
����������
�������

Citation: Singh, H.N.; Swarup, V.;

Dubey, N.K.; Jha, N.K.; Singh, A.K.;

Lo, W.-C.; Kumar, S. Differential

Transcriptome Profiling Unveils

Novel Deregulated Gene Signatures

Involved in Pathogenesis of

Alzheimer’s Disease. Biomedicines

2022, 10, 611. https://doi.org/

10.3390/biomedicines10030611

Academic Editors: Kuen-Jer Tsai

and Susana Cardoso

Received: 19 January 2022

Accepted: 28 February 2022

Published: 6 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

Differential Transcriptome Profiling Unveils Novel Deregulated
Gene Signatures Involved in Pathogenesis of Alzheimer’s Disease
Himanshu Narayan Singh 1,†, Vishnu Swarup 2,†, Navneet Kumar Dubey 3,4,† , Niraj Kumar Jha 5 ,
Anjani Kumar Singh 6 , Wen-Cheng Lo 7,8,9,* and Sanjay Kumar 10,*

1 Department of System Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
hs3290@columbia.edu

2 Department of Neurology, All India Institute of Medical Sciences, New Delhi 110029, India;
vishnuswarup@gmail.com

3 Victory Biotechnology Co., Ltd., Taipei 114757, Taiwan; nkd@victorybio.com.tw
4 ShiNeo Technology Co., Ltd., New Taipei City 24262, Taiwan
5 Department of Biotechnology, School of Engineering and Technology, Sharda University,

Greater Noida 201310, Uttar Pradesh, India; niraj.jha@sharda.ac.in
6 Department of Physics, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi 110021, India;

aksingh@arsd.du.ac.in
7 Department of Surgery, Division of Neurosurgery, School of Medicine, College of Medicine, Taipei Medical

University, Taipei 11031, Taiwan
8 Department of Neurosurgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
9 Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
10 Department of Life Sciences, School of Basic Sciences and Research, Sharda University,

Greater Noida 201310, Uttar Pradesh, India
* Correspondence: drlons@h.tmu.edu.tw (W.-C.L.); sanjay.kumar7@sharda.ac.in or

drsanjakumar82@gmail.com (S.K.); Tel.: +886-886-2-27372181 (ext. 3703) (W.-C.L.); +91-120-4570000 (S.K.)
† These authors contributed equally to this work.

Abstract: Alzheimer’s disease (AD) is a neurodegenerative disorder that is characterized by a pro-
gressive loss of cognitive functions at a higher level than normal aging. Although the apolipoprotein
(APOE) gene is a major risk factor in developing AD, other genes have also been reported to be
linked with complex phenotypes. Therefore, this genome-wide expression study explored differen-
tially expressed genes as possible novel biomarkers involved in AD. The mRNA expression dataset,
GSE28146, containing 15 sample data composed of 7 AD cases from the hippocampus region with
age-matched control (n = 8, >80 years), was analyzed. Using “affy” R-package, mRNA expression
was calculated, while pathway enrichment analysis was performed to determine related biological
processes. Of 58 differentially expressed genes, 44 downregulated and 14 upregulated genes were
found to be significantly (p < 0.001) altered. The pathway enrichment analysis revealed two altered
genes, i.e., dynein light chain 1 (DYNLL1) and kalirin (KLRN), associated with AD in the elderly
population. The majority of genes were associated with retrograde endocannabinoid as well as
vascular endothelial growth factors affecting the complex phenotypes. The DYNLL1 and KLRN
genes may be involved with AD and Huntington’s disease (HD) phenotypes and represent a common
genetic basis of these diseases. However, the hallmark of AD is dementia, while the classic motor
sign of HD includes chorea. Our data warrant further investigation to identify the role of these genes
in disease pathogenesis.

Keywords: Alzheimer’s disease; differentially expressed genes; microarray analysis; transcriptome analysis

1. Introduction

Alzheimer’s disease (AD; OMIM 104300) is a progressive neurodegenerative disorder
and the most frequent cause of dementia in the elderly, with prevalence rising substantially
between 65 years and older [1,2]. The incidence of AD doubles every five years beyond the

Biomedicines 2022, 10, 611. https://doi.org/10.3390/biomedicines10030611 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines10030611
https://doi.org/10.3390/biomedicines10030611
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0002-3540-5281
https://orcid.org/0000-0001-9486-4069
https://orcid.org/0000-0003-1764-0656
https://orcid.org/0000-0001-6296-0291
https://doi.org/10.3390/biomedicines10030611
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines10030611?type=check_update&version=2


Biomedicines 2022, 10, 611 2 of 11

age of 65, with the diagnosis of 1275 new cases/year/100,000 individuals over 65 years,
such that 30%–50% of all people become affected by the age of 85 [2,3]. Although 60–80% of
AD is inherited in elderly populations, genetic and environmental factors also play a crucial
role in the onset, progression, and severity of phenotype [4,5].

AD is developed through the extracellular deposition of amyloid-β (Aβ), senile
plaques (SP), loss of synapses, and intracellular formation of neurofibrillary tangles (NFTs),
mainly comprising hyper-phosphorylated tau filaments [6]. The apolipoprotein E (APOE)
is the prominent genetic risk factor for AD in the elderly population due to its association in
regulating inflammation, cholesterol metabolism, lipid transport, synaptic function, neuro-
genesis, or generation and trafficking of β-amyloid precursor protein (APP) and Aβ [4,7–9].
Among the three common alleles (ε2, ε3, and ε4), the presence of one and two copies
of APOE ε4 allele may enhance the risk of AD 3-fold and 12-fold, respectively [4,10,11].
Additionally, several other mutated genes such as APP, PSEN1, and PSEN2 have also
been found to be associated with AD risk [4,12–16]. Similarly, genome-wide association
studies also identified additional genes implicated in the AD phenotypes including MEF2C,
CLU, ABCA7, SORL1, CR1, CD33, MS4A, ABCA7, EPHA1 and TREM2 [4]. Additionally,
transcriptional changes might participate in the aging-associated initiation and progression
of AD [17]; however, its detailed etiology remains to be explored. Hence, the present study
investigated transcriptional changes in the hippocampus region of AD patients above
80 years of age.

2. Materials and Methods
2.1. Dataset: NCBI/GEO Database

Since the hippocampus is a crucial brain region and vulnerable to damage in AD
phenotypes [18,19], the microarray dataset GSE28146 (https://www.ncbi.nlm.nih.gov/geo,
date of access—14 March 2018) was exploited from the NCBI/GEO database to perform
the AD-related, genome-wide transcriptional profiling. The dataset comprises mRNA
expression, which was laser-captured from the CA1 region of the hippocampus from early-
stage AD patients (n = 7) as well as age-matched control (n = 8) individuals with an average
age above 80 years (Supplementary Table S1). This dataset also comprises the Affymetrix
GeneChipHuman Genome U133 Plus 2.0 Array, containing ~20,000 known human genes.

2.2. Affy Package: Expression Computation

The ‘affy’ package (https://www.bioconductor.org/packages/release/bioc/html/
affy.html, date of access—14 March 2018) was utilized to quantify expression intensity, and
was developed in the statistical programming language R. The affy package consists of three
steps to calculate gene expression levels: (i) background correction: it removes background
noise captured in every scanner image, (ii) normalization: it detects and rectifies systematic
variations between chips and makes the data comparable directly from different chips, and
(iii) computation of expression values from probe intensities [20]. The significant expression
of DEGs (p < 0.001) associated with AD was determined through an unpaired t-test.

2.3. Reactome FI Cytoscape Plugin: Network-Based Pathway Enrichment Analysis (PEA)

Lastly, PEA was performed by exploiting the Cytoscape plugin “ReactomeFIViz (https:
//wiki.reactome.org/index.php/ReactomeFIViz, date access—14 March 2018) to reveal
related cellular pathways for genes associated with the complex disease phenotypes. The
software annotates each gene set from five pathway repositories, namely CellMap (C),
Reactome (R), KEGG (K), NCI PID (N), Panther (P), and BioCarta (B). The tool was designed
to construct a pathway-based functional interaction network that covers over 60% of
human proteins.

https://www.ncbi.nlm.nih.gov/geo
https://www.bioconductor.org/packages/release/bioc/html/affy.html
https://www.bioconductor.org/packages/release/bioc/html/affy.html
https://wiki.reactome.org/index.php/ReactomeFIViz
https://wiki.reactome.org/index.php/ReactomeFIViz
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3. Results and Discussion
3.1. Identification of Deregulated Genes in AD

The principal component analysis (PCA) revealed the overall differentially expressed
genes (DEGs) in AD-affected as well as healthy individuals. The AD and control specimens
were scattered around the left side and right end towards the x-axis, respectively, without
any overlap between them (Figure 1). The DEGs analysis revealed a set of 58 genes that
were significantly altered in the AD complex phenotypes, including 44 downregulated
and 14 upregulated genes (Figure 2; Supplementary Table S2). The majority of the genes
were associated with enzyme class, which comprises hydrolase (seven genes), transferase
(four genes), ligase (two genes), and oxidoreductase (one gene) (Figure 3A,B). A total of
seven genes were found in the protein class enzyme modulator (PC00095) followed by
cytoskeleton protein (PC00085), which was enriched with four genes. We also observed
several other genes associated with different protein classes such as receptor protein,
transporter protein, and nucleic acid-binding protein.
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Figure 1. PC analysis using 58 informative genes. The significantly deregulated genes were con-
sidered as the genetic variation among the different AD patients compared to age-matched control
individuals. The PC1 is represented by the X- and Y-axes, respectively. AD: Alzheimer’s disease, PC1:
First principal component, PC2: Second principal component.
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Figure 2. Gene expression for the 58 genes is depicted in the heatmap plot where rows and columns
indicate genes and samples, respectively. Upregulated and downregulated genes have been denoted
by red and blue color codes. Color intensity specifies the level of up- or downregulated genes.
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mentioned with the protein class. (A) Pie diagram showing the percentage of genes associated with
different protein classes. (B) A list of differentially expressed genes belonging to a specific protein
class. DEGs: Differentially expressed genes.
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Various deregulated enzymes have been reported to be associated with AD patho-
genesis. For instance, highly upregulated levels of lactotransferrin (LTF) in the cortical
region of the brain modulate the processing of amyloid precursor protein (APP) and might
mediate Aβ burden, neuro-inflammation as well as elevated iron levels [21]. Specifically, an
inter-communication between APP and the iron-bound LTF released by activated microglia
leads to neuronal APP endocytosis, eventually resulting in a remarkable rise in neuronal
Aβ production [22]. In the present study, upregulated LTF has also been observed (Figure 2;
Table 1), while the mutation of ATP2A2 enzyme in the brain that affects cytosolic Ca2+

uptake may cause increased dopamine signaling, leading to neurological disorders such
as schizophrenia and mood-altering disease [23]. The other observed enzyme ATP6V1H
(ATPase H+ transporting V1 subunit H) has been associated with aging and neurodegener-
ation, which might be responsible for AD pathophysiology [24–27]. The enzyme modulator,
G protein subunit gamma 3 (GNG3), was also found to be deregulated in the disease
phenotype (Table 1 [28]). Previously, GNG3 has been shown to regulate seizure, another
neurological disease, since knockout of GNG3 displayed more susceptibility to seizures
in mice [28,29]. However, the association of GNG3 with AD has not been established and
needs to be explored.

Table 1. Gene ontology analysis of genes associated with HD and major signaling pathways in the
AD phenotypes. DEGs and linker genes are in highlighted in red and black color, respectively. DEGs:
Differentially expressed genes. HD: Huntington’s disease, AD: Alzheimer’s disease, FDR: False
discovery rate.

Pathway
Ratio of

Protein in
GeneSet

Number of
Protein in
GeneSet

Protein from
Network p-Value FDR Nodes

Huntington
disease (P) 0.0124 121 9 1.03 × 10−7 5.17 × 10−5

ACTB, EP300, RAC1,
DYNLL1, HAP1, KLRN,
CDC42, ACTC1, DLG4

Retrograde en-
docannabinoid
signaling (K)

0.0106 103 8 4.04 × 10−7 5.17 × 10−5
GABRB2, PRKACA,

PRKCB, PRKX, GNG3,
GRIA3, MAPK14, GNAQ

VEGF Signaling
(R) 0.0106 103 8 4.04 × 10−7 5.17 × 10−5

BRK1, NCK2, RAC1,
PRKCB, PXN, CDC42,

MAPK14, CALM1

Similarly, our study also found other deregulated genes that may be correlated with
AD pathology (Supplementary Table S2). In this line, a mutated GDI1 protein may alter
synaptic transmission-associated exocytic events [30]. Further, the increased activity of
the regulator of G-protein signaling 4 (RGS4), an RGS family member protein which
inactivates G-proteins, has been associated with dopamine loss in Parkinson’s disease-
associated neuronal dysfunction [31]. Overexpressed SerpinI1 has been attributed to
APP accumulation in AD patients, possibly via a reduced degradation of amyloid-β by
plasmin [32]. Interestingly, copper has been reported to directly bind to Aβ and facilitate its
oligomer synthesis, leading to oxidative stress by generating hydrogen peroxide. The APP,
as well as Aβ precursor-like protein 2 (APLP2), also contains a copper-binding site [33].
Reportedly, APP might act as a copper transporter, as elevated copper levels in the cerebral
cortex of APP or APLP2 knockout mice have been demonstrated [33]. These studies are in
agreement with differentially expressed enzyme modulator protein APLP2.

3.2. Gene Set/PEA of DEGs

The gene set/PEA explored whether the DEGs are associated with certain biological
processes or molecular functions. The results showed a giant network consisting of 74 nodes
connected via 167 edges (Figure 4). The nodes and edges in the network represented genes
and functional interactions, respectively. In the network, 58 genes were differentially
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expressed in AD, while 13 were linker genes. The clustering coefficient of the network was
observed as 0.249 with network diameter 7 (Figure 3; Supplementary Table S3). The results
suggest the proximity of differentially expressed genes and their coordinated functional
association with the biological process [34]. It is interesting to note that DEGs observed in
AD phenotype also share some characteristics of Huntington’s disease (HD).
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Figure 4. PCA of DEGs in AD. The DEGs are shown in black colored text, while red colored text
represents linker proteins that are fetched from the pathway database to extract curated pathways an-
notation. The “→” indicates activating/catalyzing, while “-|” implies inhibitory activity. Functional
interactions and predicted functional interactions have been shown through “-” and “—”, respectively.
The network topology/properties are shown as inlet. PCA: Pathway enrichment analysis, DEGs:
Differentially expressed genes, AD: Alzheimer’s disease.

The early pathologic symptoms involve behavioral/mental disease (apathy and sad-
ness) and cognitive deficiencies (impaired judgment, confusion, and memory loss). Com-
paratively, HD patients usually undergo lesser cognitive performance than AD [35,36].
However, in the late-stage stage, patients with both pathologies face difficulties in eating
and ambulation, leading to mortality [36]. The underlying mechanism may involve two
signaling pathways, namely retrograde endocannabinoid and VEGF signaling (Table 1).
Synaptic function is modulated by lipid messengers known as endocannabinoids, which
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could impact various neuronal functions and behaviors through stimulating cannabinoid
receptors in the central nervous system [37]. Specifically, the endocannabinoids moderate
paracrine and juxtacrine signaling between cells, and it has been reported that a retro-
grade endocannabinoid signal retards secretion of γ-aminobutyric acid (GABA) in the
hippocampal CA1 areas by acting on presynaptic cannabinoid receptor-1 [38]. Further, the
correlation between high focal amyloid-β accumulation and aberrant endocannabinoid
signaling has been implicated in synaptic impairment, neuronal hyperexcitability, and
excitotoxic neuronal damage in the AD pathology [39].

The VEGF contributes to various roles within the brain and fosters survival of neurons
by stimulating neurotrophic, angiogenic, and cytoprotective activities [40]. However, dur-
ing early stages of AD, a disrupted VEGF pathway governing crucial activities in synapse
function has been evidenced due to toxic–soluble amyloid-beta oligomers. Mechanistically,
VEGF inhibits the caspase-3-calcineurin pathway accountable for the loss of postsynaptic
glutamate receptor owing to amyloid-beta oligomers [41]. This implies that re-instating
VEGF activities on neurons might protect synaptic dysfunction in AD. Further, neuron-
derived VEGF has been documented to participate not only in the development of cortical
and hippocampal regions (likely through angiogenesis independently) but also act as
a neurotrophic factor to stimulate neurons, possibly via activating VEGF receptors [42].

Although the pattern of cognitive abilities diagnosed in HD differs from AD [43,44], the
dementia diagnosis criteria share some similarities in both diseases [44], which are initially
characterized in the terms of specific loss of certain neuronal subtypes. These diseases are
first defined by a specific loss of certain neuronal subtypes on a neuropathological level. In
the early stage, medium spiny neurons in the striatum experience atrophy in HD, whereas
large pyramidal neurons in the hippocampal CA1 zone, as well as neurons in the basal
forebrain and the entorhinal cortex, are major regions of early AD [45–47]. Furthermore,
substantial progress has been made to explicate shared neurodegenerative mechanisms
for AD as well as HD. These mainly include synaptic dysfunction, neurotrophic factor-
associated aberrations, apoptotic pathways, post-translational modifications, and protein
aggregation and clearance. Neuronal apoptosis is common in AD and HD, which could
be attributed to excitotoxicity mediated by N-methyl-D-aspartate (NMDA) a subtype
of glutamate receptor) due to its high permeability to calcium [48]. Specifically, out of
two subunits, i.e., NR2A and NR2B, comprising NMDA receptors, the hyperactivation of
NR2B predominantly at extrasynaptic sites is common in both HD and AD.

The Aβ-induced dysfunction of the NMDA receptor is moderated by tyrosine ki-
nase (Fyn) which phosphorylates NR2B [49] and facilitate its integration into the plasma
membrane, leading to an increased magnitude of NR2B on the cell surface [50,51]. This
further progresses to an inappropriate activation of enzymes (such as calpains and other
Ca2+-regulated enzymes) and mitochondrial dysfunction, resulting in cellular apoptosis.
Notably, non-neuronal contributions to excitotoxic activities also occur in the form of
activated microglia, the common markers of inflammation in the pathology of AD and
HD. This has been corroborated in animal studies demonstrating microglial production of
quinolinic acid, a tryptophan degradation pathway metabolite and also a selective NMDA
receptor agonist, which induce pathologic characteristics of HD and AD when administered
into striatum and nucleus basalis of rodents, respectively [52].

Further, neurotrophins such as neural growth factor (NGF) and brain-derived neu-
rotrophic factor (BDNF) also participate in pathologies of AD and HD [53]. The BDNF
identifies TrkB receptors, whereas NGF binds to tyrosine protein kinase A (TrkA) receptors
to activate downstream signaling pathways. Further, NGF as well as BDNF also bind to
p75 neurotrophin receptor, which is pertinent to signaling after neuronal injury. Reports
have also indicated that imperfections in intracellular trafficking may be an etiology for
suppressed levels of BDNF in the HD or AD brains [54]. Specifically, decreased BDNF levels
in AD and HD due to polymorphisms in the gene encoding BDNF occur, which is related
to an elevated risk of AD and HD through binding of pro-BDNF to huntingtin-associated
protein-1, an essential process for the intracellular trafficking of pro-BDNF [55].
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The results showed deregulation of DYNLL1 and KLRN in AD (Table 1) [56], which
is also associated with the HD phenotypes [57]. The eukaryotic light chain LC8 is highly
conserved and has both dynein-dependent and dynein-independent activities. As a com-
ponent of the dynein motor, LC8 is required for key cellular functions such as tubulin
minus-end-mediated intracellular transport, chromatid separation during mitosis, and
nuclear movement [58]. Furthermore, DYNLL1 has also been associated with axonemal
transport required for neuronal development, function, and survival [59]. A study by
Karunakaran et al. indicated that ciliary motility responsible for brain development, par-
ticularly neurogenesis and neuronal migration, could be regulated by axonemal dynein
motors [60]. Multifunctional DYNLL1 is also needed for the proper development of both
the adaptive and innate B-cell, responsible for lymphomagenesis [61]. In an important
report, the kidney and brain protein (KIBRA), a cytoplasmic phosphoprotein associated
with enhancing memory, has been reported to bind with DYNLL1 and is deregulated in
the brains of AD patients [62]. Interestingly, DYNLL1 has also been found to be disrupted
in HD [63]. In addition, KLRN is particularly expressed in the hippocampal region, con-
tributing to the growth and maintenance of hippocampal pyramidal neuron dendrites and
dendritic spines [64,65]. It is associated with HD in humans and may play a role in the
HD-dependent Ras-related signal pathway [66]. KLRN interacts with several cytoplasmic
proteins including peptidylglycine α-amidating monooxygenase and huntingtin-associated
protein 1, and suppresses inducible nitric oxide synthase (iNOS) [67,68]. Notably, KLRN
has been reported to be under-expressed in AD hippocampus [56]. Although the genes
DYNLL1 and KLRN are not directly related with disease phenotypes, their association
indicates a common genetic basis for the pathogenesis of AD and HD. The retrograde
endocannabinoid and VEGF signaling pathways were also found to carry deregulated
genes in AD phenotypes; however, their association with the disease pathogenesis was
not significant.

4. Conclusions

Our study identified 58 genes that were significantly altered in the AD phenotypes,
mainly belonging to the protein class of enzymes and enzyme modulators. The PCA sug-
gests that these deregulated genes are mainly associated with retrograde endocannabinoid
and VEGF signaling pathways. The two specific genes, viz. DYNLL1 and KLRN, may
be associated with AD as well as HD phenotypes, suggesting a common genetic basis for
disease pathogenesis. The identified genes could serve as potential clinical biomarkers,
which could be validated via further experimentation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomedicines10030611/s1, Table S1: Details of subjects participated in the study, Table S2:
Transcriptome expression profiling of significantly altered genes (p < 0.001) in the AD, Table S3: PEA
of DEGs in AD.
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