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Abstract

Motivation: Alternative splicing (AS) is an important mechanism in the generation of transcript diversity across
mammals. AS patterns are dynamically regulated during development and in response to environmental changes.
Defects or perturbations in its regulation may lead to cancer or neurological disorders, among other pathological
conditions. The regulatory mechanisms controlling AS in a given biological context are typically inferred using a
two-step framework: differential AS analysis followed by enrichment methods. These strategies require setting ra-
ther arbitrary thresholds and are prone to error propagation along the analysis.

Results: To overcome these limitations, we propose dSreg, a Bayesian model that integrates RNA-seq with data from
regulatory features, e.g. binding sites of RNA-binding proteins. dSreg identifies the key underlying regulators control-
ling AS changes and quantifies their activity while simultaneously estimating the changes in exon inclusion rates.
dSreg increased both the sensitivity and the specificity of the identified AS changes in simulated data, even at low
read coverage. dSreg also showed improved performance when analyzing a collection of knock-down RNA-binding
proteins’ experiments from ENCODE, as opposed to traditional enrichment methods, such as over-representation
analysis and gene set enrichment analysis. dSreg opens the possibility to integrate a large amount of readily available
RNA-seq datasets at low coverage for AS analysis and allows more cost-effective RNA-seq experiments.

Availability and implementation: dSreg was implemented in python using stan and is freely available to the com-
munity at https://bitbucket.org/cmartiga/dsreg.

Contact: elara@cnic.es or fscabo@cnic.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Eukaryotic genes are generally constituted by exons and introns
(Kim et al., 2007). Alternative mRNAs may be generated from the
same gene by inclusion or skipping of a particular exon in the ma-
ture transcript, in a process known as alternative splicing (AS)
(Graveley, 2001; Nilsen and Graveley, 2010). There is evidence of
AS for most mammalian genes (Barbosa-Morais et al., 2012;
Merkin et al., 2012) and of widespread changes of AS patterns
throughout brain and heart development (Auinash and Cooper,
2012; Baralle and Giudice, 2017; Fogel et al., 2012; Giudice et al.,
2014; Irimia et al., 2014; Quesnel-vallieres et al., 2015; Raj et al.,
2014; Weyn-Vanhentenryck et al., 2018). Defects in mRNA proc-
essing of some specific genes often lead to disease (Baralle and
Giudice, 2017; Lara-Pezzi et al., 2013, 2017) and have been associ-
ated with complex neurological disorders, such as autistic syndrome
(Irimia et al., 2014; Lee et al., 2016; Quesnel-valliéres et al., 2015;
Wagnon et al., 2012), and cancer (Climente-GonzalLez et al., 2017,
Stricker et al., 2017). Therefore, understanding the regulatory

©The Author(s) 2019. Published by Oxford University Press.

mechanisms underlying physiologic and pathological changes in AS
patterns is crucial, not only to understand RNA biology, but also to
identify potential therapeutic targets with a more general effect in
complex diseases.

A two-step workflow is generally applied to identify the regula-
tory mechanisms underlying the changes in AS (see Fig. 1 for a sche-
matic representation). First, AS changes must be identified. For this,
short reads from RNA sequencing are typically mapped using splice
junctions aware aligners, such as STAR or Hisat2 (Dobin et al.,
2013; Pertea et al., 2016). Alternative mRNA processing can be
studied at two different levels: (i) transcript quantification level,
which can be based on a prior alignment (Pertea et al., 2016;
Trapnell et al., 2013), or can be directly estimated from fast pseu-
doalignment methods (Bray et al., 2016; Patro et al., 2017); and (ii)
event level quantification, as performed by popular tools such as
MISO, MATS, vast-tools, DEXseq or SUPPA (Alamancos et al.,
2014; Anders et al., 2012; Irimia et al., 2014; Katz et al., 2010; Shen
et al., 2012; Trincado et al., 2018). Recent tools showed improved
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Fig. 1. General and proposed work-flows for AS regulation analysis. (A) Schematic representation of idealized model for the regulation of splicing rates by RBPs through direct
binding to their binding motifs in the pre-mRNA. (B) Diagram representing the different steps required for a classical analysis of regulation of AS using RNA-seq data and the
proposed model in dSreg. (C) Directed acyclic graph representing the full probabilistic model integrating both differential AS analysis with binding sites presence and changes

in the activity of RBPs

performance for the estimation of AS changes by using information
about exon features and perturbation experiments (Huang and
Sanguinetti, 2017; Zhang et al., 2019). Since regulation is expected
to take place locally, the event level analysis is the preferred ap-
proach to study the regulatory mechanisms underlying changes in
AS profiles. Once AS events have been identified and quantified, dif-
ferent statistical approaches can be applied to determine AS changes
between biological conditions, being a generalized linear model
(GLM) with binomial likelihood the most natural parametric ap-
proach (Shen et al., 2012).

The second step aims to identify regulatory features, such as
RNA-binding proteins (RBPs) motifs, associated with AS changes.
Such features often include nucleotide hexamers, predicted motifs,
experimentally determined or predicted binding sites (Dominguez
et al., 2018; Giudice et al., 2016; Ray et al., 2013; Yang et al.,
2015). Over-representation analysis (ORA) enables the discovery of
features co-occurring with significant AS changes more often than
expected by chance. Therefore, a sufficiently large set of significant-
ly changed events is required to reach enough power to detect en-
richment of regulatory features. ORA requires the categorization of
splicing changes into different groups e.g. included or skipped,
ignoring quantitative information about AS changes. To make use
of quantitative information in the enrichment procedure, several
approaches have been developed, including the widely known gene
set enrichment analysis (GSEA) (Simillion et al., 2017; Subramanian
et al., 2005). Although these tools were designed for functional ana-
lysis, they have been used to perform enrichment of known targets
of regulatory elements (Sebestyén et al., 2016; Trincado er al.,
2018). However, the inherently noisier nature of the estimation of
differences in AS compared to those of differential gene expression
may limit the applicability of GSEA-like methods. Moreover, an
additional limitation affecting both ORA and GSEA approaches lies
on the high number of different features or binding sites and on the

potential co-linearities among them that should be considered,
resulting otherwise in a high false positive rate derived from con-
founding effects.

In this work, we used simulated data to study, for the first time,
the performance and the limitations of the classical enrichment
approaches (ORA and GSEA) for the detection of regulatory ele-
ments driving AS changes. To tackle some of these limitations, we
developed dSreg, a probabilistic model integrating differential splic-
ing and regulation analyses. dSreg models latent changes in inclusion
rates as a linear combination of the regulatory effects of the RBPs
binding to relevant regions of the pre-mRNA for every identified AS
event. Moreover, we used a hierarchical shrinkage prior distribution
to model the changes in the activity of RBPs to formalize the as-
sumption that only a few RBPs would show changes in their activity.
dSreg was applied to simulated and real data, including data from
systematic RBPs knock-down experiments, to assess its performance
against ORA and GSEA. Finally, we applied dsReg to a real RNA-
seq dataset obtained from a cardiomyocyte differentiation experi-
ment, for which a limited number of AS regulators might be
assumed.

2 Materials and methods

2.1 dSreg: a mechanistic probability model for
differential splicing

dSreg models the AS changes between two different conditions, a
and b, as a function of changes in the activity of a few of the existing
RBPs acting through their known binding sites. Given K AS events
detected across N samples, we observe I ; reads supporting exon in-
clusion out of a total of T} ; reads mapping to the kth exon skipping
event in sample 7, which depends on the unknown probability of
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inclusion Wy ;. The conditional probability of observing I, reads
given Ty ; and W} is given by the binomial distribution,

Pkl Tr i ¥ri) = Binomial(ly ;| Ty i, Wi.i)- (1)
W, is therefore different for each sample i, but depends on the con-
dition or group to which it belongs. Since probabilities are bound
between 0 and 1, to model this dependency, we take the logit trans-

formation X ;,
Wi
=g <1 - Wk,,)' @

We assume that X ; is drawn from a normal distribution with a
common standard deviation o), and different means per condition:
o for condition a5 and oy, + f§;, for condition b, such that B repre-
sents the difference between the two conditions. For simplicity, we
assume here that the standard deviation is the same across all K AS
events (o, = 0).

p(Xei | Di, o, B, 0)

= Normal(Xy; | ox + Dify;, 0) (3)

where D; is a constant that takes the value 1 when the sample
belongs to condition b, and 0 when it belongs to condition a:

1
b {1

So far, this model is a simple logistic regression for each event
with the only assumption that the sample variance is common across
events and conditions. However, the changes in the probability of
inclusion of exon k between two conditions, indirectly modeled by
B, should depend on the change in the activity 6; of a particular
regulatory RBP j and on whether it can bind to exon k. The binding
information is encoded in a matrix Sg.;, with value 1 whenever the
RBP ; binds to the exon k and 0 otherwise. Position dependent
effects can be easily included by considering RBP j binding to differ-
ent relative locations as different and independent RBPs. At the
same time, the matrix S could also contain continuous values such
as the probabilities of binding, affinities or scores given by Position
Weighted Matrices (Ray et al., 2013) or any other predictive tool
(Alipanahi ez al., 2015; Maticzka et al., 2014).

if sample i in groupa
if sampleiingroupa’

s {1 if the combination of RBP—region j is present in event k
kj = -

0 otherwise

Now we can model B, the change in the logit-transformed inclu-
sion rate of exon k, as a normal distribution centered at a linear
combination of regulatory effects 6 and S, (the binding profile of
exon k) with certain standard deviation v. Adding variance v to the
distribution of B, allows the existence of some changes in AS not ne-
cessarily explained by the regulatory features included in the model,

=/
p(ﬁk‘ 67 Skvy) —Normal<ﬁk| Zsk.jgf: V)‘ (4)

j=0

In this type of exploratory analysis, large numbers of regulatory
proteins are usually tested. However, we expect that AS changes are
driven by only a few RBPs. We formalize this prior belief setting a
horseshoe prior for the change in the activity of regulator j 6;
(Carvalho et al., 2009). The horseshoe prior, a member of the family
of hierarchical shrinkage priors, specifies a normal prior for 8; with
mean 0 and a standard deviation t;, where 7; is not a fixed value, but
drawn from a common half Cauchy distribution with mean 0 and p
scale parameter. 7; represents a local shrinkage parameter, as it only
affects protein j, whereas p can be understood as a global shrinkage
parameter. We further set a half Cauchy prior in p with mean 0 and
standard deviation 1 as recommended (Carvalho et al., 2009). Note
that this prior can be adapted according to the expected number of
non-zero parameters (Piironen and Vehtari, 2017):

p(0; | ;) = Normal(0; | 0, 7;) (5)

p(zi| p) = Cauchy*(1; |0, p) (6)

p(p) = Cauchy*(p|0, 1). 7)

Finally, we need to specify prior distributions for the remaining
parameters o, and 6. Since we expect most of the exons to be
included most of the times (¥ ~ 1) and a, is the logit transformation
of the inclusion rate in condition a, we set a normal prior centered
at 3 (which reflects an expected ¥ = 0.95), with standard deviation
3 for each exon k to enable some deviation from this expectation.
Moreover, as we expect little variation among samples, we set a half
Cauchy prior distribution with 0 mean and standard deviation 1 on
o,

p(ax) = Normal(a| 3, 3) (8)

p(0) = Cauchy* (s 0, 1). 9)

The joint posterior probability of the parameters ® given the
data (I) is proportional to the joint probability distribution of the
data and @, since the marginal probability of obtaining the data p(I)
is constant for any @,

p(©,1)
p(D)

Using the conditional probabilities and prior distributions that
we have defined for each variable, we can calculate this joint prob-
ability distribution applying the chain rule,

p(OI) = < p(®,I). (10)

p(0,1) =
:p(LT,X7a,ﬁ,u70,r,p,D75):
=p(©,1)= H[P 0jl7)p (el p)] ﬁ [P (BilS, 0,v)p (o ) P (1))
k (11)
where,

N
P(1) = [T (pUkil T X oKl oo D)) (12)

i

Once the full posterior distribution is completely specified, it can
be explored using Markov Chain Monte Carlo algorithms. We
implemented this model in stan (Carpenter et al., 2017), using a
non-centered parameterization whenever possible to alleviate sam-
pling difficulties from hierarchical models (Betancourt and
Girolami, 2013). The full model is represented as a directed acyclic
graph to show dependencies among parameters in Figure 1B.

3 Results

3.1 Adding information about regulatory elements
improves the detection of AS changes even at low
sequencing depth

Using simulated data we first compared the performance of a stand-
ard GLM to detect changes in AS at different sequencing depths (4).
Correlation between the estimated f§, and the real  used for the
simulations was generally low and did not increase with sequencing
depth. When focusing on detection of AS changes, we found that, as
expected, at low sequencing depths (log(1) < 3), the sensitivity at a
5% false discovery rate (FDR) was smaller than 10% when using a
simple GLM. As 4 increased, so did the sensitivity of the GLM
(Fig. 2B). Interestingly, the F1 score, which integrates both sensitiv-
ity and specificity, saturated with depth, suggesting that after some
point, there was not much gain by increasing sequencing depth
(Fig. 2C). To avoid the need to select an arbitrary threshold to assess
the performance of the different methods, we additionally calculated
the receiver operating characteristic (ROC) curves for each simu-
lated dataset and the area under them (AUROC, Fig. 2D and E).
These results showed that, at low sequencing depths (log(4) < 3),
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Fig. 2. Comparison of the performance for the identification of different event inclusion rates of a standard method using a single GLM per exon considering two FDR thresh-
olds (0.05 and 0.2), a Bayesian model that pools variance across all exons (Null model) and dSreg. Performance was analyzed in simulations with increasing sequencing depths
/. (the mean of the Poisson distribution used to simulate the total number of reads mapping to an exon skipping event). (A) Pearson correlation between real and estimated f;.

(B) Sensitivity. (C) F1 score. (D, E) ROC curves (D) and the area under them (E)

the performance was rather poor, with AUROC values of 0.7 at
most.

In order to check whether potential improvements of dSreg were
due to the inclusion of binding sites and changes in RBPs activity in
the model or just to variance pooling, we ran dSreg and a reduced
model that only pools variance from all exons without taking into
account of the binding sites and changes in regulatory activities
(Nullmodel). We defined significantly changed events as those with
a posterior probability higher than 95% of having a 8, > 0. The
Null model already outperformed the GLM at the single exon level
and improved quantitative estimation of f with depth (Fig. 2A).
However, dSreg showed a much greater improvement in correlation
and sensitivity, even at very low sequencing depths (log(4) < 3),
when there was practically no information from individual events
(Fig. 2). This increased sensitivity did not come with a decrease in
specificity as could be expected, since it showed also very high F1
scores and AUROC, suggesting that differences in performance are
intrinsic to the method and not threshold dependent (Fig. 2C-E).
Results with the Nullmodel suggest that pooling variance across
events does only marginally improve the inference of splicing
changes, at least with the low variance used in these simulations.
dSreg, in contrast, additionally used the information about the
underlying regulatory mechanisms to correct differences that may
easily arise by chance in datasets with limited sample size, given that
simulations were done with only three samples per condition.

3.2 dSreg improves the detection of the RBPs driving
AS changes

Once AS changes have been identified, we focused on the detection
of the regulatory elements potentially controlling these events. Using
our simulated datasets, we compared dSreg with the traditional
ORA and GSEA approaches. As FDR<0.2 filtering showed higher
F1 score in the identification of splicing changes (Fig. 2C), we used
this threshold to select significantly changed events to perform the
downstream enrichment analyses. The dependency of ORA on the
detection of significant changes led to low F1 scores for GLM results

at any tested FDR threshold, especially at low sequencing depths
(Fig. 3A). We also used an in-house version of GSEA to take advan-
tage of quantitative information in the identification of regulatory
elements. Briefly, events were ranked according to their maximum
likelihood estimation of the coefficient of the GLM, which repre-
sents the log of the odds ratio of inclusion between the two condi-
tions. Then, we looked for non-random distributions of binding
sites along the ranked list (Subramanian ez al., 2005) (see Section 2
for details). We found a substantial improvement over ORA, with
higher F1 scores, especially at low sequencing depths, but did not
seem to benefit from higher sequencing depths (Fig. 3A). dSreg out-
performed both ORA and GSEA at every evaluation metric, and
was barely affected by low sequencing depths (Fig. 3). Therefore, in-
tegration of the two sources of information improves results both in
terms of inference of differential inclusion rates and the identifica-
tion of the mechanisms driving those changes.

3.3 Increasing the number of potential regulatory

elements does not decrease dSreg performance

We have so far used simulated data to explore the effect of sequenc-
ing depth on both the detection of splicing changes and on the iden-
tification of the key RBPs driving these changes. We next assessed
the impact of the number of regulators, which may increase the
number of false positives, particularly in presence of co-linearities
among binding profiles of different RBPs. To study this potential
limitation, we simulated datasets with only five active RBPs as in the
previous simulations, but increasing the number of total RBPs
included in the analysis up to 250. We found that the F1 score
tended to decrease as the number of potential regulators increased
with either ORA or GSEA, despite multiple test correction to con-
trol FDR. Once more, dSreg outperformed both methods and
remained unaffected by the inclusion of other inactive regulatory
elements (Fig. 3B).
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Fig. 3. Performance of methods for the detection of regulatory elements: ORA with
variable FDR thresholds (0.05 and 0.2), non-parametric GSEA and dSreg.
Performance was analyzed in simulations with increasing sequencing depths 4,
which is the mean of the Poisson distribution used to simulate the total number of
reads mapping to an exon skipping event. (A, B) Mean F1 scores obtained with dif-
ferent depths 4 (A) and total number of regulators (B) for the different enrichment
approaches. (C, D) Calibration, measured as the proportion of times the real value
lies within the 95%CI of differentially spliced exons and regulatory elements
for increasing sequencing depth (C) or increasing number of total regulatory ele-
ments (D)

3.4 Model calibration remains robust while decreasing

the proportions of active RBP

We further analyzed the performance of dSreg in terms of calibra-
tion. A model is well calibrated when inferred probabilities actually
represent the real frequency of a given phenomenon i.e. a model is
calibrated when the uncertainty of the parameter estimate matches
the evidence contained in the data. Calibration was calculated as the
proportion of events and regulators whose real change in logit-
transformed inclusion rates (B;) or activity (0;) is within the
estimated 95%CI. Whereas changes in inclusion rates were well cali-
brated, the uncertainty of the changes in the activity of RBPs seemed
to be slightly overestimated, given that 95%CI included the real val-
ues more often than 95% of the times, independently on the
sequencing depth 4 (Fig. 3C). We then tested how different numbers
of total regulatory elements affected model calibration with the pre-
vious simulations using only five active out of an increasing number
of candidate RBPs. We found that the total number of candidate reg-
ulators had no effect on calibration (Fig. 3D). These results suggest
that dSreg is conservative when estimating the uncertainty of the
regulatory activities 0; based on the data, since the real value is with-
in the 95%CI more often than expected across all tested conditions
(Fig. 3C and D).

3.5 dSreg outperforms other methods using real data

To assess whether the better performance of dSreg could be con-
firmed with independent real data, we used an RNA-seq dataset
(around 120 M reads per sample) for which a subset of AS events
were quantified using RASL-seq and can be used as gold standard
(Zhang et al., 2019). We used CLiP-seq data of a number of RBPs
binding to upstream and downstream flanks of exon skipping events
as regulatory features for dSreg (Dominguez et al., 2018). Since
dSreg performed particularly better than other methods at low
sequencing depths, we subsampled the sequencing reads by a factor
of 2 up to 512 to analyze the extent of this advantage. We analyzed
the data also with MISO, BRIE and DARTS. Both BRIE and
DARTS use prior information to improve detection of splicing
changes (Huang and Sanguinetti, 2017; Katz et al., 2010; Zhang
et al., 2019). dSreg and the Nullmodel showed the best

performance, compared to all other methods, except in extremely
low coverages (dilution factor >100), in which DARTS overcame
dSreg (Fig. 4A and B). In contrast to the results obtained from the
simulated data, dSreg and Nullmodel performed similarly, which
suggests that the regulatory features that were added do not contrib-
ute much to the estimation of AS changes. However, it also shows
that it remains robust to the inclusion of non-relevant regulatory
features. Neither BRIE nor DARTS outperformed the Nullmodel.
We observed the same patterns when comparing the results to the
full coverage RNA-seq dataset (Supplementary Fig. S1).

The main advantage and motivation of dSreg is the inference of
the regulators driving AS changes, a feature that is not provided by
any of the existing tools for AS analysis. To assess whether dSreg
outperforms ORA and GSEA also with real data, we used the collec-
tion of RBP knock-down experiments from ENCODE (Nostrand
et al., 2018). Although it is difficult to know the actual regulatory
mechanisms in each case, one may reasonably assume that at least
some of the AS changes would be mediated by the down-regulation
of the target RBP. dSreg detected the highest percentage of knock-
down RBPs as regulatory elements compared to the random expect-
ation in each case (Fig. 4C). If the expression of other regulatory
element is affected by the perturbation, we would expect them also
to contribute to explain AS changes. Regulators detected by dSreg
tended to be more often differentially expressed in the same experi-
ment than expected by chance compared to other methods
(Fig. 4D). Finally, we observed that, when sorting the regulators by
their evidence, the RBP that was knocked-down tended to appear
higher in the ranking produced by dSreg than in those yielded by
ORA and GSEA (Fig. 4E and F, respectively). Altogether, these
results suggest that dSreg also outperforms previous methods in the
identification of regulatory elements using real data.

3.6 AS regulation in cardiomyocyte differentiation by

core-spliceosomal factors

We then tested our model on a dataset of mouse cardiomyocyte dif-
ferentiation from cardiac precursors (GSE59383) with three samples
per condition as in our simulated scenario. Binding sites for a num-
ber of RBPs were obtained from CLiP-seq experiments and only
those located in the upstream and downstream intronic flanking
250 bp were used (see Section 2 for details). We run the three
approaches explored in this work and found that ORA resulted in a
high number of significantly enriched candidates, most of which are
likely to represent false positives as in our simulation analysis
(Fig. 5A). GSEA, on the other hand, showed no significant enrich-
ment at FDR < 0.05, and only a few at nominal P < 0.05, which
suggest that these P-values can easily arise by chance. Indeed, there
is little concordance with results from ORA (Fig. SA and B). dSreg
did show an overall agreement with ORA results, but, as expected,
dSreg provided a reduced number of RBPs whose combined action
best explain the observed AS changes (Fig. 5 and Supplementary
Table S1). Interestingly, a great deal of the identified regulatory
RBPs are considered to be members of the core spliceosome
(BUD13, EFTUD2, PRPFS, SF3A3, SF3B4), suggesting that changes
in the activity of these particular components might be key for the
AS changes underlying cardiomyocyte differentiation. In this regard,
the core-spliceosomal machinery has been shown to have extensive
regulatory potential (Papasaikas et al., 2015) and mutations in one
of these genes (EFTUD2) have been associated with congenital heart
defects, among other phenotypes (Lines ez al., 2012).

4 Discussion

Here we present dSreg, a new method that integrates the analysis of
differential AS and the identification of the underlying regulatory
mechanisms in a single model. Our single-step model bypasses the
need to call for differential splicing before enrichment and therefore
improves sensitivity, especially at low sequencing depths. It also
increases specificity as it uses information from the underlying
changes in RBPs activity to avoid false positives derived from small
sample sizes. Moreover, dSreg analyzes the regulatory activity all
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Fig. 4. Evaluation of the performance of dSreg with other methods on real data. (A, B) Performance of differential splicing methods using RASL-seq quantification as true val-
ues, measured by Pearson correlation of AY (A) and AUROC for exons significantly changed, defined as those with a [A¥| > 0.05. Methods include a GLM. MISO, BRIE,
DARTS with and without using the predictions as prior (info and flat, respectively) and dSreg and its Null model. (C) Percentage of experiments in which the knocked-down
RBP was found among the regulatory elements compared to expectation. (D) Percentage of regulatory RBPs identified by each method that were detected to be differentially
expressed compared to expectation. Expectations were calculated by 20 000 random sampling of the same number of regulators. (E, F) Difference in rank occupied by the

knocked-down RBP in the output of dSreg with that of ORA (E) and GSEA (F)

RBPs simultaneously to correct for possible co-linearities in the
binding profiles and uses a horseshoe prior to force most of the
RBPs activities to remain unchanged. Joint modeling also provides
higher specificity in the detection of regulatory mechanisms as it
reduces the number of false positives due to co-occurrence of bind-
ing sites of different RBPs, leading to an improved overall perform-
ance compared with classical enrichment approaches for regulatory
elements. Our model opens the possibility to analyze AS more accur-
ately using RNA-seq data with low sequencing depth, both for re-
analysis of previously sequenced samples or for more cost-effective
new RNA-seq experiments with focus on the regulatory mecha-
nisms. Although transcript-based methods also lower the require-
ments on sequencing depths (Alamancos et al., 2014; Trincado
et al., 2018), our model works directly at the event level, reducing
the dependency on the transcript annotation (Zhao and Zhang,
2015). In contrast to previous approaches, including Bayesian meth-
ods like MISO (Katz et al., 2010), our model is motivated by how
splicing changes are regulated between two biological conditions ra-
ther than on how inclusion and skipping reads are generated from
the inclusion rate (W) in a particular sample. Still, we show that not
only we gain more biological insight directly from the model, but
also obtain, at least, as good estimations of AS changes as provided
by the best performing tools to date. dSreg still requires a previous
definition of alternative mapping events and allocation of reads to
inclusion or skipping isoforms, making it compatible with any of the
software used in this paper.

Our good results on simulations are, however, restricted to those
cases in which AS changes are mediated only by a subset of differen-
tially active RBPs binding to known sites. Although inclusion of a

high number of RBPs showed no effect on the changes in inclusion
rates between the two tested conditions, alternative sources of
errors, such as errors in the binding profiles or missing information
might have a negative impact on the sensitivity of dSreg. Indeed, the
improvement of dSreg on real data compared with the Null model is
rather small, if any. The better performance of both models com-
pared with existing methods seems therefore due to the inclusion of
a parameter describing variance between samples across exons ra-
ther than to the regulatory information. Similarly, other methods
including event features to improve detection of splicing changes do
not outperform our Nullmodel (Huang and Sanguinetti, 2017;
Zhang et al., 2019), except when data are very scarce. Whereas
dSreg only uses AS data from the target experiment, DARTS inform-
ative prior was trained with many other datasets such that, in ab-
sence of information, is able to make relatively good predictions
about the outcome of an experiment given the regulatory features.
These results suggest that only a small part of splicing variation is
mediated by RBPs CLiP-seq binding sites as in the model. This was
not unexpected, since previous studies suggest that AS regulation is
far more complex than a sum of effects of a number of RBPs and
that RNA structure plays a critical role (Barash et al., 2010; Leung
et al., 2014; Taliaferro et al., 2016). In spite of these limitations,
dSreg was able to detect the knocked-down and differentially
expressed RBPs in loss of function models more efficiently than trad-
itional approaches like ORA and GSEA, suggesting that the identi-
fied regulation was real. Yet, we expect that careful modeling of
additional AS regulatory features will improve the results, e.g. nu-
cleosome positioning and histone modifications (Iannone et al.,
2015; Luco et al., 2010; Merkin et al., 2015). Moreover, dSreg is
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limited so far to pairwise comparisons, whereas we are often inter-
ested in analyzing enrichment over a number of conditions, such as
time series and dose-response experiments. Further work will be ne-
cessary to allow for more complex and powerful experimental
designs.

5 Conclusion

Our model provides an example of how joint modeling of inter-
dependent phenomena can improve results compared with com-
pletely separated analysis relying on categorization according to
rather arbitrary thresholds. Bayesian inference through Markov
Chain Monte Carlo methods provides a general framework to fit
very flexible models that adapt to each particular analysis and to
easily extend currently existing models to integrate different sources
of information. In our case, we only integrated binding sites infor-
mation with AS data, but these models are flexible enough to
include information about expression of AS regulators, post-
transcriptional modifications or any other piece of information sup-
porting a change in the activity of a particular regulatory protein.
This model is not only limited to regulation analysis, but can also be
used with functional annotations, such as the presence of functional
domains, phosphorylation sites, protein—protein interaction motifs
or any other property that may be associated with AS. Moreover,
we have implemented the model in dSreg (https://bitbucket.org/cmar
tiga/pydsreg/src/master/), which enables running the model using
only the matrices of inclusion and total number of reads per event
and a matrix S with the event features e.g. the binding sites.
Therefore, dSreg adds a valuable statistical tool to existing software
aimed at identifying AS events, such as rMATS or vast-tools (Irimia

et al., 2014; Shen et al., 2012), among others, for more accurate de-
tection of AS regulatory mechanisms using RNA-seq data.
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