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Abstract

Background

Although dementia is associated with both global and regional cerebral blood flow (CBF)

changes, little is known about cerebral perfusion in the early pre-clinical stages of cognitive

decline preceding overt cognitive dysfunction. The aim of this study was to investigate the

association of early sub-clinical cognitive decline with CBF.

Materials and Methods

The study participants were recruited from a cohort of Danish men born in 1953. Based on a

regression model we selected men who performed better (Group A, n = 94) and poorer

(Group B, n = 95) on cognitive testing at age 57 than expected from testing at age 20. Partic-

ipants underwent supplementary cognitive testing, blood sampling and MRI including mea-

surements of regional and global CBF.

Results

Regional CBF was lower in group B than in group A in the posterior cingulate gyrus and

the precuneus. The associations were attenuated when corrected for global atrophy,

but remained significant in regions of interest based analysis adjusting for regional

gray matter volume and vascular risk factors. No influence of group on global CBF was

observed.
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Conclusions

We conclude that early sub-clinical cognitive decline is associated with reduced perfusion in

the precuneus and posterior cingulate gyrus independently of regional atrophy and vascular

risk factors, but cannot be statistically separated from an association with global atrophy.

Introduction

Dementia is a leading cause of age-related disability worldwide, and the number of demented

people is expected to triple by the year 2050 [1]. Although overt dementia or mild cognitive

impairment may be preceded by a phase of sub-clinical cognitive decline, the significance and the

mechanisms of early cognitive decline in clinically normal individuals have not been established.

Because effective treatment is lacking, interest has gathered around preventive or disease

modifying measures at the pre-clinical stage, and thus, the identification of modifiable risk fac-

tors and biomarkers of early disease have become areas of great interest [2]. Mounting evi-

dence has suggested that vascular pathology and dysfunction are involved in the development

of Alzheimer’s disease, narrowing the gap between primarily vascular and neurodegenerative

brain diseases [3].

Imaging of regional cerebral blood flow (CBF) patterns provides direct information on

brain tissue perfusion, but is also used as a marker of brain tissue function and integrity and

has been widely used clinically in the evaluation of patients with cognitive dysfunction [4].

Regional CBF changes may be present even in asymptomatic individuals at risk of dementia

[5–7], indicating the ability of regional CBF measurements also to detect subclinical pathology.

Further, reduced global CBF has been demonstrated not only in patients with clinical demen-

tia, but has also been associated with structural signs of brain aging and cognitive decline in

non-demented individuals [8–11].

Together, the above observations suggest that cerebral hypoperfusion may be present in the

early stages of cognitive dysfunction. However, altered CBF may also reflect the possible effect

of vascular risk factors [12;13] and brain atrophy [14;15], and should therefore be accounted

for in the analysis. The aim of the study was to test the hypothesis that early cognitive decline

is associated with decreased regional or global CBF. We furthermore, investigated whether the

CBF decline was associated with known vascular risk factors.

Most studies correlating brain function imaging with cognitive function have not taken

early life cognitive function into account and have investigated the relationship with cognitive

function at the time of the study rather than the effect of cognitive decline per se. In the present

study, we report on the findings of a magnetic resonance imaging (MRI) study of middle-aged

men with and without late midlife sub-clinical cognitive decline. The study applies modern

MRI techniques for absolute quantification of regional CBF [16;17], and by measuring also

global CBF using phase contrast mapping [10] and hemoglobin, the validity of such measure-

ments could be verified.

Materials and Methods

Participants

Participants were recruited from The Metropolit Danish Male Birth Cohort [18;19], which

includes all boys born in 1953 in the Copenhagen metropolitan area. The procedure for se-

lecting participants has been described in details previously along with functional MRI data

from the same selection of cohort members [20]. In brief, cognitive testing was performed at
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approximately 20 years of age as a part of the military draft board assessment program using

the Børge Priens Prøve (BPP) test [21]. In 2009–2010 at age approximately 56 years, a total of

1985 members of the cohort were cognitively re-assessed using the Intelligenz-Struktur-Test

2000 R (IST) as part of the Copenhagen Aging and Midlife Biobank project (CAMB) [19]. The

CAMB version of the IST comprises three subtests, verbal analogies, number series, and sen-

tence completion [22], very similar to subtests included in the BPP.

To identify those who performed relatively poorer on re-assessment than predicted from

the early life cognitive score, a regression analysis was carried out with BPP score as the explan-

atory variable and IST score as the dependent variable. The two test scores were highly corre-

lated (r = 0.71, p<0.0001). Each participant’s standardized residual was considered a measure

of the relative cognitive change from early adulthood. To minimize the effects of individuals

with potentially unreliable or extreme test scores, those with absolute standardized residuals

>3 were excluded. In order to take into account the normal variability of cognitive test scores

and to maximize the ability to detect any influence of cognitive decline, we identified two

groups: Group A consisting of cohort members with the largest positive residuals serving as a

control group, and Group B with the largest negative residuals considered as those with appar-

ent sub-clinical cognitive decline. Cohort members were invited to participate in the present

study until at least 100 participants were included in each group.

Data collection took place in 2010–2012 (at subject age 58±0.7 years). A flowchart showing

the selection of participants is shown in Fig 1. In short 48% of those invited accepted to partici-

pate, and of these 36 persons were excluded according to predefined exclusion criteria (alcohol

and drug abuse, major psychiatric and neurologic disease, major structural brain lesions, and

contraindications to MRI), while 18 persons were missing MRI data for other reasons, leaving

189 data sets with either regional or global perfusion. One regional CBF map was discarded

due to poor quality. In the final study population (94 in group A and 95 in group B) regional

CBF maps were available in 173 (86 in group A and 87 in group B) and total flow measure-

ments in 177 participants (88 in Group A and 89 in Group B). Both measurements were avail-

able in 162 participants (81 in Group A and 81 in Group B).

The study was approved by the regional ethics committee (Scientific Ethics Committee of

The Capital Region, Protocol no. H-3-2010-016), following the standards of The National

Committee on Health Research Ethics. The experiments were conducted in accordance with

the Helsinki Declaration and all participants gave written informed consent.

Cognitive testing

To confirm the group difference at follow-up, and to characterize the cognitive performance

of the participants in more details, a comprehensive neuropsychological test battery was

administered as close as possible to the MRI—often on the same day and for 90% of the partic-

ipants within the same week. The tests (presented in Table 1) focused on visual and verbal

learning and memory, attention, processing speed, as well as overall global function. The test

battery included classical neuropsychological tests, as well as tests from the Cambridge Neuro-

psychological Test Automated Battery (CANTAB), and was administered by staff who were

trained and supervised by an experienced neuropsychologist, and were blinded to the BPP and

IST scores. Measurements of blood pressure, weight and height, as well as other demographic

data were also obtained, generally on the same day as the cognitive examination.

Laboratory testing

Non-fasting blood samples were drawn from a cubital vein and analyzed for hemoglobin,

homocysteine, cobalamine, plasma lipids and APOE genotype. LDL:HDL ratio was calculated

Early Cognitive Decline and Cerebral Perfusion

PLOS ONE | DOI:10.1371/journal.pone.0169912 January 17, 2017 3 / 15



as a measure of dyslipidemia. APOE genotype (rs429358 and rs7412 variants) was determined

by pyrosequencing using the PyroMark Q24 system (Qiagen, Hilden, Germany).

MRI study

MRI experiments. All MRI measurements were performed on a 3.0 T Philips Intera

Achieva (Philips Medical Systems, Best, the Netherlands) using a 32 element phased array

receive head coil and multitransmit parallel RF transmission. In all participants the following

MRI sequences were acquired during resting conditions: 1) a high resolution 3D T1 weighted

gradient echo sequence (TR/TE = 6.9/700 ms, flip angle = 9˚, voxel size 1.1 x 1.1 x 1.1 mm) 2)

a T2 weighted (TR/TE = 1300/12 ms, flip angle = 90˚, 32 slices, voxel size 1.8 × 1.8 × 9.5 mm),

and 3) a T2 FLAIR (TR/TE = 11000/125 ms, flip angle = 90˚, 6 slices, voxel size 0.45 × 0.45 ×
4.5 mm).

Phase contrast mapping (PCM) was used to measure volume flow in basilar and the in-

ternal carotid arteries (ICAs), and normalizing total flow to brain size, mean global CBF can

be calculated [10]. ECG gated (retrospective gating, 20 frames/cycle) PCM measurements were

obtained with a matrix of 320x320 (TR/TE = 12/7 ms, flip angle 10˚, voxel size 0.75x0.75x

8mm) with a Venc of 100 cm/s.

Fig 1. Selection of participants. Flowchart showing selection of the current study sample from the original

1953 Metropolit Copenhagen Birth Chohort. † defined as standardized residual exceeding ±3 ‡ Excluded

according to predefined exclusion criteria (alcohol and drug abuse, major psychiatric and neurologic disease,

major structural brain lesions, and contraindications to MRI).

doi:10.1371/journal.pone.0169912.g001
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Regional CBF maps were obtained using a multi-slice, multiple inversion time (TI) pulsed

arterial spin labelling (ASL) sequence (matrix 80x80, voxel size 3x3x6 mm, gap 1.5 mm, TR/

TE/ΔTI/TI1 = 4000/22/300/40 ms, flip angle 35˚/11.7˚, SENSE 2.5, 84 averages [48@Venc =

4cm/s, 24@Venc =1, 12 low flip angle]) [23]. Seven transaxial slices were acquired parallel to

the lower edges of the corpus callosum. The labelling slab was placed to cover the circle of

Willis in order to minimize the possible influence of high flow velocities on bolus length [24].

Accordingly, the most inferior parts of the brain were not covered. (Fig 2)

Post-processing. All MRI data were converted into NIfTI format and analyzed using in-

house software for Matlab version 7.9 (The MathWorks Inc., Natick, MA) except when indi-

cated otherwise.

Processing of PCM measurements was performed as previously described [25]. The proce-

dure involves an automatic pixel-wise phase correction procedure and subsequent manual

assignment of regions of interest for both ICAs and the basilar artery. Volume flow in each

Table 1. Study population characteristics.

No decline Decline

(Group A, n = 95) (Group B, n = 94)

Median Range Median Range

Risk factors

P-homocysteine, μmol/l 8.4 (4.4–25.5) 8.6 (5–17.4)

P-cobalamin, pmol/l 352 (176–738) 339 (173–639)

Total cholesterol, mmol/l 5.5 (3.5–7.8) 5.5 (3.2–8.4)

LDL:HDL 2.59 (1.00–5.6) 2.42 (0.42–5.56)

BMI, kg/m2 26 (20–43) 27 (20–35)

MAP, mmHg 105.7 (80.3–126.3) 105.3 (74.3–156. 7)

Current smoker, n 18 17

Package-years 4.3 (0–78) 2.5 (0–126)

Number of APOE4 alleles, n = 0/1/2 70/19/0 61/28/3§

Education length, years 16 (8–23) 13** (7–22)

Cognitive testing

BPP test, score 48 (16–61) 46 (28–68)

IST, score 44 (19–55) 21** (9–35)

MMSE, score 30 (26–30) 29* (25–30)

ACE, score 97 (85–100) 93** (70–100)

Trailmaking A, sec. 31 (18–80) 32 (19–62)

Trailmaking B, sec. 67 (35–140) 78** (42–465)

15 word paired ass. learning, no. errors 6 (0–29) 14** (1–33)

15 word paired ass. recall, no. errors 3 (0–12) 6** (0–15)

Visual, paired ass. learning, no. errors 18 (9–26) 16** (9–24)

Rapid visual processing, score† 0.941 (0.789–1) 0.898** (0.742-.990)

5 choice movement time, msec† 371.3 (245.3–607) 369.4 (240.5–742.8)

† from the CANTAB test battery.

Significance test for group differences

*p<0.01 and

**p<0.001 using Mann-Whitney test or t-test where appropriate

§ p = 0.057 using Fisher’s exact test (and p = 0.069 when analyzing APO4 positive vs negative).

Abbreviations: LDL = low density lipoprotein, HDL = high density lipoprotein, BMI = body mass index, MAP = mean arterial blood pressure,

APOE = apolipoprotein E, BPP = Børge Priens Prøve, IST = Intelligenz-Struktur-Test, MMSE = mini-mental state examination, ACE = Addenbrooke’s

cognitive examination, CANTAB = Cambridge neuropsychological test automated battery.

doi:10.1371/journal.pone.0169912.t001
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vessel is calculated by multiplying mean velocity with vessel area and integrating over time.

Mean global CBF is calculated as total brain flow divided by brain volume and reported in ml/

100g/min assuming a tissue density of 1 g/ml.

Regional CBF maps were calculated using the FSL (FMRIB Software Library, www.fmrib.

ox.ac.uk/fsl) QUASIL tool applying model-based quantitation, and adjusting the T1 value of

arterial blood in each subject according to the individual hemoglobin value [16]. This proce-

dure produces maps of absolute perfusion in ml/100g/min as well as the estimated tissue re-

laxation rate R1. The perfusion maps were spatially normalized to the MNI standard brain

provided by FSL using an intermediate step in which the R1-images were co-registered to the

individual high-resolution anatomical scan. Both steps were carried out using standard linear

co-registration with 12 degrees of freedom. Additionally, relative CBF maps were produced by

normalizing absolute CBF maps to a mean brain perfusion value of 50 ml/100g/min.

The FSL BET and FAST tools were used to segment the 3D T1 weighted scan and the result-

ing cerebrospinal fluid (CSF), gray matter and white matter probability maps were used to cal-

culate the total brain tissue volume (Vtot), CSF volume (Vcsf) and brain parenchymal fraction

(BPF) calculated as

BPF ¼ Vtot=ðVtot þ Vcsf Þ

In addition, ventricular volume was determined using FSL Sienax. Structural scans were

reviewed by an experienced neuroradiologist for pathology and severity of white matter lesions

using a modified Fazekas’ rating scale [26].

Statistical analysis

Group differences were analyzed using Mann-Whitney test for non-normally distributed vari-

ables, t-test for normally distributed variables (before or after logarithmic transformation), or

Fisher’s exact test for categorical variables.

Fig 2. Effect of hemoglobin on regional CBF. Glass brain representation of voxels in absolute CBF maps

with significant (p<0.001) negative correlation with blood hemoglobin. Brain volume covered by the ASL

measurements is shown in the red box.

doi:10.1371/journal.pone.0169912.g002
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Voxel-based analysis. To identify group differences in regional CBF, voxel wise analysis

of regional CBF maps was initially performed by applying a general linear model to the spa-

tially normalized CBF maps. The analysis was performed using in-house software written in

Matlab in order to take into account the slightly non-overlapping brain coverage between par-

ticipants. Thus, data usage was optimized by including voxels in standard space, even if not all

participants contributed data to that point. Both absolute and relative CBF maps were ana-

lyzed. Edge-effects were avoided by excluding voxels with less than 10 subjects contributing;

all central regions represented 150 subjects or more.

To identify relevant covariates a three-step approach was applied. First, CBF maps were ana-

lyzed in a model including only group and hemoglobin to identify areas of interest for subsequent

ROI based analysis. Secondly, relevant candidate covariates were investigated in ROI based analy-

sis (see below). Finally, relevant covariates identified in the ROI based analysis were included in

the final models. To assess the influence of global atrophy, models both with and without BPF

were analyzed. Data were checked for outliers using voxel wise calculation of Cook’s distance.

In order to control for multiple comparisons, and to take into account spatial correlation

within the brain, we calculated the Threshold Free Cluster Enhanced (TFCE) index [27], and

statistical testing was performed using permutation based inference [28] and 5000 permuta-

tions. We considered findings significant at a corrected p-level of 0.05.

Region of interest based and whole brain analysis. In areas identified in the initial voxel-

based analysis as showing group difference, average CBF values and gray matter volumes were

extracted from corresponding anatomical regions of interest (ROIs) as defined in the Auto-

matic Anatomical Labelling (AAL) standard system [29].

Cognitive group was considered the main explanatory variable of interest, and included in

multiple regression models along with the other predefined covariates of interest (hemoglobin

and ROI gray matter volume) and other potential vascular risk factor predictors (number of

APOE4 alleles, BMI, mean arterial blood pressure, LDL:HDL ratio and smoking pack years)

with ROI CBF as the dependent variable. A backwards stepwise model selection was applied to

identify the influence of all potential vascular risk factor predictors. According to this proce-

dure, homocysteine was the only vascular risk factor meeting a p-value criterion of 0.05, and

was included in the final models. A similar approach was applied to global CBF values replac-

ing gray matter volume with BPF in the analysis.

Mean gray matter CBF was calculated by averaging all cortical regions. For validation pur-

poses, the correlations of absolute mean gray matter CBF with global CBF measured by PCM,

and of both with hemoglobin were analyzed by simple linear regression and calculating Pear-

son’s correlation coefficient.

Except for voxel based analysis, all statistical analysis was performed using STATA 13 SE

(StataCorp, College Station, CA).

Results

Study population

Study population characteristics are presented in Tables 1 and 2. No differences between the

two groups were observed with regards to any of the vascular risk factors. On cognitive testing

at age 20, the two groups did not differ, but Group B performed significantly poorer on most

cognitive tests at follow-up. While Group A comprised the upper 15% and Group B the lower

15% of the distribution of residuals, there was a considerable overlap in the IST score with

Group A covering the upper 87% and Group B covering the lower 64% of the distribution.

Ventricular volume was higher in Group B compared to Group A (Table 2). Otherwise the

two groups did not differ with regard to whole brain MRI measures.

Early Cognitive Decline and Cerebral Perfusion
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Voxel based analysis

According to outlier analysis, one influential finding was detected, but the overall pattern of

results and significance was essentially unchanged whether leaving this data set out or not. We

therefore present the results including all data.

Voxel-based analysis of CBF maps showed that perfusion in the precuneus and in the poste-

rior cingulate gyrus was lower in Group B compared to Group A, also after adjusting for multi-

ple comparisons. (Fig 3) The same group difference was also found using relative CBF maps

(not shown) although the number voxels significantly associated with group was lower in rela-

tive CBF maps compared to the absolute CBF maps (577 vs 1234 voxels). Adjusting also for the

influences of BPF (Fig 4), no significant group differences could be demonstrated. No areas of

increased perfusion were identified in group B compared to group A.

Regions of interest based analysis

The results of the multiple regression analysis are presented in Table 3. Regional as well as

global CBF were analyzed in linear models with group, homocysteine and hemoglobin as inde-

pendent variables. For the ROI based analyses the gray matter density in the same ROI was

used as a regressor, while for the global CBF the BPF was used. ROI CBF was lower in Group B

compared to Group A, both in the posterior cingulate gyrus and in the precuneus. The analysis

also showed that absolute CBF decreased with increasing homocysteine in both regions,

although significant only in the precuneus. Including all vascular risk factors in the model, the

group effect remained significant (p<0.05 in both regions), but no influence of homocysteine

was observed. Also, no significant interaction between group and homocysteine upon CBF

was observed in ROI based analysis. Similar effects were observed when analyzing relative CBF

maps, although the effects tended to be smaller and statistically less significant. Including edu-

cational length or APOE4 status did not change the observed association of group with ROI

CBF, and neither of these two covariates were associated with ROI CBF.

Global CBF

No effects of group or homocysteine on global CBF could be demonstrated, but the multiple

regression model (Table 3) did show a significant positive association of global CBF with BPF.

Table 2. Whole brain magnetic resonance imaging results.

No decline Decline

(Group A, n = 95) (Group B, n = 94)

Median (range) Median (range)

Total flow (ml/min)† 665 (247–1204) 620 (285–1264)

Brain volume (ml) 1225 (1040–1468) 1224 (1052–1438)

Mean global CBF (ml/100g/min)† 54.2 (20.4–98.2) 53.2 (25.3–101.3)

Gray matter CBF (ml/100g/min) ‡ 58.7 (34.3–97.0) 55.9 (30.0–92.8)

Ventricular volume (ml) 35.5 (19.4–66.4) 40.1 (22.7–92.3)*

BPF (%) 76.1 (72.9–80.9) 75.9 (69.1–80.1)

Fazekas’ score (0/1/2/3)§ 61/24/6/0 64/22/5/1

Significance test for group differences

* p<0.05 using Mann-Whitney test

† data from 177 participants

‡ data from 173 participants

§ data from 186 participants.

Abbreviations: CBF = cerebral blood flow, BPF = brain parenchymal fraction

doi:10.1371/journal.pone.0169912.t002
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Absolute mean gray matter CBF from ASL measurements was significantly correlated with

mean global CBF from PCM measurements (0.38 [95% CI: 0.24 to 0.52], r = 0.39, p<0.001).

Both mean gray matter CBF and global CBF decreased with increasing hemoglobin (-7.2 [95%

CI: -10.3 to -4.0] ml/100g/min per mmol/l, r = -0.11, p<0.001 and -7.6 [95% CI: -10.9 to –4.3]

ml/100g/min per mmol/l, r = -0.11, p<0.001, respectively). The influence of hemoglobin on

CBF in voxel based analysis of ASL data is shown in Fig 2.

Discussion

In the present study we have examined the association of cognitive function change with

regional and global CBF in middle-aged asymptomatic men with and without subclinical cog-

nitive decline adjusting for other vascular risk factors.

The main findings are that sub-clinical loss of cognitive function is associated with hypo-

perfusion in the posterior cingulate and precuneal areas, but not with global perfusion. In

addition, the analysis showed that this association appeared to be independent from regional

brain atrophy and of vascular risk factors, although the association of cognition with regional

CBF could not be statistically separated from that of global atrophy.

The present study is unique by including non-demented, asymptomatic participants with

apparent sub-clinical cognitive decline. Most previous studies investigating the relationship

between regional CBF and milder degrees of cognitive impairment have mainly focused on

patients with subjective cognitive difficulties in terms of early Alzheimer’s disease or mild

cognitive impairment. In such persons, the classical Alzheimer’s disease pattern of reduced

Fig 3. The relationship of group with regional cerebral blood flow. Voxels in absolute cerebral blood flow

maps with significant (p<0.05, corrected for multiple comparisons) negative correlation with group (Group

B<Group A), adjusted for homocysteine and hemoglobin.

doi:10.1371/journal.pone.0169912.g003
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Fig 4. The relationship of brain parenchymal fraction with regional cerebral blood flow. Voxels in

cerebral blood flow maps with significant (p<0.05, corrected for multiple comparisons) positive correlation with

brain parenchymal fraction, adjusted for group, homocysteine and hemoglobin.

doi:10.1371/journal.pone.0169912.g004

Table 3. The association (β coeffiecents) of subclinical cognitive decline with regional and global cerebral blood flow.

Absolute CBF Normalized CBF Global CBF

Precuneus Posterior cingulate Precuneus Posterior cingulate

Cognitive decline

(Group B-A)

-5.73** [-9.96,-1.51] -7.02* [-12.36,-1.68] -3.13* [-5.75,-0.51] -3.68‡ [-7.41,0.05] -1.51 [-5.37,2.34]

Hemoglobin (per mmol/

l)

-8.38*** [-12.02,-

4.74]

-9.33*** [-13.86,-4.80] -0.56 [-2.81,1.70] -0.67 [-3.84,2.49] -8.21*** [-11.49,-4.93]

Homocysteine

(per μmol/l)

-0.883* [-1.70,-

0.066]

-0.913† [-1.950,0.124] -0.300 [-0.806,0.207] -0.262 [-0.987,0.462] 0.057 [-0.693,0.806]

ROI GM volume (per ml) 26.6 [-41.7,94.9] 5.63 [-50.4,61.7] 70.16** [27.8,112.5] 32.3 [-6.86,71.42] -

BPF - - - - 133.0* [12.5,253.6]

In all models CBF is treated as dependent variable, and group (cognitive decline) as main independent variable, while homocysteine, hemoglobin and gray

matter volume (or BPF for global CBF) are covariables. Abbreviations: CBF = cerebral blood flow, ROI GM = region of interest gray matter, BPF = brain

parenchymal fraction.

* p <0.05

** p<0.01

*** p<0.001

†p = 0.084

‡ p = 0.053.

doi:10.1371/journal.pone.0169912.t003
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perfusion (or metabolism) in the posterior cingulate, precuneus, hippocampal and parieto-

temporal cortices are often reported [30]. The present finding of CBF reductions in the cingu-

late and precuneus appears to be in line with these observations and suggests that these char-

acteristic CBF changes may develop even before any subjective cognitive difficulties arise.

Similarly, characteristic regional CBF changes have been reported in asymptomatic persons

with a family history or genetic disposition to dementia [5–7]. Notably, the two groups did not

differ with respect to APOE4 genotype which has been associated with CBF changes in the hip-

pocampal regions [6;31]. Whether similar hippocampal hypoperfusion was also present in this

study cohort cannot be determined due to the lack of coverage of the inferior parts of the

brain. Full brain coverage would have been preferable, in particular when investigating the

association of regional CBF changes with cognitive function. The choice of coverage was based

on both the limited coverage of the QUASAR sequence and on the wish of minimizing the

possible influence of flow velocities on absolute CBF quantitation [24].

An important issue when studying the aging brain is how to include age related atrophy in

the analysis. Partial volume effects may influence results of low-resolution CBF measurements

regardless of the method used, making it difficult to distinguish CBF decrease per imaging

voxel due to loss of gray matter volume within the voxel from a “true” perfusion decrease in

gray matter within the voxel. Several methods for partial volume error corrections have been

proposed, but there is no general consensus on how such corrections should be performed.

We have therefore relied on a more simple ROI based approach correcting for gray matter vol-

ume within the ROI. In that context it is noteworthy that the group effect was attenuated in

voxel based analysis adjusting for BPF, but not in ROI based analysis adjusting for GM volume.

This may be associated with the higher sensitivity of the ROI based analysis, but also shows

that tissue atrophy may be partly responsible for the decrease in perfusion.

As shown in Fig 4, increasing BPF was associated with widespread CBF increase in a distri-

bution very similar to the typical age related pattern of widened sulci, in particular in the parie-

tal cortices also overlapping the precuneus and posterior cingulate regions. This could suggest

that the group difference may represent a more advanced or degree of normal brain aging

affecting regions of particular importance for cognition. This view is supported by a recent

study showing that life-long physically active elderly individuals have relatively preserved CBF

in the precuneus and posterior cingulate regions compared to sedentary age matched controls

[32].

From a cross sectional study design it is difficult to conclude on the causalities of the associ-

ations of cognition, atrophy and perfusion; i.e. does cognitive decline lead to regional atrophy

which in turn leads to a decrease in CBF or vice versa? These associations are complex and

most likely bi-directional [15], as evidenced by a recent study reporting that age related regi-

onal reductions in CBF are independent from patterns of cortical atrophy [33].

Homocysteine was the only vascular risk factor associated with regional CBF changes in the

precuneus and posterior cingulate. This observation is in line with previous studies showing

an association of circulating homocysteine in healthy aged subjects [12] and of homocysteine

lowering treatment in vitamin B12 deficient patients [34] with both global and regional CBF.

Although the associations of homocysteine with cerebrovascular disease, brain aging and

neurodegenerative disease are well established, the exact mechanisms are not clear.

Previous large population based studies have reported associations of various measures of

global cerebral perfusion with vascular risk factors, but the findings are not entirely consistent

with regard to individual risk factors [10;35]. Education (and other life style factors not investi-

gated) could potentially also influence CBF and the findings presented here. We did not

observe any influence on CBF, but the study sample may have been too small to detect such

smaller risk estimates. It should also be stressed that the present analysis aimed at investigating
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the association of global and regional CBF with cognitive change, and that the possible effects

of various covariates were controlled for in the initial model selection procedure as described.

The present study also provides some insight into methodological aspects of the use of CBF

measurements. Arterial spin labelling is widely used in studies of brain aging. As the ability of

these techniques to quantitate CBF in absolute terms is debated, most studies rely on normal-

ized, relative CBF maps. We used the a multi TI arterial spin labelling scheme [23] and applied

model based analysis for absolute quantitation [16]. The present study confirms the ability of

this approach to produce absolute CBF estimates in agreement with PCM measurements [24]

which is further supported by the finding of an inverse association with hemoglobin. Analysis

of relative CBF maps did not change the overall findings or interpretation of the study, but

both the magnitude and extent of group differences were smaller using relative CBF maps.

Absolute quantitation may thus increase the ability to detect more subtle effects, which may be

particular important when taking into account also factors influencing global CBF, such as

altered physiological states or aging. Indeed, the interpretation of aged related changes may

depend on whether absolute of relative CBF measurements are analyzed [32].

Although CBF measurements using ASL identified relatively small regional CBF differences

at the group level (approx. 10% difference between the two groups), the low signal-to–noise

ratio of individual CBF maps limits the ability to detect such small regional CBF changes at the

participant specific level. Pseudo-continuous ASL techniques may improve both signal-to-

noise and coverage, and may in the future be used at the single individual in the clinical setting

[36].

It appears that global and regional CBF measurements provide different information. Cog-

nitive decline was associated with regional CBF reductions only, whereas global CBF was asso-

ciated with global atrophy as measured by BPF. Although global CBF has previously been

shown to be associated with structural brain aging in terms of atrophy, ischemic lesions and

cognitive decline [9–11], longitudinal studies have failed to show an association of reduced

total brain flow with future brain volume loss, ischemic brain lesions and cognitive function

change [15;37;38] suggesting that reduced global CBF is a consequence rather than a cause of

brain aging. Still, global CBF may be considered a marker of cerebral health and function, and

one recent study reported that global CBF is a powerful predictor of future overall mortality

rate [39].

Documenting cognitive decline in a population with close to normal cognitive function

may be difficult. The selection of participants for the two groups was based on the residual of

each individual in a regressions analysis of the current and prior cognitive test scores of the

entire population. As we expected only rather small changes in cognitive function, we chose to

include only the extreme ends of the spectrum in order to obtain a larger exposure range with

a relatively small sample. In the present analysis cognitive change was dichotomized for sim-

plicity, and sensitivity analyses showed that analyzing continuous outcomes (residuals or late

life cognitive score adjusted for early life cognitive score) did not change the overall results or

interpretation.

Ideally, the participants would have been subjected to the same test at follow up, but the

BPP test used at military draft exam is classified and was not available. The IST test was chosen

for its similarity with BPP and the test scores were also highly correlated. Group A and B did

not differ at baseline BPP scores, and the additional cognitive testing confirmed highly signifi-

cant differences in current cognitive function of the two groups, suggesting that the group dif-

ferences reflect changes in cognitive function rather than random measurement error. We

therefore believe that although cognitive changes may be difficult to assess at the individual

level, the group differences at follow-up can most likely be attributed to a true cognitive decline

at the group level.
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It should also be pointed out that none of the participants had any subjective cognitive diffi-

culties and accordingly did not fulfil the criteria for mild cognitive impairment. Demographi-

cally, the two groups differed at young age only with respect to education. In that perspective,

it is intriguing if the longer education length in Group A reflects higher cognitive function

(or educational skills) not revealed by the BPP test, or if longer education serves to prevent

cognitive decline as suggested by other studies [40]. However, the mechanisms explaining

effects of education are not clear. Higher educational attainments may act by providing mental

tools and strategies for coping with early cognitive dysfunction rather than by protecting

against neurodegenerative processes. Furthermore, the study was designed to focus on associa-

tions with cognitive change and not with cognitive function at the time of follow-up. Accord-

ingly, the observed group differences in regional CBF were not attenuated by adjusting for

education.

In conclusion, the present study shows that sub-clinical cognitive decline is associated with

specific regional CBF patterns in regions known to be associated with cognitive dysfunction.

Conversely, cognitive decline was not associated with global hypoperfusion. The effects on

regional CBF appear to be unrelated to vascular risk factors and regional atrophy, but cannot

be confidently separated from normal age related brain atrophy.
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