
Computational and Structural Biotechnology Journal 18 (2020) 2583–2595
journal homepage: www.elsevier .com/locate /csbj
Joint learning of multiple gene networks from single-cell gene
expression data
https://doi.org/10.1016/j.csbj.2020.09.004
2001-0370/� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding authors.
E-mail addresses: leouyang@szu.edu.cn (L. Ou-Yang), zhuzx@szu.edu.cn (Z. Zhu).
Nuosi Wu a, Fu Yin a, Le Ou-Yang a,b,c,⇑, Zexuan Zhu d,⇑, Weixin Xie a

aCollege of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
bGuangdong Key Laboratory of Intelligent Information Processing, Shenzhen Key Laboratory of Media Security, and Guangdong Laboratory of Artificial Intelligence and
Digital Economy(SZ), Shenzhen University, Shenzhen, China
c Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
dCollege of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 7 May 2020
Received in revised form 31 August 2020
Accepted 1 September 2020
Available online 10 September 2020

Keywords:
Single-cell RNA sequencing
Gene network
Graphical model
Inferring gene networks from gene expression data is important for understanding functional organiza-
tions within cells. With the accumulation of single-cell RNA sequencing (scRNA-seq) data, it is possible to
infer gene networks at single cell level. However, due to the characteristics of scRNA-seq data, such as
cellular heterogeneity and high sparsity caused by dropout events, traditional network inference meth-
ods may not be suitable for scRNA-seq data. In this study, we introduce a novel joint Gaussian copula
graphical model (JGCGM) to jointly estimate multiple gene networks for multiple cell subgroups from
scRNA-seq data. Our model can deal with non-Gaussian data with missing values, and identify the com-
mon and unique network structures of multiple cell subgroups, which is suitable for scRNA-seq data.
Extensive experiments on synthetic data demonstrate that our proposed model outperforms other com-
pared state-of-the-art network inference models. We apply our model to real scRNA-seq data sets to infer
gene networks of different cell subgroups. Hub genes in the estimated gene networks are found to be bio-
logical significance.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Gene expression and regulation are the foundation of biological
processes. Inferring the regulatory relationships between genes
could help to understand the functional organizations within cells
systematically. With the rapid development of high-throughput
techniques such as microarray and RNA sequencing, it becomes
possible to infer gene networks in genome-scale. A wide range of
computational approaches have been developed to infer gene net-
works from gene expression data, including methods based on
Boolean models [1], ordinary differential equations [2], Bayesian
approaches [3], Gaussian graphical models [4], regression [5] and
mutual information [6]. These methods have been successfully
used to deal with gene expression data collected by bulk sequenc-
ing technologies, which perform high-throughput sequencing on a
population of millions of cells and output the average expression
levels of genes. Therefore, the heterogeneous information of differ-
ent cell types is obscured in bulk gene expression data.
Recently, the emergence and development of single-cell exper-
imental techniques allow us to quantify gene expression at single-
cell resolution. Microfluidics techniques and combinatorial index-
ing strategies made it possible to sequencing thousands of cells
in one experiment. Nevertheless, the inherent characteristics of
single-cell RNA sequencing (scRNA-seq) data have not been chan-
ged. For example, due to the small amount of DNA in a single cell
(6 pg in total for human [7]), it is necessary to amplify nucleic acids
a few hundred times for sequencers to capture the signals. But the
amplification is prone to bring in biased information, leading to
unreliable results in downstream analysis. Although methods
designed for bulk sample data could be applied to single-cell data
directly, these methods may result in biased estimations due to the
challenges derived from single-cell RNA sequencing (scRNA-seq)
[8].

A key challenge in inferring gene networks from scRNA-seq data
is to deal with the large fraction of observed ‘‘0”s in the data [9].
Some of these ‘‘0”s are true ‘‘0”s, whereas the rest are false ‘‘0”s
caused by technical limitations (also called ‘‘dropout events”)
[10]. To deal with dropout events, some imputation methods have
been developed to recover original signals by imputing the false
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‘‘0”s in the gene expression matrices [11–13]. However, as pointed
out by Andrews et al. [14] and Chen et al. [15], due to the high rate
of dropout events, imputation methods may distort the overall
shape of the gene expression distribution and reduce the repeata-
bility of cell type specific markers, which may induce bias in down-
stream analysis such as network estimation [9,16]. Network
inference across cell types with imputed data also suffers from
homogenization which may reduce the differences between differ-
ent cell types. Furthermore, imputation methods relying only on
the observed gene expression data may strengthen the intrinsic
signal contained in the observed data, and introduce circularity
that can generate inflated false-positive results in network infer-
ence [17].

The cellular heterogeneity also generates new challenges for
inferring gene networks from scRNA-seq data. A special case is to
infer the differential network between samples collected from
two distinct groups. Similar to the methods developed for microar-
ray data, Wang et al. [18] measured the connectivity between
groups with mean absolute distance, and used a permutation
approach to check the significance of differential edges. Chiu
et al. [19] compared the correlation coefficients among groups
and the statistical significance was tested by a cumulative distribu-
tion function. Fisher transformation was applied in their study so
that the sample size related biases was eliminated. Dai et al. [20]
Fig. 1. The flowchart of the proposed Join
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studied gene-gene interactions for every single cell, which could
provide new perspectives for clustering and pseudo-trajectory. In
general, scRNA-seq data collected in one experiment may contain
cells belong to more than two cell subgroups. As the cells belong
to different subgroups are originated from the same tissue, their
networks may share some common structures, and inferring the
gene network of each cell subgroup separately may not be able
to make use of the similarities between different cell subgroups.
Thus, joint estimation of multiple gene networks, which can draw
support from multiple cell subgroups, may lead to more accurate
estimation of gene networks [21,22].

Gaussian graphical models (GGM) have been widely used in
inferring gene networks from microarray data. Based on Gaussian
graphical models, the estimation of a gene network can be
achieved by estimating the inverse of the covariance matrix (also
named as the precision matrix) of the corresponding multivariate
Gaussian distribution. Based on the assumption that gene net-
works are sparse, Yuan and Lin [23] imposed a ‘1-norm penalty
on the non-diagonal elements of the precision matrix when esti-
mating the precision matrix. Friedman et al. [24] proposed a graph-
ical lasso model, which transforms the penalized log-likelihood
optimization problem into a lasso regression problem. The CLIME
estimation method proposed by Cai et al. [25] directly estimates
each column of the precision matrix, which can easily parallelize
t Gaussian Copula Graphical Model.
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for large scale problem. For data sets with multiple states, joint
graphical models have been proposed to estimate networks jointly
[26,27]. For example, Guo et al. [28] used a hierarchical penalty to
force different networks to have a similar sparse structure. Dana-
her et al. [29] imposed fused lasso and group lasso penalties to
the Gaussian graphical model, and jointly estimate multiple graph-
ical models. Zhang et al. [30] integrated gene expression data col-
lected from multiple platforms and multiple conditions for joint
network estimation.

However, Gaussian graphical models require that the data
should follow a normal distribution, which limits their applications
on scRNA-seq data [31], as RNA sequencing data can be considered
to obey negative binomial or Poisson distribution [32,33]. In order
to model the graph under non-Gaussian conditions, Liu et al. [34]
proposed a nonparanormal distribution and introduced semipara-
metric Gaussian copula graphical models to infer the conditional
dependence between random variables that do not follow normal
distribution. Xue and Zou [35] proposed a rapid method for esti-
mating the correlation coefficient matrix in nonparanormal distri-
bution. Nevertheless, these joint graphical models are based on the
assumption that the observed data are complete, which make it
difficult to directly apply these models to scRNA-seq data with
missing values.

In this paper, we propose a Joint Gaussian Copula Graphical
Model (JGCGM) (Fig. 1) to jointly infer the gene networks of multi-
ple cell subgroups from scRNA-seq data. Similar to existing joint
graphical models [30,36], our model decomposes the gene network
of each subgroup into two parts, i.e., a common part that shared
across all cell subgroups and a subgroup-specific part that captur-
ing the edges specific to each cell subgroup. To deal with the miss-
ing value included in scRNA-seq data, we extend our model to
handle non-Gaussian data with missing values. The modified Ken-
dall’s tau proposed by Wang et al. [37] is employed for estimating
the correlation coefficient matrix. We first evaluate the perfor-
mance of our proposed model on synthetic data. Then we apply
our model on real scRNA-seq data to infer gene networks of differ-
ent cell subgroups. The hub genes in our estimated gene networks
are closely related to cell differentiation.

In the remaining of this paper, we first introduce details of the
proposed method JGCGM in Section 2. Then we compare JGCGM
with other state-of-the-arts network inference approaches on syn-
thetic data in Section 3. In Section 4, we apply our model on two
real scRNA-seq datasets to demonstrate the effectiveness of our
proposed model. Finally we conclude the paper in Section 5.
2. Methods

2.1. Gaussian graphical models

Assuming Z ¼ Z1; . . . ; Zp
� �T is a p-dimensional random vector

that follows multivariate normal distribution Z � N l;Rð Þ. Let
G ¼ V ; Eð Þ denotes an undirected graph, where V represents the
set of nodes (each node in V represents a random variable in Z)
and E describes the edges between nodes in V. Then Z is said to sat-
isfy the Gaussian graphical model with graph G, only when the fol-
lowing statements are equivalent [38,39]:

� Zi ?? ZjjZn i;jf g;
� Eij ¼ 0;
� Hij ¼ 0.

Here Zn i;jf g is defined as Zs : 1 6 s 6 p; s– i; jð Þ, and H ¼ R�1 is
referred to as precision matrix. The statements show that in Gaus-
sian graphical model, variable Zi is conditional independent with
variable Zj if and only if there is no connection between these
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two variables in graph G. Moreover, it is feasible to recover the
graphical model by estimating the parameters in the correspond-
ing precision matrix.

Reconstruction of the precision matrix is not a simple task,
especially when the number of samples n is much smaller than
the dimension of variables p. It is hard to obtain the precision
matrix from sample covariance matrix directly since sample
covariance matrix is usually not invertible. A common approach
is to maximize the log-likelihood function and assume the preci-
sion matrix to be sparse [40]. The log-likelihood function is shown
as follows:

‘ Hð Þ ¼ �tr SHð Þ þ log det Hð Þ � k
X
i–j

Hij

�� ��: ð1Þ

where S is the sample covariance matrix, det �ð Þ denotes the deter-
minant of a matrix, and k is a non-negative tuning parameter to
control the sparsity of the graph.

Eq. (1) just fit for homogeneous datasets. However, we are also
faced with data from multiple groups. Suppose there are K groups
of data, each of which follows a multivariate normal distribution

X kð Þ � N l kð Þ;R kð Þ
� �

; k ¼ 1; . . . K. In order to get more accurate infer-

ence results, one could joint estimate the Gaussian graphical mod-
els by maximizing the following objective function:

maximize H kð Þf g�0
XK
k¼1

nk log det H kð Þ
� �n o

� tr S kð ÞH kð Þ
� �h i

� F H kð Þ
n o� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
penalty

; ð2Þ

where nkrepresents the number of samples from the k-th group. The
penalty function in Eq. (2) is used to control the structure of the
estimated networks, and could be modified into different specific
forms in accordance with application scenarios.

2.2. Joint Gaussian copula graphical model for scRNA-seq data

We first introduce the nonparanormal distribution. Given a vec-

tor X ¼ X1; . . . ;Xp
� �T , we say that it follows nonparanormal distri-

bution (written as X � NPN l;R; fð Þ) if there exists a set of
monotonous and derivable functions f df g; d ¼ 1; . . . ; p, such that:

Z ¼ f Xð Þ � N l;Rð Þ;

where f Xð Þ ¼ f 1 X1ð Þ; . . . ; f p Xp
� �� �T . The nonparanormal distribution

is actually a Gaussian Copula. According to the previous studies
[34,41,35,42], the sparsity pattern of H ¼ R�1 encodes the condi-
tional dependence between X.

Nonparanormal distribution provides a widely applicable
model for skewed distributed data, and it can also be suitable for
scRNA-seq. Due to the presence of cell subgroups (types), observa-
tions usually belong to different distributions. Suppose we have a
set of scRNA-seq data X measuring the expression levels of p genes
and composed of observations collected from K cell subgroups.
Suppose each cell subgroup follows a nonparanormal distribution,

i.e. X kð Þ � NPN l kð Þ;R kð Þ; f kð Þ
� �

; k ¼ 1; . . . ;K. Similar to the above

Guassian copula graphical model for single distribution, joint esti-
mation of gene networks for all cell subgroups can be transferred
into solving problem (2).

Because the observations of K cell subgroups often come from
the same tissue, it is reasonable to assume that there are some
gene interactions shared across all cell subgroups. These gene
interactions constitute a common network and reflects the similar-
ities between different cell subgroups. Besides, the network corre-
sponding to each subgroup may not be exactly the same, and the
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heterogeneity between cell subgroups will also be reflected in the
network structure. These subgroup-specific edges make up a
subgroup-specific network for each cell subgroup. In other words,

the network H kð Þ (represented by its precision matrix) for each cell
subgroup can be regarded as the combination of the common net-

work M and subgroup-specific network H kð Þ, i.e., H kð Þ ¼ M þ H kð Þ,
where K cell subgroups share the same common network but have
their unique subgroup-specific networks. Both the common net-
work or the subgroup-specific networks are assumed to be sparse,
while the sparsity may be different. To model the homogeneity and
heterogeneity simultaneously for joint estimation of multiple net-
works, similar to [30], we propose a novel penalty function as
follows:

F Hð Þ ¼ kaK
X
i–j

Mij

�� ��þ k 1� að Þ
XK
k¼1

X
i–j

jH kð Þ
ij j: ð3Þ

Here k > 0 is the tuning parameter controlling the sparsity of all
networks. 0 < a < 1 is the proportional factor, which controls the

relative scales of M and H kð Þ. It should be closer to 0 when the dif-
ference between the cell subgroups is not large, which means
strong sparsity constraints are imposed on subgroup-specific net-
works, encouraging fewer edges. On the contrary, a should be larger
if the heterogeneity among cell subgroups is more prominent.

By substitute (3) into (2), we obtain the final objective function
of the joint Gaussian copula graph model (JGCGM) for scRNA-seq
data:

minimize H kð Þ ;H kð Þ ;Mf g
XK
k¼1

nk tr S kð ÞH kð Þ
� �

� log det H kð Þ
� �n oh i

þkaK
X
i–j

Mij

�� ��þ k 1� að Þ
XK
k¼1

X
i–j

jH kð Þ
ij j

s:t: H kð Þ ¼ H kð Þ þM; H kð Þ � 0:
ð4Þ

2.3. Augmented Lagrange solver

To solve problem (4), we could construct an augmented
Lagrange function, and the objective function is transferred into
the following optimization problem:

minimize H kð Þ ;H kð Þ ;Mf g
XK
k¼1

nk tr S kð ÞH kð Þ
� �

� log det H kð Þ
� �n oh i

þk 1� að Þ
XK
k¼1

X
i–j

jH kð Þ
ij j þ kaK

X
i–j

Mij

�� ��
þ
XK
k¼1

Y kð Þ; H kð Þ � M þ H kð Þ
� �D E

þ l
2 H kð Þ � H kð Þ �M
��� ���2

F
;

ð5Þ

where A;Bh i ¼ tr ABT
� �

; kAkF represents Frobenius norm of matrix

A;l is the penalty factor, and Y kð Þ is Lagrange multiplier. Let

V kð Þ ¼ Y kð Þ=l, then the objective function of problem (5) takes the
following form.

L H kð Þ;H kð Þ;M;V kð Þ
n o� �

¼
XK
k¼1

nk tr S kð ÞH kð Þ
� �h

� log det H kð Þ
� �n o

� þ kaK
X
i–j

Mij

�� ��þ k 1� að Þ
XK
k¼1

X
i–j

jH kð Þ
ij j

þ
XK
k¼1

l
2
kH kð Þ � H kð Þ �M þ V kð Þk2F �

l
2
kV kð Þk2F

� �
: ð6Þ

For k ¼ 1; . . . ;K , minimizing L H kð Þ;H kð Þ;M;V kð Þ
n o� �

with other

parameters fixed could update H kð Þ;H kð Þ;M;V kð Þ in turn. The work-
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flow is shown in Algorithm 1, where the subscript i represents the
index of current iteration.

In order to accelerate the convergence of the algorithm, we let l
slightly increase as l iþ1ð Þ �1:2l ið Þ. And the algorithm will stop

when
P

kkH kð Þ
ið Þ �H kð Þ

i�1ð Þk2F=
P

kkH kð Þ
i�1ð Þk2F < 10�5. We will discuss

how to calculate S kð Þ for observed data with missing values in the
following section.

Algorithm 1: The Augmented Lagrange Method for Solving
JGCGM

input: S kð Þ;nk;l; k;a
initialization: l ¼ 0:1;H kð Þ

0ð Þ ¼ I;V kð Þ
0ð Þ ¼ 0;H kð Þ

0ð Þ ¼ 0;M ¼ 0, for

k ¼ 1;2; . . . ;K , where sub-scripts ið Þ presents the number of
iteration in the algorithm.

1: whilethe algorithm is no converged do 2:

H kð Þ
iþ1ð Þ

n o
 � argminHLl H kð Þ

n o
; H kð Þ
n o

;M ið Þ; V kð Þ
ið Þ

n o� �
.

3: H kð Þ
iþ1ð Þ

n o
 � argminHLl H kð Þ

iþ1ð Þ
n o

; H kð Þ
n o

;M ið Þ; V kð Þ
ið Þ

n o� �
.

4: M iþ1ð Þ � argminMLl H kð Þ
iþ1ð Þ

n o
; H kð Þ

iþ1ð Þ
n o

;M; V kð Þ
ið Þ

n o� �
.

5: V kð Þ
iþ1ð Þ

n o
 � V kð Þ

iþ1ð Þ
n o

þ H kð Þ
iþ1ð Þ

n o
� H kð Þ

iþ1ð Þ
n o

�M iþ1ð Þ.

6: i �iþ 1
7: end while
2.4. Estimation of correlation matrix from data with missing values

The input S kð Þ stand for the sample covariance matrices for
Gaussian distributions and could be used directly for maximizing
the likelihood function in Gaussian graphical models. But for non-

paranormal distribution, S kð Þ can be regarded as correlation matrix.
Generally, Kendall’s tau coefficient [43] could estimate the approx-
imate value of the correlation [41].

Computing Kendall’s tau coefficient requires complete observa-
tions. However, scRNA-seq data contains a lot of missing values,
which are also known as dropouts. In some scRNA-seq datasets,
the dropout rate is even higher than 50% [44]. The missing values
inherent in scRNA-seq data will inevitably bring large bias into
the estimation of gene networks. To reduce the influence of missing
values, we employ a modified Kendall’s tau [37]. We firstly define a
boolean coefficient bijto indicate whether a pair of values is valid,
where bij ¼ 1 if and only if the expression levels of genes i and j
are observed. The modified Kendall’s tau is calculated as follows.

ŝjk ¼ 1
njk njk � 1
� � Xn

i;i

0
¼1

i–i0

bijbikbi0 jbi0ksign xji � xj
i0

� �
xki � xki0
� �� �

: ð7Þ

Here i; i0 ¼ 1; . . . n represent the indices of samples, njk ¼
Pn

i¼1bijbik

denotes the number of valid sample pairs for gene pair j; kð Þ. Eq.
(7) shows that calculate the modified Kendall’s tau only utilizes
the observed values, and the missing values are excluded.

Then the coefficient matrix bSs ¼ bSsjkh i
can be estimated as fol-

lows [43,45]:

bSsjk ¼ sin p
2 ŝjk
� �

ifj – k

1 ifj ¼ k

(
ð8Þ

where sin �ð Þ represents the sine function. Note that the estimated bSs
from Eqs. (7) and (8) may not be semi-positive definite due to the
dropouts, and we could project it onto the cone of positive semi-
definite matrix. That is, to solve the following optimization
problem:
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bS ¼ argminSP0
bSs � S
��� ���

1
: ð9Þ

bS in Eq. (9) are the final results of the estimated correlation matri-
ces, which is the input of Algorithm 1.

3. Simulation studies

3.1. Data generation

3.1.1. Poisson graphical models for count data
In order to verify the effectiveness of our proposed model, we

generate simulation data with known network structures. Here,
following the work of [46,33], we assume that the discrete counts
of scRNA-seq are multivariate Poisson distributed, and the network
structure of the generated data satisfy Poisson graphical model
[46]. Instead of the complete multivariate Poisson model, we use
a degenerated version—the so-called multivariate Poisson model
with two-way covariance structure [47] in our study. In the follow-
ing of the paper, the model we used is roughly referred to as Pois-
son graphical model (PGM) for simplicity.

PGM models each value of a multivariate Poisson distributed
vector as the sum of two Poisson distributed ‘‘source” variables.
For example, suppose there are three independent Poisson source
variables y1; y2 and y3. The sum-up of variables x1 ¼ y1 þ y3 and
x2 ¼ y2 þ y3 also satisfy Poisson distribution, and we could see that
x1; x2 are dependent if E y3ð Þ – 0 because of the fact that
cov y1; y2ð Þ – 0. In other words, the combination of source variables
encodes the underlying dependency of each pair of dimensions in a
multivariate Poisson distributed vector.

Generally, a multivariate Poisson matrix X that contains n sam-
ples (observations) of p-dimensional vectors can be generated as
X ¼ YB, where Y is a n� pþ p p� 1ð Þ=2½ � matrix to simulate pairs
of p source variables (contains p p� 1ð Þ=2 pairs and p original vari-
ables) and B defined how these variables are combined. By taking

the form of: B ¼ I pð Þ; Perm 	 1 pð Þtri Að ÞT
� �h iT

, the underlying network

of attributes in X is totally determined by the p� p adjacency
matrix A. Here, �; �½ � represents to concatenate two matrices hori-
zontally. Perm is a p� p p� 1ð Þ=2 permutation matrix; all its col-
umns have 2 ‘‘1” s with others are ‘‘0” s. We illustrate a
permutation matrix with p ¼ 4 as follows:

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

0BBB@
1CCCA:

Go back to the notation of B : 	 stands for element-wise matrix
product. 1 pð Þ is an all ‘‘1” p-dimensional vector. tri Að Þ denotes the
vector formed by the upper triangle element from A.

3.1.2. Data generation
Taking K ¼ 2 cell types as examples. Note that in the following

simulation studies, unless specifically mentioned, the number of
nodes is set to p ¼ 100. The default number of samples for each cell
type is set to nk ¼ 400. When K; p;nk is given, the datasets

X kð Þ; k ¼ 1;2ð Þ are generated according to the following steps:

1. Generate the true network A 1ð Þ for the first cell type. Since
scale-free network is more similar to real biological networks,
we first generate a scale-free network as the true network

A 1ð Þ. Barabasi-Albert algorithm in R.igraph is used to generate
the random network with p ¼ 100, with parameter
power ¼ 0:01.

2. Generate the true network A 2ð Þ for the second cell type. A 2ð Þ is

obtained by randomly eliminating 10% of the edges from A 1ð Þ.
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3. Generate count data X kð Þ. For k ¼ 1;2;X kð Þ ¼ Y kð ÞB kð Þ, where

Y kð Þ
ij �

iid Poisson 1ð Þ;B kð Þ ¼ I pð Þ; Perm 	 1 pð Þtri A kð Þ
� �T	 
� �T

.

The impact of missing values on network inference is another focus
of our study. For simplicity, we force the dropouts to occur only on
small real counts value (less than 5). To simulate the dropout
events in scRNA-seq, the read counts will be set to zero with a
probability d. We set 3 different values (i.e., d ¼ 0:1;0:3;0:5)
throughout the simulation to investigate the impact
comprehensively.

In the following experiments, the results are obtained via 10
random generations of the data.

3.2. Compared methods and evaluation metrics

We compare our proposed JGCGMwith the following 6 state-of-
the-art network inference algorithms:

� Group Graphical Lasso (GGL) [48], a method for joint estimation
of multiple Gaussian graphical models. We use Kendall’s tau
coefficient to estimate the correlation matrix for GGL since
scRNA-seq data does not follow Gaussian distribution.
� Local Poisson Graphical Modal (LPGM) [49], a network infer-
ence method designed for single Poisson graphical model.
� Detecting Shared and Individual parts of MULtiple graphs
Explicitly (SIMULE) [36], a method automatically infers both
specific edge patterns and shared interaction preserved among
all cell types.
� GEne Network Inference with Ensemble of trees (GENIE3) [50],
winner of the DREAM5 network challenge, which is designed
for bulk data but could also be applied on single cell sequencing.
� Gene Regulatory Network inference using gradient Boosting
machine (GRNBoost2) [51], a scalable and more efficient alter-
native of GENIE3.
� Gene regulatory network inference uses Partial Information
Decomposition and Context (PIDC) [52], a method for single
cell transcriptomic data with heterogeneity information
considered.

GGL, LPGM, SIMULE are implemented in R language, GENIE3 and
GRNBoost2 are implemented by python package Arboreto [51]
and PIDC is implemented in Julia.

We introduce three measurements to evaluate the accuracy of
the estimated networks: true positive rate (TPR, also named as
Recall), false positive rate (FPR) and Precision. Let hij and ĥijdenote
the true value and the estimated value of the precision matrix. TPR
and FPR are computed as follows:

TPR ¼

XK
k¼1

X
i<j

I ĥ kð Þ
ij

– 0 and h kð Þ
ij

– 0

n o
XK
k¼1

X
i<j

I h kð Þ
ij

– 0

n o ;

FPR ¼

XK
k¼1

X
i<j

I ĥ kð Þ
ij

– 0 and h kð Þ
ij
¼0

n o
XK
k¼1

X
i<j

I h kð Þ
ij
¼0

n o ;

Precision ¼

XK
k¼1

X
i<j

I ĥ kð Þ
ij

– 0 and h kð Þ
ij

– 0

n o
XK
k¼1

X
i<j

I ĥ kð Þ
ij

– 0

n o :

ð10Þ
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For Gaussian graphical model-based models, the entry in precision
matrices hij ¼ 0 means jhijj < 10�5. For other methods, these mea-
surements are calculated through binary elements in the adjacency
matrices.
3.3. Parameter settings

We first discuss the parameter settings. For GENIE3, GRNBoost2
and PIDC, we use the default parameters provided by softwares.
These methods output complete graphs where the connectivity
between each pair of genes are measured by correlation coefficient,
which can be binarized by taking a threshold. By changing the
value of the threshold, we can obtain different network structures,
which could be used to plot Precision-Recall Curves (PRC) and
Receiver Operating characteristic Curves (ROC). LPGM only has
one parameter controlling the network sparsity. Fine-tuning this
parameter is similar to changing the threshold in GENIE3,
GRNBoost2 or PIDC.

Note that all the three Gaussian Graphical Models (GGM) based
methods (i.e., JGCGM, GGL and SIMULE) have two tuning parame-
ters, the first ones (k1 in JGCGM, x1 in GGL and k in SIMULE) con-
trols the sparsity of the estimated networks, and the second ones
(a in JGCGM, x2 in GGL and � in SIMULE) controls the heterogene-
ity among different cell types. Fine-tuning the sparsity parameters
with the second parameters being fixed can control the sparsity of
the estimated networks, which is similar to adjusting the thresh-
olds in GENIE3, GRNBoost2 or PIDC. The value of � in ‘‘SIMULE” is
set to 0.5. For GGL, we set x2 to be 0.02 according to the experi-
ments conducted in [26].

We analyze the effect of the proportion factor a in JGCGM. Fig. 2
shows the average results on synthetic data with nk ¼ 400; p ¼ 100
and d ¼ 0:3. Lines in different colors and markers shows the perfor-
mances with different proportion factor. According to these exper-
iment results, we find that when a is properly configured within a
smaller range 0:1;0:35½ �, JGCGM is not very sensitive to this param-
eter. Thus, for simplicity of the following simulation studies, a is
roughly set to be 0.3.
3.4. Effects of data imputation

Here we conduct a simple experiment to test how imputation
methods affect network inference. According to the study of Hou
et al. [9], we choose 4 top imputation methods: SAVER [53], DrIm-
pute [12], MAGIC [13] and McImpute [54]. We test the perfor-
mance on three datasets, with d ¼ 0:1;0:3;0:5 respectively. Each
dataset is imputed with these 4 methods and 5 datasets are
obtained (one is the original dataset without imputation). We infer
the networks by applying 6 algorithms to these datasets, where
JGCGM is not included in this test since JGCGM is designed for data
with missing values.

The performances are shown by TPR-FPR curves in Fig. 3. McIm-
pute dramatically improves the performance for all methods, fol-
lowed by DrImpute which is also helpful for network inference
in most situations. The only exception with PIDC for datasets with
large dropout probability (d ¼ 0:5 in Fig. 3 F(3)). These two meth-
ods fill in the ‘‘0” s in the original data while keeping other non-
zero elements unchanged. The performances get worse if the data
is imputed by SAVER or MAGIC. Specifically, SAVER slightly
decreases the performance of network inference and MAGIC signif-
icantly decreases the performances of network inference. This may
due to the build-in transformations in these algorithms destroy the
intrinsic distribution of data.

Overall, McImpute achieves the best performance for network
inference. Thus, we pick it as the default imputation method in
the following experiments.
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3.5. Comparison with other state-of-the-art methods

By calculating the average area under ROC (AUROC) and PRC
(AUPRC), we could compare the accuracy of different network
inference methods. T-tests are also conducted to evaluate the sig-
nificance of the improvement of our JGCGM over other methods.
Note that the true networks are so sparse that the number of neg-
ative samples is much larger than positive samples. In such cases,
AUPRC is more informative and authoritative than AUROC. Thus,
we mainly utilize AUPRC to measure the accuracy of various meth-
ods. Accordingly, we put the results in terms of AUROC into Sup-
plementary Materials.

For Gaussian graphical-based models, log-transformation is also
widely used to reduce the skewness of datasets. Thus, we also carry
out experiments to test the effect of log-transformation on net-
work inference. The results (Figure Supplementary S1) show that
Pearson correlation with log-transformation is generally worse
than Kendall’s tau for network estimation. Therefore, we do not
consider log-transformation in the following experiments.
3.5.1. Network inference for data with different sample sizes
Here, we focus on network inference of two cell subgroups. To

study the impact of the sample size on network inference, we gen-
erate four datasets with different sample sizes, i.e.,
nk ¼ 100;400;1000;2000 (for k ¼ 1;2). The number of genes is
fixed at p ¼ 100 and dropout probability d is set to be 0.1, 0.3
and 0.5.

Tables 1 and 2 show the performance of various methods in
terms of AUPRC. We can find from these tables that JGCGM domi-
nates other methods in almost all cases except for nk ¼ 1000;2000
and d ¼ 0:1, where GGL performs slightly better than JGCGM. Nev-
ertheless, the p-values indicate that the advantage of GGL is not so
significant (0.515 and 0.334). Compared to other methods except
for JGCGM, LPGM performs better when sample size is small. But
the increase in the number of samples does not bring a significant
improvement in its performance. For other 5 methods, i.e., GGL,
SIMULE, GRNBoost2, GENIE3 and PIDC, none of them dominates
others in all cases.

The performance of all methods is improved with the increases
of sample size. All methods keep at an acceptable level when the
dropout rate is low. However, when the dropout rate becomes
higher, misleading information will break the original distribution
of data to a certain degree, and reduce the accuracy of all methods.
In the extreme situation when the sample size is small (nk ¼ 100)
but the dropout rate is large (d ¼ 0:5), GRNBoost2 and PIDC is only
slightly better than ‘‘randomly guess” (AUROC = 0.509 and 0.549
respectively in Supplementary Table S1).

Consistent with previous tests in Section 3.4, all methods
except JGCGM have been improved after data imputation. The
results suggest that appropriate imputation is beneficial for net-
work inference. However, even with the help of imputation, other
methods still fall behind JGCGM. Note that GGL and SIMULE
achieve pretty good performance when the dropout rate is low,
but suffer a sharp decline in accuracy if the dropout rate become
larger (e.x. AUPRC from 0.657 to 0.109 with d changing from 0.1
to 0.3 for GGL). As a comparison, the proposed JGCGM, which is
also a Gaussian graphical model-based method, is not affected
by the dropout rate.
3.5.2. Network inference for data with outliers
We add some outliers in data to test the robustness of the algo-

rithms. Specifically, every count value will be added a constant
value cowith a probability of 5%. We set coto be 2/3 of the maxi-
mum count value in the corresponding cell type. Here we set the
sample size to be nk ¼ 400.



Fig. 2. The effect of different tuning parameters (proportion factors a) in JGCGM on
estimation performance. (The simulated data are generated with K ¼ 2;nk ¼ 400
and d ¼ 0:3).
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Fig. 3 shows the average prediction results of 7 algorithms. We
can see that all algorithms are disturbed by the outliers, and the
accuracy suffers severely reduction. Especially when the sample
size is small and the dropout rate is high, no algorithm can achieve
satisfactory results. Even so, JGCGM is still better than other algo-
rithms except for one dataset with d ¼ 0:1.

Imputation method still works for data with outliers. Different
methods benefit from McImpute distinctly when outliers exist in
the data.
3.5.3. Network inference on multiple cell subgroups
We then conduct experiments on data with 3 and 4 cell sub-

groups. We set the sample size to be nk ¼ 400, and the number
of genes to be p ¼ 100. The procedure of generating synthetic data
is similar to above Section 3.1.2, apart from the little difference on
network construction: We first construct a sparse scale-free net-

work as the basic network structure for all cell types A 0ð Þ, which
contains p nodes and a total of nedgeedges. Then we randomly elim-
inate 0:1nedgeedges from the basic network. For each time we elim-

inate edges from A 0ð Þ, and generate a network for a new cell type

A kð Þ (for k ¼ 1;2;3;4). By repeating this step, we can obtain 3 or 4
networks and generate the corresponding read counts data accord-
ingly. We do not impute the data in these experiments, as its
impact has been discussed before.

Table 3 shows the prediction results of various algorithms, with
the number of cell types to be 3 and 4 respectively. Dropout events
still bring a lot of trouble to the network inference. JGCGM is rela-
tively less affected by it, and achieves the best prediction accuracy
in most cases. Among all the compared methods, GENIE3 achieves
the best results, followed by SIMULE, GGL and GRNBoost2. LPGM
and PIDC perform the worst according to AUPRC, whereas LPGM
gets quite higher AUROC (See Table S4).
2589
According to these experiment results, we find that only JGCGM
can get better performance when the number of cell types grows.
These results demonstrate that JGCGM is able to make use of the
similarities between different cell types to improve the accuracy
of network inference.

4. Real data analysis

4.1. Parameter selection

For real-world data analysis, the hyperparameters in JGCGM
(k;a) should be chosen carefully. According to the discussion in
Section 3.3, the search range of a is set to 0:1;0:35½ � and the opti-
mal a
 is chosen via minimizing Akaike information criterion (AIC):

AIC ¼
XK
k¼1

nktr bS kð ÞĤ kð Þ
� �

� nk log det Ĥ kð Þ
� �

þ 2n kð Þ
e

n o
;

where K is the number of cell types, n kð Þ
e is the edge number in the

estimated graph, bS kð Þ is the estimated correlation matrix, and 2n kð Þ
e

equals the number of non-zero entities of the estimated precision

matrix Ĥ kð Þ.
When we have got a
, we use the stability selection method

[55] to select parameters k. Specifically, at each time, 50% of the
samples are randomly selected from each group to form a sub-
dataset. This operation repeats C times with each time sampling
a sub-dataset. All C sub-datasets are analyzed with fixed parame-

ters k;a
ð Þ and then obtain networks Ĥ kð Þ
s k;a
ð Þ

n o
. Let

Bk
ij kð Þ ¼ 1=Cð ÞPS

s¼11 Ĥk
s;ij k;aopt
� �

– 0
� �

, we could measure the sta-

bility score of these parameters Stab by computing:

Stab kð Þ ¼
XK
k¼1

X
i<j

Bk
ij kð Þ 1� Bk

ij kð Þ
� �

=
p

2

	 
 !
ð11Þ

We first choose a set of candidate values for k, then compute the
stability scores for all these candidate values and finally get the
optimal k
 through the following equation:

k
 ¼ argmin
c2K

max
kPc

Stab kð Þ 6 b


 �
: ð12Þ

For all real data sets, we set C ¼ 20; b ¼ 0:1 in the procedure of sta-
bility selection.

4.2. Differential network between H1-hESC and NPC

Joint network inference methods can be well suited for differen-
tial network analysis. We study the differential network between
H1 human embryonic stem cells (H1-hESC) and neural progenitor
cells (NPC). The dataset that contains 212 H1-hESCs and 173 NPCs
originated from the literature [56], which can be downloaded from
GEO database [57] (with ID GSE75748). Since the NPCs in this data-
set are differentiated from H1-hESCs, we focus on a subset of 20
genes that are involved in human embryo development [20].
Another 70 type-specific genes and 44 ‘‘dark” genes, which have
a significant difference between and control samples not in net-
work degree level [20], are merged into the subset. By filtering
out the duplicated and unexpressed genes from the subset, we
finally get a list of 113 genes for our study.

The optimal parameters a
 ¼ 0:35; k
 ¼ 0:3ð Þ are chosen via AIC
and stability selection. Fig. 4 presents the differential network
between H1-hESC and NPC predicted by JGCGM. 6 genes (CST1,
DLK1, PHC1, TDGF1, VSNL1 and L1TD1) with the highest degrees
(> 10) are marked with yellow colors. Among these genes, 5 of
them (except for CST1) are found to be cell type-specific [20].



Fig. 3. Comparison of the imputation methods on network inference (Synthetic data with nk ¼ 400 and p ¼ 100).
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Besides, JGCGM is able to discover the two dark genes for H1-hESC
(TDGF1 and VSNL1) defined in the study of [20]. Although the dif-
ferential network does not present the significance of four dark
genes for NPC (TMEM97, SGPL1, ICAM1, ARSA), all these genes
are with higher rank of degrees in the NPC-specific network than
in the H1-hESC network (see Table S5), which also validate the
effectiveness of JGCGM.
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4.3. Mouse embryonic stem cell differentiation

Cellular differentiation decisions are controlled by complex reg-
ulatory interactions, and understanding regulatory mechanism
remains to be a major challenge. Here we study the case of embry-
onic stem cells differentiation by single cell RNA sequencing data
from mouse. The dataset originated from the literature [58], which



Table 1
AUPRC of various methods on synthetic data with small sample size (nk P 1000; p ¼ 100).

nk d Imputation Value JGCGM LPGM GGL SIMULE GRNBoost2 GENIE3 PIDC

1000 0.1 No Mean 0.941 0.233 0.896 0.825 0.391 0.855 0.520
Std 0.020 0.027 0.023 0.028 0.015 0.009 0.021
p-value – 1.11E�22 2.66E�04 7.68E�09 5.31E�23 5.89E�10 1.02E�19

Yes Mean – 0.312 0.946 0.920 0.849 0.899 0.624
Std – 0.020 0.010 0.013 0.022 0.009 0.020
pvalue – 5.56E�23 5.15E�01 1.48E�02 2.21E�08 1.66E�05 8.50E�18

0.3 No Mean 0.924 0.172 0.299 0.259 0.188 0.613 0.383
Std 0.013 0.022 0.024 0.031 0.011 0.014 0.021
p-value – 3.26E�25 4.61E�23 4.19E�22 4.58E�28 1.29E�20 1.06E�22

Yes Mean – 0.299 0.787 0.753 0.662 0.766 0.512
Std – 0.030 0.026 0.030 0.024 0.015 0.022
p-value – 7.17E�22 3.45E�11 5.15E�12 2.25E�16 5.58E�15 2.20E�20

0.5 No Mean 0.908 0.127 0.019 0.045 0.098 0.296 0.294
Std 0.018 0.031 0.005 0.005 0.006 0.013 0.026
p-value – 7.15E�23 7.35E�29 1.36E�28 5.46E�28 1.46E�24 7.75E�22

Yes Mean – 0.184 0.378 0.340 0.283 0.390 0.191
Std – 0.040 0.043 0.043 0.030 0.030 0.027
p-value – 1.00E�20 9.94E�18 2.16E�18 2.57E�21 8.83E�20 5.27E�23

2000 0.1 No Mean 0.945 0.244 0.965 0.790 0.863 0.931 0.786
Std 0.022 0.030 0.013 0.066 0.010 0.006 0.015
p-value – 9.56E�22 3.10E�02 2.91E�06 4.59E�09 6.75E�02 4.94E�13

Yes Mean – 0.214 0.959 0.840 0.927 0.946 0.804
Std – 0.069 0.035 0.142 0.011 0.006 0.015
pvalue – 6.82E�17 3.34E�01 4.09E�02 3.61E�02 8.84E�01 4.21E�12

0.3 No Mean 0.949 0.169 0.481 0.420 0.481 0.806 0.653
Std 0.013 0.024 0.032 0.031 0.013 0.009 0.020
p-value – 4.50E�25 4.33E�19 1.91E�20 3.16E�24 4.05E�16 1.74E�18

Yes Mean – 0.223 0.795 0.661 0.712 0.852 0.566
Std – 0.024 0.028 0.025 0.022 0.010 0.028
p-value – 2.35E�24 1.09E�11 4.32E�17 2.86E�16 5.45E�13 2.12E�18

0.5 No Mean 0.961 0.132 0.020 0.053 0.196 0.513 0.557
Std 0.010 0.039 0.006 0.016 0.020 0.015 0.017
p-value – 1.67E�22 3.32E�33 3.56E�29 1.82E�26 5.89E�24 1.60E�22

Yes Mean – 0.159 0.273 0.250 0.284 0.492 0.307
Std – 0.032 0.028 0.025 0.018 0.015 0.019
p-value – 1.37E�23 2.26E�23 2.20E�24 4.57E�26 3.48E�24 2.05E�25
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can be downloaded from GEO database [57] (with ID GSE65525). In
the original biological experiments, cells were sampled from 4
states, that is before leukemia inhibitory factor (LIF) withdrawal
and after the withdrawal LIF for 2, 4, 7 days respectively. Since
LIF is able to maintain cell pluripotency and inhibiting cell differen-
tiation, it can be considered that the cells begin to gradually differ-
entiate after LIF withdrawal.

According to the days of cell differentiation: 0 (before LIF with-
drawal), 2, 4 and 7 the samples can be naturally divided into 4
groups, with each subgroup containing 933, 303, 683 and 798 cell
samples respectively. We focus on 84 genes stem cell markers for
the research [59,60]. Count values of the corresponding genes are
extracted from the raw data in each cell group. Therefore we get
four read count matrices act as the input of JGCGM for network
inference subsequently.

We choose the parameters a
 ¼ 0:3; k
 ¼ 0:12ð Þ for JGCGM via
AIC and stability selection. Table 4 shows the nodes with the high-
est degree in the inferred networks at the optimal parameters.
These high-ranking hub genes in the gene networks are of signifi-
cant importance for maintaining cell life functions, which may be
the potential key genes that affect cell differentiation. To seek from
the candidates that change most during differentiation, we define a
‘‘changing score” of a gene as the difference between the maxi-
mum value and the minimum value of its ranking across cell sub-
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groups. We set the threshold of changing score as Dd P 5, and
eventually pick out 10 genes: Pou5f1 (5 for changing score), Fn1
(6), Gcm1 (9), Podx1 (5), Cd9 (6), Zfp42 (8), Utf1 (12), Lama1 (6),
Gcg (49), Ifitm1 (6).

Most of the chosen genes are indeed related to cell differen-
tiation: The Oct-4 protein encoded by the Pou5f1 gene plays an
important role in the self-renewal of undifferentiated embryonic
stem cells. Its over-expression and under-expression will result
in cell differentiation, which is often regarded as a marker of
undifferentiated cells [61]. FN1 plays an important role in tissue
development and regeneration. Wang et al. [62] found that the
fat pad stem cells’ cartilage differentiation and fat differentiation
ability decreased significantly after knocking out FN1. Gcm1
transcription factor covering FGF signal can promote the termi-
nal differentiation of trophoblast stem cells [63], in addition,
the gene can guide the change of cell fate by activating the glial
development program in the multipotent precursor cells of the
nervous system [64]. Zhang [65] experimented with mouse
hematopoietic stem cells and found the surface expression of
Podx1 can divide Flk1 overexpressing cells into different popula-
tions in the embryonic body that is being differentiated. The
stromal cells expressing CD9 affect the physical interaction with
hematopoietic cells and may be a factor that determines the
degree of stem cell differentiation [66]. Zfp42 is reported as an



Table 2
AUPRC of various methods on synthetic data with outliers (nk ¼ 400; p ¼ 100).

d Outlier Imputation Value JGCGM LPGM GGL SIMULE GRNBoost2 GENIE3 PIDC

0.1 Without
Outlier

No Mean 0.881 0.210 0.657 0.570 0.354 0.597 0.178
Std 0.009 0.023 0.023 0.016 0.022 0.020 0.019
p-value – 1.29E�24 5.04E�16 7.13E�21 4.79E�23 1.04E�18 3.47E�26

Yes Mean – 0.286 0.815 0.762 0.546 0.710 0.282
Std – 0.016 0.020 0.019 0.026 0.020 0.031
p-value – 7.87E�26 4.91E�08 1.12E�12 3.17E�18 6.26E�15 1.54E�21

With
Outlier

No Mean 0.276 0.089 0.341 0.232 0.050 0.058 0.106
Std 0.027 0.010 0.026 0.013 0.003 0.002 0.009
p-value – 1.14E�13 4.68E�05 3.10E�04 1.53E�15 2.73E�15 4.55E�13

Yes Mean – 0.085 0.496 0.302 0.055 0.061 0.145
Std – 0.008 0.024 0.048 0.003 0.003 0.012
p-value – 5.91E�14 3.38E�13 1.69E�01 2.42E�15 3.66E�15 7.71E�11

0.3 Without
Outlier

No Mean 0.813 0.134 0.109 0.085 0.138 0.278 0.124
Std 0.017 0.019 0.020 0.012 0.013 0.015 0.012
p-value – 2.24E�24 1.98E�24 1.32E�26 8.59E�26 1.49E�23 4.86E�26

Yes Mean – 0.271 0.706 0.097 0.393 0.527 0.206
Std – 0.019 0.026 0.011 0.023 0.026 0.023
p-value – 1.20E�22 4.61E�09 1.24E�26 9.60E�20 3.93E�16 1.13E�22

With
Outlier

No Mean 0.228 0.083 0.048 0.055 0.043 0.047 0.072
Std 0.029 0.010 0.012 0.007 0.003 0.002 0.005
p-value – 3.13E�11 1.35E�12 1.00E�12 2.22E�13 3.31E�13 4.60E�12

Yes Mean – 0.086 0.318 0.186 0.049 0.054 0.100
Std – 0.007 0.024 0.041 0.004 0.003 0.006
p-value – 3.22E�11 1.45E�06 2.16E�02 4.46E�13 6.45E�13 1.35E�10

0.5 Without
Outlier

No Mean 0.699 0.093 0.026 0.035 0.081 0.133 0.096
Std 0.040 0.010 0.005 0.004 0.005 0.010 0.010
p-value – 9.21E�20 9.26E�21 1.11E�20 4.28E�20 3.17E�19 9.54E�20

Yes Mean – 0.184 0.384 0.060 0.226 0.274 0.132
Std – 0.017 0.028 0.007 0.022 0.023 0.010
p-value – 4.01E�18 1.76E�13 2.63E�20 4.13E�17 3.63E�16 3.07E�19

With
Outlier

No Mean 0.142 0.070 0.026 0.036 0.038 0.042 0.066
Std 0.014 0.007 0.004 0.003 0.002 0.001 0.004
p-value – 5.13E�11 4.16E�15 1.69E�14 1.75E�14 3.13E�14 6.42E�12

Yes Mean – 0.086 0.125 0.101 0.049 0.048 0.069
Std – 0.013 0.017 0.054 0.003 0.001 0.006
p-value – 4.84E�08 2.95E�02 3.79E�02 1.40E�13 8.50E�14 2.54E�11
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undifferentiated state marker with pluripotent hematopoietic
stem cells [67]. Van et al. [68] found that knocking down UTF1
caused substantial delay or differentiation of embryonic stem
cells and cancer cells. Only for three genes Lama1, Gcg, and
Ifitm, we have yet to know their association with cell differenti-
ation, wherein the excessive degree of Gcg is likely to be system-
atic bias.

The above case studies indicate that JGCGM is capable to reveal
potential markers of cell differentiation, which verifies the effec-
tiveness of our model in network inference.
5. Conclusion

With the development of single-cell RNA sequencing technolo-
gies, a large amount of single-cell RNA sequencing data become
available, which enables the estimation of gene networks at single
cell level. Due to the characteristics of scRNA-seq data, such as cel-
lular heterogeneity and high sparsity caused by dropouts, joint
estimation of multiple gene networks from scRNA-seq data
remains a challenging task. Although Gaussian graphical model-
based approaches have been widely used to infer gene networks,
we are faced with two main issues when inferring gene networks
from scRNA-seq data. The first one is how to handle the cellular
heterogeneity. The other problem is the large proportion of drop-
outs (missing data) in scRNA-seq data.
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To tackle these problems, we propose a new joint Gaussian cop-
ula graphical model (JGCGM) to jointly estimate multiple gene net-
works for multiple cell subgroups from scRNA-seq data. Our
proposed model decomposes the gene network of each cell sub-
group into two parts: common network and subgroup-specific net-
work, which represent the heterogeneity and the homogeneity
among different cell subgroups respectively. We use modified Ken-
dall’s tau to fulfill the estimation, which could make full use of the
useful information from scRNA-seq data and keep away from the
misleading information introduced by dropouts.

We compare proposed JGCGM with other methods on synthetic
datasets. Our JGCGM outperforms other methods in most cases,
which indicates the effectiveness of our proposed decomposition
model on scRNA-seq data. Moreover, by using modified Kendall’s
tau, our JGCGM dominates other compared methods in most cases,
which demonstrate its ability in handling dropout events. The
impact of data imputation has also been studied in simulation
studies. Among the selected imputation approach, McImpute dom-
inates others in all circumstance and MAGIC is detrimental to net-
work inference. Even though imputation could enhance the
accuracy of network inference, its performance still falls behind
from the proposed JGCGM. These results demonstrate the effec-
tiveness of our model on scRNA-seq data.

We also predict the differential network between H1 human
embryonic stem cells and neural progenitor cells, and study cell
differentiation from mouse embryonic stem cells. The results of



Table 3
AUPRC of various methods on synthetic data with multiple cell types (nk ¼ 400; p ¼ 100).

d K Imputation Value JGCGM LPGM GGL SIMULE GRNBoost2 GENIE3 PIDC

0.1 3 No Mean 0.592 0.214 0.443 0.524 0.343 0.581 0.165
Std 0.030 0.013 0.033 0.034 0.018 0.011 0.012
p-value – 5.01E�18 7.14E�09 2.65E�04 2.46E�14 3.11E�01 4.69E�19

Yes Mean – 0.276 0.602 0.692 0.491 0.656 0.241
Std – 0.018 0.032 0.022 0.020 0.012 0.015
p-value – 4.60E�16 4.97E�01 0.000 0.000 0.000 0.000

4 No Mean 0.602 0.220 0.338 0.513 0.334 0.577 0.167
Std 0.010 0.017 0.027 0.026 0.015 0.012 0.009
p-value – 6.47E�22 2.72E�16 1.89E�08 9.29E�20 1.16E�04 4.99E�26

Yes Mean – 0.270 0.495 0.652 0.467 0.642 0.233
Std – 0.018 0.023 0.033 0.018 0.009 0.011
p-value – 1.90E�20 1.41E�10 3.97E�04 1.11E�13 4.01E�08 4.66E�24

0.3 3 No Mean 0.502 0.129 0.059 0.084 0.142 0.276 0.113
Std 0.022 0.012 0.022 0.020 0.012 0.017 0.010
p-value – 7.17E�20 1.63E�19 1.88E�19 1.55E�19 2.91E�15 2.04E�20

Yes Mean – 0.227 0.373 0.433 0.280 0.401 0.145
Std – 0.010 0.026 0.028 0.021 0.025 0.018
p-value – 8.88E�18 1.49E�09 2.02E�05 2.12E�14 4.66E�08 1.39E�18

4 No Mean 0.542 0.141 0.046 0.090 0.137 0.271 0.114
Std 0.031 0.013 0.012 0.015 0.010 0.013 0.009
p-value – 2.75E�18 5.66E�20 5.37E�19 1.46E�18 2.63E�15 4.09E�19

Yes Mean – 0.217 0.265 0.377 0.255 0.368 0.127
Std – 0.013 0.041 0.035 0.012 0.018 0.011
p-value – 1.29E�16 3.11E�12 3.65E�09 8.78E�16 1.73E�11 1.09E�18

0.5 3 No Mean 0.321 0.102 0.024 0.045 0.077 0.125 0.095
Std 0.036 0.018 0.004 0.003 0.004 0.008 0.005
p-value – 4.08E�12 3.25E�15 1.09E�14 9.67E�14 5.45E�12 3.81E�13

Yes Mean – 0.149 0.128 0.153 0.136 0.174 0.079
Std – 0.014 0.021 0.027 0.005 0.012 0.004
p-value – 1.12E�10 5.98E�11 1.61E�09 1.18E�11 9.26E�10 1.14E�13

4 No Mean 0.415 0.102 0.017 0.043 0.078 0.129 0.090
Std 0.037 0.021 0.004 0.002 0.004 0.004 0.007
p-value – 1.54E�14 2.20E�17 6.68E�17 4.16E�16 7.20E�15 9.49E�16

Yes Mean – 0.153 0.085 0.124 0.123 0.162 0.070
Std – 0.013 0.019 0.019 0.007 0.008 0.004
p-value – 8.16E�14 3.91E�15 3.71E�14 6.16E�15 8.21E�14 2.69E�16

Fig. 4. The differential network between H1 human embryonic stem cells (H1-hESC)
and neural progenitor cells (NPC) estimated by JGCGM. Hub genes with degrees
greater than 10 are marked with yellow colour. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Top 15 nodes with the highest degree in 4 cell groups.

Rank Day 0 Day 2 Day 4 Day 7

1 Lifr Lifr Lifr Lifr
2 Pou5f1 Lamc1 Pou5f1 Lamc1
3 Pten Pou5f1 Lamc1 Cd9
4 Fn1 Pten Podxl Fn1
5 Sox2 Sox2 Pten Pten
6 Lamc1 Cd9 Sox2 Sox2
7 Gcm1 Fn1 Lama1 Pou5f1
8 Podxl Lama1 Cd9 Lama1
9 Cd9 Podxl Ifitm1 Podxl
10 Dnmt3b Dnmt3b Fn1 Dnmt3b
11 Zfp42 Gcm1 Dnmt3b Gcm1
12 Utf1 Ifitm1 Nodal Sox17
13 Lama1 Sox17 Foxa2 Ifitm1
14 Gcg Zfp42 Sox17 Zfp42
15 Ifitm1 Nodal Utf1 Diap2
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the network prediction are mostly consistent with the known bio-
logical knowledge, which further confirms the effectiveness of our
model.
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