix.m, where matrix-vector and matrix-transpose-vector opera-

tions with H are treated as function evaluations. In particular, convMatrix calls MATLAB’s

conv function to do convolution and then extracts the appropriate signal length.

Next, we describe how to exploit the Toeplitz structure of H to build a good preconditioner

for the respirometry problem. Since circulant matrices provide good approximations to Toe-

plitz matrices [32–35] and circulant matrices are diagonalized by the discrete Fourier trans-

form, we propose to use a circulant matrix M such that the lower triangular part of M matches

the lower triangular part of H. Then since M can be diagonalized by the discrete Fourier trans-

form, we can write

M ¼ F�ΘF ð24Þ

where F represents the Fourier transform and Θ is a diagonal matrix with eigenvalues com-

puted as

theta ¼ fftðhÞ;

where h contains the impulse response function scaled by the sampling rate (i.e., this corre-

sponds to the first column of H). Thus, we can apply the preconditioner to any vector y as

M� 1y ¼ F�Θ� 1Fy;

which corresponds to the following commands in MATLAB

ifftðfftðyÞ:=thetaÞ; :

Notice that since M is likely ill-conditioned, Θ has very small values on the diagonal which

can result in erroneous computations. A small modification to the preconditioner can be

done, where Θ is replaced with a diagonal matrix Θ̂ with better spectral properties (i.e., remov-

ing small eigenvalues of Θ). For simplicity, we can use a TSVD-like preconditioner where

M ¼ F� Θ̂ F with diagonal entries of Θ̂ being

ŷ i ¼

(
yi; if jyij � t

1; else
ð25Þ

for some predetermined tolerance parameter τ. Because the preconditioner inherently

includes regularization, we avoid the danger of the preconditioner inadvertently magnifying

the noise before a solution can be computed. Similar to the previous discussion about avoiding

the construction of H, we remark that construction of the preconditioner is also not advised.

We have written an object class called precMatrix.m that can work with the precondi-

tioner implicitly. The preconditioner for respirometry can be accessed using the MATLAB

command: M = precMatrix(h,tau); where h contains the impulse response function

without delay and τ is the tolerance parameter. We also describe an automatic approach to

estimate τ. Consider the approximate problem Mx = b. Since the diagonalization of M is com-

putable, we can use the GCV method to efficiently compute a regularization parameter or

truncation tolerance for TSVD [15]. This truncation tolerance can be used to define the pre-

conditioner. Furthermore, we remark that M corresponds to convolution with the same
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impulse response function, where periodic boundary conditions are assumed. Thus, if H cor-

responds to periodic boundary conditions and τ is the smallest singular value, then M = H.

For a small respirometry example, we provide in Fig 2 the spectrum of H along with the

spectrum of the preconditioned system M−1 H for τ = 4.5 × 10−2, 9.0 × 10−2, and 1.8 × 10−1.

The GCV selected parameter for this example was 9.0 × 10−2. Notice that the singular values

for the preconditioned systems are clustered around 1. This is a very desirable property for the

fast convergence of Krylov subspace methods [29]. However, the spectrum of the precondi-

tioned system relies heavily on the choice of τ. For small values of τ, M clusters too many of

the small singular values so that the preconditioned system will be very ill-posed. On the other

hand, for larger values of τ, only a few singular values are clustered so more iterations would

be required. If τ is greater than or equal to the largest singular value of H, then M = I and we

have no preconditioning.

We have focused on developing preconditioners that exploit the structure of H and

described how to use these preconditioners to accelerate iterative methods. If one wishes to

use these preconditioners for solving regularized problems (e.g. (22)), then a simple extension

can be made. That is, one can solve preconditioned problem,

min
y
kHM� 1y � bk2

2
þ l

2

2
kQðM� 1y � μÞk2

2
where y ¼ Mx;

or

min
x
kM� 1Hx � M� 1bk2

2
þ l

2

2
kQðx � μÞk2

2
:

In general, proper preconditioning can be a very important, albeit delicate, task especially

for inverse problems.

Respirometry with unknown impulse response function

Thus far, we have focused on the linear respirometry problem where the impulse response

function is assumed known. However, this is not true in realistic experiments, where the

impulse response function must be estimated. Given measured respirometry data, estimating

both the impulse response function and the unknown signal simultaneously is a very

Fig 2. Spectrum of the unpreconditioned and preconditioned respirometry matrices for various choices of τ. Note the desirable clustering

of the larger eigenvalues, which results in fast convergence of iterative methods.

https://doi.org/10.1371/journal.pone.0251926.g002
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challenging problem. Nevertheless, there are various reasons why we may want to consider a

joint estimation approach. First, the estimated impulse response function which is obtained

using a short burst of CO2 in an empty chamber will likely contain errors. Second, although

the respirometry systems is calibrated at construction, parameters may change over time and

these changes are not accounted for without a full recalibration of the machine. Third, the

impulse response depends on the size and location of the animal, which could change across

experiments. For these and other reasons, we are interested in methods that can solve the non-

linear respirometry reconstruction problem. It is worth mentioning that we tried some off-

the-shelf blind deconvolution methods such as MATLAB’s deconvblind function, but

found that reconstructions were very poor; thus motivating us to consider alternative

approaches.

The impulse response function, which models the reaction of the system to a very short

unit impulse in a linear time-invariant system, is a key component of respirometry reconstruc-

tion. Conventional methods such as the Z-transform method described in [1] use an impulse

response function defined by an exponential function, e.g., h(t) = αe−βt where α and β are

parameters defined by the flow rate and chamber volume. In [4], the authors experimentally

showed that for many chambers and flow rates, the impulse response has the form h(t) = αtm

e−βt where α, m, and β are parameters of the system. Although the parameters for the impulse

response function must be estimated, numerical experiments showed that this function per-

formed better than the exponential function. For the methods described in this section, we do

not enforce a functional form for the impulse response function. Instead we impose other less

restrictive constraints on the impulse response function, and develop computational methods

for nonlinear respirometry reconstruction, where both the signal x and the impulse response

function h can be estimated simultaneously from the data. The goal is to solve nonlinear opti-

mization problem,

min
x;h
kHðhÞx � bk2

2
þ lpOðxÞ þ lhkhk

2

2
s:t: h � 0 and

Xn

i¼1

hidt ¼ 1 ð26Þ

where λh is a regularization parameter for h. Compared to problem (2), we have a nonlinear

model represented by H(h), and we have various additional constraints on h. These constraints

include an additional Tikhonov regularization term for h to enforce smoothness, a nonnega-

tivity constraint, and a mass preserving constraint to force the computed impulse response

function to sum to 1. This last constraint corresponds to forcing the integral of the impulse

response function to be 1 in the continuous framework.

Before we describe computational methods to solve nonlinear constrained optimization

problem (26), we provide an example to illustrate why solving the nonlinear blind reconstruc-

tion problem is significantly more difficult. The main concern is the existence of multiple min-

imizers. That is, without additional constraints, there are multiple solution pairs (x, h) that

give small values of the data fit term in the objective function. The plots in Fig 3 show that

under the convolution operation, two very different pairs (x, h) can result in nearly the same

observation. Thus, methods for numerical optimization can easily get trapped in local mini-

mizers. Including additional constraints can help with this problem. We observed that the

choice of regularization for x, i.e., the choice of O(x), was important. In particular, reconstruc-

tions obtained using Tikhonov regularization in the nonlinear framework resulted in signifi-

cantly smaller residual error norms, which negatively impacted the convergence. However,

using O(x) = kxk1 resulted in faster convergence and better reconstructions.

Next we describe a computationally efficient method to solve (26). First, following the

model described in (4), we assume that the delay and support of h are known and reformulate
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problem (26) as

min
~x ;~h
k ~Hð~hÞ~x � ~bk2

2
þ l1k~xk1

þ l~hk
~hk2

2
s:t: ~h � 0 and

Xdþs

i¼dþ1

hidt ¼ 1 ð27Þ

where λ1, l~h are regularization parameters for ~x and ~h respectively. For large scale problems,

matrix-vector multiplications ~Hð~hÞ~x are done via function evaluations so that ~H is never con-

structed explicitly. Also note that ~h and ~x are exchangeable since

~Hð~hÞ~x ¼ Ĥsð~xÞ~h ð28Þ

where Ĥsð~xÞ 2 R
ðn� dÞ�s

contains the first s columns of a lower-triangular Toeplitz matrix with

~x as its first column. We will exploit this property in the described alternating optimization

method.

Various nonlinear optimization methods can be used to solve problem (27) [36, 37]. A fully

coupled approach would update all variables simultaneously, e.g., an inexact Newton method

to solve for ~z ¼
~x
~h

" #

. The main caveats of this approach are that derivatives are required and

Fig 3. Illustration of the non-uniqueness problem in blind respirometry reconstruction. Both sets of parameters in x and h result in similar

observed measurements in b. The result in the second row corresponds to using Tikhonov regularization for x and solving h using alternating

optimization.

https://doi.org/10.1371/journal.pone.0251926.g003
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convergence can be slow. On the other hand, an alternating approach can be used to exploit

the separability of the parameters in ~x and ~h. That is, we alternate between fixing ~h and opti-

mizing over ~x, and fixing ~x and optimizing over ~h. An alternating optimization method to

solve (27) is provided in Algorithm 2. Notice that a key computational benefit of the alternat-

ing optimization approach for this problem is that by exploiting property (28), each optimiza-

tion problem corresponds to solving a linear inverse problem.

Algorithm 2 Alternating Optimization for Blind Respirometry

choose initial ~h0 and tolerance tol
for k = 0, 1, 2, . . . do

~xk ¼ arg min
~x
k ~Hð~hkÞ~x � ~bk2

2
þ l1k~xk1

~hkþ1 ¼ arg min
~h

kĤsð~xkÞ
~h � ~bk2

2
þ l~hk

~hk2

2
s:t: ~h � 0 and

Xdþs

i¼dþ1

hidt ¼ 1

~rk ¼ ~Hð~hkÞ~xk �
~b

if k~hkþ1 �
~hkk2 < tol or k~rk � ~rk� 1k2 < tol then

stop
end if

end for
In summary, we reformulated the blind respirometry reconstruction problem as a con-

strained nonlinear optimization problem, where the additional constraints are modest and

reasonable. We assume that the delay and the support of the impulse response function are

known, and we describe an alternating optimization method to estimate both the impulse

response function and the instantaneous signal. In general, alternating optimization methods

can be slow to converge but can have fast convergence if the initial guess is close to a mini-

mizer. By exploiting structure in the problem, we have reduced the overall computational

costs. We remark that for problems where the impulse response function can be parameterized

using a few variables, a variable projection method may be used [38], but including additional

constraints is not straightforward.

Results and discussion

In this section, we compare numerical optimization methods for different regularization func-

tions and demonstrate the performance of the proposed preconditioners for the linear respi-

rometry problem. We provide numerical results for uncertainty quantification for both

Tikhonov and 1-norm regularizers. Then, we present results for a nonlinear respirometry

reconstruction problem, where robustness of the proposed nonlinear optimization method is

investigated. For the simulated dataset, we generate the measurements as in (1), where xtrue, h

and b are provided in Fig 4 where the noise level is 0.5% and n = 512. We remark that real met-

abolic signals usually have slowly varying patterns. However, some species exhibit discontinu-

ous cycles of ventilation with periods of little to no CO2 release [39, 40]. Here, to test the

methods we choose xtrue to be a series of rectangular pulses with various durations and fre-

quencies. The rectangular pulses contain high frequency elements and recovering these signals

is more challenging comparing to smooth patterns. For the linear respirometry results, we

assume that we are given h and b, and we seek reconstructions of xtrue. For the nonlinear respi-

rometry results, we assume that we are given b as well as the delay and support of h, and we

seek reconstructions of xtrue and h. In addition to the simulated studies, we provide a case

study for experimental validation on real data for both the linear and nonlinear respirometry

problems.
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Linear respirometry reconstruction

For the linear respirometry problem, we investigate reconstructions using a 2-norm and a

1-norm regularization term. We consider two Tikhonov regularized solutions. Tikhonov-Q

incorporates a regularization matrix Q, which is a lower triangular Toeplitz matrix with [1 − 1

0 . . . 0]> as the first column [5], and HyBR-I corresponds to a hybrid iterative projection

method with regularization matrix Q = I. For the 1-norm penalty, we investigate a flexible

hybrid iterative method called FLSQR-R [24] and FISTA as described in Algorithm 1.

For the regularization parameter λ, we use the optimal regularization parameter for Tikho-

nov-Q, which corresponds to minimizing the relative error between the reconstruction and

the true signal. Both hybrid methods HyBR-I and FLSQR-R determine the regularization

parameter automatically at each inner iteration using the weighted GCV method [18, 24]. For

FISTA, the regularization parameter must be fixed in advance, and we set λ1 = 0.002.

From the reconstructions in Fig 5, we observe that FLSQR-R and FISTA enforce sparsity in

the reconstructions, and thus there are fewer artifacts. The FISTA reconstruction had the

smallest relative reconstruction error norm among the considered methods, but this approach

requires a good choice of the regularization parameter a priori, which requires time and careful

tuning.

Next we provide credibility bounds for reconstructions of the linear respirometry problem.

In Fig 6 we provide the Tikhonov-Q reconstruction from Fig 5 with λ2 = 0.0114 along with the

95% credibility bounds. These 95% credibility bounds are computed from (8). Performing

uncertainty quantification for Laplace priors (corresponding to the 1-norm) is a bit more diffi-

cult. We use the transformation described in [26] for Markov Chain Monte Carlo sampling.

More specifically, we compute 1000 samples from the posterior distribution, using the

approach described in the Matlab code OneDBlurHarr:m from Section 6.4 of [10]. Due to

computational difficulties for large-scale problems, we reduce the signal size to n = 128. As

expected, we observe larger variances at the tail of the signal due to the delay in h.

For Tikhonov regularization, we investigate the proposed preconditioners. We provide rel-

ative reconstruction error norms per iteration in Fig 7 for two noise levels 0.5% and 1%. In

Fig 4. Simulated problem setup. The true signal and simulated observation with noise level 0.5% are provided in the

top plot, and the impulse response function and its support are provided in the bottom plot.

https://doi.org/10.1371/journal.pone.0251926.g004
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practice the noise level is usually much lower. We show that both left and right precondition-

ing result in faster convergence than unpreconditioned iterative methods. Furthermore

although the preconditioned methods show semi-convergence behavior, whereby the error

norms increase with later iterations, we can include appropriate regularization and compute a

regularized solution. Thus, if one wishes to solve a large-scale nonlinear problem, precondi-

tioned iterative methods can be used in an inner iteration to improve the overall efficiency of

the algorithm.

Nonlinear respirometry reconstruction

For the blind respirometry reconstruction problem where we assume the impulse response

function is unknown, we investigate the performance of the described alternating optimization

approach. For Algorithm 2, we need an initial guess of the impulse response function. For this

Fig 5. Reconstructions for linear respirometry reconstruction. Tikhonov-Q and HyBR-I reconstructions

correspond to ℓ2 regularization, and FLSQR-R and FISTA reconstructions correspond to ℓ1 regularization. The true

signal is provided in the blue line and the reconstructions are provided in red. Relative reconstruction error norms

computed using the 2-norm are provided in the titles.

https://doi.org/10.1371/journal.pone.0251926.g005
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Fig 6. Uncertainty quantification for linear respirometry. The top plot contains the Tikhonov-Q solution with the

95% credibility bounds, and the bottom plot contains the sample median and 95% credibility bounds with 1000

samples corresponding to the Laplace prior.

https://doi.org/10.1371/journal.pone.0251926.g006

Fig 7. Results for preconditioned iterative methods. Relative reconstruction errors for preconditioned versus

unpreconditioned iterative methods for Tikhonov regularization.

https://doi.org/10.1371/journal.pone.0251926.g007
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we take a uniform function on the support of the impulse response function (see Fig 4) where

the value is selected so that the impulse response function sums to 1. We found that our

approaches can work for various choices of the initial guess of the impulse response function;

however, it can be difficult to assess sensitivity for large-scale, nonlinear inverse problems. Our

observation is motivated by our numerical experience in testing different initializations.

Recall that one of the nice features of the alternating optimization approach described in

Algorithm 2 is that we split the main computational costs. Given an estimate of ~h, existing

solvers can be used to compute a reconstruction ~x, and given an estimate of ~x, gradient-based

constrained optimization methods can be used to efficiently estimate ~h. As we illustrated in

Fig 3, the main challenge of the blind respirometry problem is the existence of multiple mini-

mizers. In the experiments, we observe that using a 2-norm regularizer for ~x resulted in overall

smaller relative reconstruction error norms but much slower convergence. On the other hand,

using a 1-norm regularizer for ~x with FISTA was effective in avoiding the problem of getting

stuck in undesirable local minimizers, especially at early iterations, but we needed to tune the

regularization parameter. Here we use λ1 = 0.002. For estimating ~h, we use MATLAB’s

lsqlin function to perform constrained optimization, where we enforce nonnegativity and

summation to 1. For the choice of regularization parameter for ~h, we selected l~h ¼ 0:01. We

tried a range of values from 0.2 to 0.005, and as expected, the reconstructed impulse response

function was smoother for larger values of l~h .

In Fig 8, we provide reconstructions of the impulse response function ~h at various iterations

of the alternating optimization method. Notice that the reconstructed function is shifted a few

time units but is close to the support of the true impulse response function with small errors at

the tails. Even though the initial guess is not close to true impulse response function, we obtain

good reconstructions for the nonlinear respirometry problem.

After obtaining a good reconstruction of ~h, we test various reconstruction methods to com-

pute ~x. These results are provided in Fig 9 and show that FISTA and FLSQR-R are more sensi-

tive than other methods when the reconstructed h has small errors at the tails. The

regularization parameter was determined automatically in HyBR-I and FLSQR-R, while the

optimal regularization parameter was used for Tikhonov-Q. Since the reconstructed ~h is

shifted, the relative errors are not small. However, we can observe that the shape of the recon-

structed ~x is close to the true ~x. Next, we investigate robustness of the proposed algorithm to

an inexact delay. For real experiments, it is hard to know the exact delay of the impulse

response function, and thus we must estimate it. As shown in Fig 10, our nonlinear optimiza-

tion approach can still reconstruct an impulse response function whose shape is similar to the

true function.

Fig 8. Reconstructed impulse response functions ~h for the nonlinear respirometry problem at various iterations

of the alternating optimization method. The subfigure in the right plot is a zoom of the peak of the reconstruction.

https://doi.org/10.1371/journal.pone.0251926.g008
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Experimental validation

Finally, we test the described methods using real data from a flow-through respirometry cham-

ber. First, we consider a linear reconstruction problem where we perfuse CO2 with an arbitrary

pattern into a respirometry chamber and record the output concentration of CO2 with a gas

analyzer. Then we apply the regularization methods (see Materials and methods) to recon-

struct the exact CO2 injection pattern (i.e., the input signal) from the collected CO2 observa-

tions. For this example, we use a fixed experimental impulse response function and an empty

chamber. Then to demonstrate the effectiveness of the nonlinear reconstruction methods on a

real biological system, we include an insect in the chamber and use Algorithm 2 to obtain a

joint reconstruction of the impulse response function and CO2 signal from the recorded CO2

observations. We compare the reconstructed instantaneous signal with abdominal movements

of the living organism. From these two experiments, we show the performance of the proposed

method in experimental respirometry inverse problems.

Fig 9. Reconstructed signals ~x using different regularization techniques. All reconstructions correspond to ~h in Fig

8.

https://doi.org/10.1371/journal.pone.0251926.g009
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Linear case study. To validate the described methods, we designed an experimental setup

to perfuse CO2 with a controlled pattern into a 28 ml (25 × 25 × 45 mm3) respirometry cham-

ber. We used a high-speed valve (MHE2- MS1H-5/2-M7-K, Festo, NY, USA) to switch

between dry air and CO2 gas (100 ppm, balanced with N2) immediately before the chamber.

The inlet flow rate into the chamber was 250 ml/min. The outlet of the chamber was connected

to an infrared gas analyzer (LI 7000 Li-Cor, Nebraska, USA). To test the accuracy of the meth-

ods, CO2 pulses with various width and frequencies were injected into the chamber and the

concentration of the CO2 in the outlet was recorded with a sampling rate of 10 Hz. To deter-

mine the impulse response of the respirometry chamber, a short pulse of CO2 with the dura-

tion of 0.2s was injected into the chamber and the data were recorded for 5 minutes. The

details of the experimental setup are described in Pendar et al [4, 5]. The output, observed CO2

signal and the experimental impulse response are provided in Fig 11. The size of the input and

observed signal is 13, 413. For the linear reconstruction problem, we evaluate the following

methods: HyBR-I, FLSQR-R, and FISTA. For HyBR-I and FLSQR-R, the regularization

parameter is computed automatically using weighted GCV, and for FISTA, we use λ1 = 0.002.

Fig 10. Investigation into the impact of selecting a different delay of the impulse response function in the

nonlinear respirometry problem. Reconstructed impulse response functions ~h are provided for different delays.

https://doi.org/10.1371/journal.pone.0251926.g010

Fig 11. Experimental set-up for linear case study. CO2 observations from manipulated input CO2 signals to the empty chamber (left) and

experimental impulse response function (right).

https://doi.org/10.1371/journal.pone.0251926.g011
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Reconstructions (including a zoomed image) are provided in Fig 12, along with the true signal

and observation for comparison. Since the experimental impulse response function is well esti-

mated in this case, all of the considered methods are able to nicely reconstruct the input signal.

Notice that FISTA reconstructions are better able to resolve the peaks, especially when they are

close together, as well as the flat regions (where no input is made).

Nonlinear case study: Abdominal pumping and CO2 emission in a darkling beetle.

Next, we include a breathing insect in the flow-through respirometry chamber and investigate

the performance of the blind respirometry reconstruction methods for simultaneously estimat-

ing the impulse response function and the CO2 instantaneous signal. A complicated network

of tubes, called tracheae, run through an insect’s body to deliver oxygen to the tissues and

return CO2 from the cells to the ambient air. The tube network is open to the outside air

through valves which are called spiracles. Gas transport inside the tracheae occurs via diffusion

and in larger insects via active ventilation, which is the result of compression of the tracheal

tubes [41]. For larger and more active insects with higher metabolic rates, the diffusion is not

sufficient to deliver enough oxygen to their tissues. They require an active ventilation to aug-

ment diffusive gas exchange. Active ventilation is known to be generated by abdominal pump-

ing, a dorsoventral or anteroposterior compression of the abdomen [39, 42, 43]. However,

some studies have shown that not all abdominal compressions are correlated with gas

exchange, particularly in pupae and sub-adults [39, 44, 45]. In this study we used an adult

Fig 12. Experimental results for linear case study. Reconstruction of input CO2 signal using different reconstruction methods. A

zoomed plot is provided in the bottom plot.

https://doi.org/10.1371/journal.pone.0251926.g012
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tenebrionid beetle, Zophobas morio Fabricius, 1776 (Coleoptera: Tenebrionidae), to investi-

gate the correlation between abdominal pumping and CO2 emission. Before putting the beetle

inside the respirometry chamber, the beetle was cold-anesthetized at 3˚C. Then its legs, head,

and antennae were secured using adhesive putty (Scotch adhesive putty, 3M, Minnesota, USA)

to prevent body movements during the recording. To see the abdominal movement the elytra

and the soft wings were pinned to the sides.

After putting the secured beetle shown in Fig 13(a) inside the respirometry chamber and

letting the beetle rest for an hour, we recorded CO2 emission and abdominal movement simul-

taneously. Recorded CO2 observations can be found in Fig 13(c). We also recorded the move-

ment of the abdomen from the side with a video camera (NEX-VG10, Sony) at 30 frames per

second. A flashing LED light was used to synchronize the video with the CO2 data. To process

the recorded video we used a custom MATLAB code to track 120 equally spaced points along

the mid-tergites (see the red points in Fig 13(b)) and considered the average displacement of

these point as the dorso-ventral displacement of the abdomen.

Then we used Algorithm 2 with the same regularization parameters used for the simulated

experiments to simultaneously reconstruct the instantaneous CO2 signal from the observations

and the impulse response function. We tested different initial guesses for the impulse response

function ~h0, where the support is 18.4 sec and the delay is 21.3 sec. First, following the work in

Fig 13. Experimental results for nonlinear case study. In this experiment, abdominal pumping and CO2 emission of a breathing insect are recorded

and synchronized. (a) A darkling beetle is breathing in the respirometry chamber. (b) Abdominal movements of a darkling beetle (red dots) are

recorded. (c) The abdominal movement (red) signal samples. The recorded CO2 emission samples (grey) from the chamber. The reconstructed CO2

signals (blue) with Algorithm 2 from a flat initial guess of the impulse response function, delay of 21.3 sec, and support of 18.4 sec. The recovered CO2

signal is concurrent with the abdominal movement of the insect.

https://doi.org/10.1371/journal.pone.0251926.g013
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[5], we considered density functions of Gamma distributions (e.g., f ðxÞ ¼ ba

ΓðaÞ x
a� 1 exp � bx) for

different choices of α and β. Gamma1 corresponds to an initialization with α = 4 and β = 3,

and Gamma2 corresponds to an initialization with α = 2 and β = 0.5. The initializations of the

impulse response functions are provided in Fig 14. To investigate the sensitivity of our

approach with respect to the initialization of ~h0, we also considered an initial guesses where ~h0

is a constant function. For each of the very different initial impulse response functions, the

blind respirometry reconstruction method converges to an impulse response function with a

similar shape and to similar reconstructed CO2 signals. The reconstructed impulse response

functions are provided in the right panel of Fig 14. Notice that all functions must satisfy two

conditions: nonnegativity and the area under the curve over the support is 1. The recon-

structed CO2 signal (corresponding to an initialization of the flat line impulse response func-

tion) is provided in Fig 13(c). Since this is a real data experiment, we do not have the true

signal to compare to. Thus, we verify our results by comparing the reconstructed CO2 signal to

the recorded abdominal movement. In Fig 13(c), we provide a superposition of signals in

order to show a correlation between abdominal movement and CO2 release.

Conclusion

Respirometry reconstruction and especially blind respirometry reconstruction are crucial in

interpreting the results of respirometry experiments in many physiological studies. We devel-

oped and investigated various computational tools for accurately and efficiently estimating the

input signal, as well as the impulse response function, in any physiological system. By reformu-

lating the linear respirometry problem in a Bayesian framework, we enabled tools for uncer-

tainty quantification for both 2-norm and 1-norm regularization. Then, to accelerate the

linear solve within iterative optimization methods (e.g., alternating optimization or Gauss-

Newton methods), we developed preconditioners that are tailored to the respirometry forward

model and demonstrated the excellent performance of these preconditioners for accelerating

iterative reconstruction methods. Furthermore, by combining various constraints on both the

impulse response function and the signal reconstruction, we developed sophisticated numeri-

cal optimization methods to tackle the very challenging problem of blind respirometry.

Fig 14. Impulse response function reconstruction for nonlinear case study. Initial guess for the unknown impulse response function (left)

and reconstructed impulse response functions using a nonlinear respirometry reconstruction algorithm (right).

https://doi.org/10.1371/journal.pone.0251926.g014
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Simulated and real-data results with a breathing insect demonstrate that these methods can be

used to extract high temporal information for the original signal. Overall, these improvements

in input estimation have the potential to change the way physiologists view indirectly recorded

data, most particularly for studies of gas exchange, and can change the interpretation of the

underlying physiological processes. To assist a researcher in implementing these methods for

their own studies and to encourage further development of the methods, MATLAB code and

data can be found at the website: https://github.com/T-Cho-vt/respirometry. Future work will

be to develop efficient methods for uncertainty quantification that can exploit the separable

nonlinear structure of the respirometry problem. Furthermore, we addressed efficient compu-

tation of variance estimates, but sampling methods for both the Gaussian approximation and

the fully nonlinear problem are still open problems, especially for very large problems.
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