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Abstract

Background

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Early warning systems (EWSs) are of increasing importance in the context of outbreak-

prone diseases such as chikungunya, dengue, malaria, yellow fever, and Zika. A scoping

review has been undertaken for all 5 diseases to summarize existing evidence of EWS tools

in terms of their structural and statistical designs, feasibility of integration and implementa-

tion into national surveillance programs, and the users’ perspective of their applications.

Methods

Data were extracted from Cochrane Database of Systematic Reviews (CAU : PleasenotethatCDSRhasbeendefinedasCochraneDatabaseofSystematicReviewsinthesentenceDatawereextractedfrom::::Pleasecheckandcorrectifnecessary:DSR), Google

Scholar, Latin American and Caribbean Health Sciences Literature (LILACS), PubMed,

Web of Science, and WHO Library Database (WHOLIS) databases until August 2019.

Included were studies reporting on (a) experiences with existing EWS, including imple-

mented tools; and (b) the development or implementation of EWS in a particular setting. No

restrictions were applied regarding year of publication, language or geographical area.

Findings

Through the first screening, 11,710 documents for dengue, 2,757 for Zika, 2,706 for chikun-

gunya, 24,611 for malaria, and 4,963 for yellow fever were identified. After applying the

selection criteria, a total of 37 studies were included in this review. Key findings were the fol-

lowing: (1) a large number of studies showed the quality performance of their prediction

models but except for dengue outbreaks, only few presented statistical prediction validity of

EWS; (2) while entomological, epidemiological, and social media alarm indicators are poten-

tially useful for outbreak warning, almost all studies focus primarily or exclusively on meteo-

rological indicators, which tends to limit the prediction capacity; (3) no assessment of the

integration of the EWS into a routine surveillance system could be found, and only few
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studies addressed the users’ perspective of the tool; (4) almost all EWS tools require highly

skilled users with advanced statistics; and (5) spatial prediction remains a limitation with no

tool currently able to map high transmission areas at small spatial level.

Conclusions

In view of the escalating infectious diseases as global threats, gaps and challenges are sig-

nificantly present within the EWS applications. While some advanced EWS showed high

prediction abilities, the scarcity of tool assessments in terms of integration into existing

national surveillance systems as well as of the feasibility of transforming model outputs into

local vector control or action plans tends to limit in most cases the support of countries in

controlling disease outbreaks.

Introduction

Epidemics of aAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:rboviral diseases transmitted by Aedes mosquitoes—such as chikungunya, den-

gue, yellow fever, and Zika—have emerged or reemerged over the past 5 decades, overburden-

ing already stretched health systems. Approximately 2.5 billion people live in risk areas of

Aedes-borne diseases, and, collectively, an estimated 390 million infections occur annually in

about 100 countries [1–4]. Unfortunately, risk forecasts indicate that these epidemics will

intensify and reach new geographical areas throughout the 21st century [5]. This fact is largely

driven by a combination of urbanization, poor living conditions, international travel and

trade, changes in mosquito distribution and abundance, climate variability, and climate

change [6–8].

Also, malaria, an Anopheles mosquito–transmitted disease in tropical and subtropical

areas, has often shown its potential for large outbreaks. This may happen in the highly endemic

areas of sub-Saharan Africa but also in areas of malaria elimination in Asia and Latin America

where the fading herd immunity makes people more susceptible for infections and allows local

outbreaks to occur [9,10].

Vector-borne diseases can mainly be controlled through effective vector control. Even after

the advent of a vaccine, as available for yellow fever, vector management will continue to be

important. Only for malaria, a number of therapeutic treatment options are available [11].

Due to the high vector capacity of Aedes mosquitoes, the required level of vector control inter-

ventions to prevent transmission is usually not being achieved, and outbreaks have become

increasingly frequent [11]. Data are usually provided by the routine disease surveillance sys-

tems occasionally complemented by entomological data. The information often arrives too

late or is of low quality or in the wrong format [12,13]. As a result, outbreaks are usually

detected too late when infections have already spread.

Forecasting disease outbreaks is highly desirable to give time to the vector control services

for preparing the response. For outbreak early warning systems (EWSs), countries need stan-

dard operational procedures (SOPs) to identify consistently through alarm signals an increased

outbreak risk in time and space triggering an early response. Several EWSs have been devel-

oped for our target diseases, and most of these have commonalities in their structural design,

functions, and analytical approach [14–17]. However, studies addressing the effectiveness of

space and time prediction and how the EWS may improve coordination among the operators

at national and district level are scarce. This scoping review summarizes and discusses the evi-

dence of different EWSs, their performance, and abilities to predict outbreaks of our target
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diseases, providing an overview of the state of the art and recommendations for the future

development of a practical outbreak prediction tool. This review will recapitulate (1) EWS pre-

diction validity in terms of sensitivity, specificity, positive predictive value (PPV), and negative

predictive value (NPV) of outbreak warning; (2) if studies addressed the operational feasibility

of the EWS in terms of user-friendliness, cost, capacity of being easily implemented within

countries’ national control programs, coordination, and the requirements for increasing its

efficiency; and (3) the scopes of study designs for assessing the EWS effectiveness in triggering

adequate response activities.

Methods

MAU : PleasecheckwhethertheeditstothesentenceMethodsusedwerepredefinedinaprotocol:::arecorrect; andprovidecorrectwordingifnecessary:ethods used were predefined in a protocol based on the Preferred Reporting Items for Sys-

tematic reviews and Meta-Analyses (PRISMA) statement [18].

Search strategy, databases, and search terms

Literature search and analysis was carried out until August 5, 2019. Data were extracted from

the following databases: (1) Cochrane Infectious Diseases Group (CIDG) Specialised Register

and Cochrane Central Register of Controlled Trials (CENTRAL); (2) Google Scholar; (3) Latin

American and Caribbean Health Sciences Literature (LILACS); (4) PubMed; (5) Web of Sci-

ence; and (6) WHO Library Database (WHOLIS). The reference lists of all included papers

were screened for further relevant studies.

The inclusion criteria of articles were (1) primary research published in a peer-reviewed

journal; (2) studies addressing any type of existing or developing prediction model; and (3)

dealing with chikungunya, dengue, malaria, yellow fever, and Zika diseases or a combination

of the diseases; presenting (a) experiences with existing EWS (stand-alone or integrated into

the national surveillance systems); and (b) the development or implementation of EWS in a

particular setting. EWS studies were excluded if merely investigating trends or correlations of

particular alarm indicators. Studies were also excluded if they neither reported nor provided

sufficient data to outline the type of mathematical model used or the temporal and spatial pre-

diction of the tool. Further studies were excluded if they failed to demonstrate a developed or

prototype of prediction model—i.e., merely presented and discussed candidate list of potential

alarm indicators or studies with models constructed to elucidate transmission dynamics. No

exclusion due to study design was made, except for conference abstracts, book chapters, or

studies that are published by journals of a local institute.

Searches were conducted in English, assuming that most relevant studies are indexed in

English, with title and abstract in English. No restrictions were applied for year of publication,

geographical area, or language.

The terms “early warning,” “forecasting,” and “prediction” have been probed in a pilot

search as Medical Subject Headings (MeSH) terms and as free-text terms. The terms “forecast-

ing” and “prediction” have been discarded thereafter for the final search, as they did not show

EWS in a public health sense predicting epidemics, but mostly clinical related studies predict-

ing outcome of clinical disease.

The terms “chikungunya,” “dengue,” “malaria,” “yellow fever,” and “Zika” were used as

MeSH terms and as free-text terms, depending on the function of the database. The searches

were run for the combination of “early warning” AND the disease.

PubMed has been searched using MeSH terms for the diseases and free-text term for “early

warning.” For Google Scholar, LILACS, and WHOLIS, free-text terms for both categories have

been use. For CIDG Specialised Register and CENTRAL, the disease and “early warning” were

searched as MeSH terms.
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Quality assessment and assurance

Searches were performed by the team of authors and double-checked until consistent results

were found. One author (LH or EG) screened all hits for their relevance. As for Google

Scholar, a large number of hits were derived (>10,000 for dengue), hits were sorted by rele-

vance, and the first 120 hits were established as a suitable number, with no additional relevant

hits encountered toward the end of the search.

Two data extractors (LH and SRR for chikungunya, dengue, yellow fever, and Zika; LH and

EG for malaria) independently assessed the abstracts and full text of the preselected references

for potential eligibility by applying all inclusion and all exclusion criteria.

After full agreement, data were entered into a predefined Excel data extraction form by

author, title, journal, publication date, and study design as well as different outcome parame-

ters as they emerged from the studies, following the Consolidated Standards of Reporting Tri-

als (CONSORT) 2010 checklist [19]. Extracted parameters are listed below in detail.

Risk of bias of the included studies has not been assessed, as no systematic but a scoping

review was performed, but the quality was assured by strict application of inclusion and exclu-

sion criteria, considering several quality aspects as described above.

Data extraction and analysis

The above described data extraction form was developed based on the study objectives and rel-

evant predefined quantitative and qualitative outcome variables. Further categories were also

considered including (1) studies addressing surveillance as structured form of information on

disease cases, meteorological, epidemiological, and entomological information (indicator-

based surveillance, IBS); and 2) studies on surveillance of unofficial or unstructured informa-

tion (such as social media and community reports) or of social events (event-based surveil-

lance, EBS). EWS using epidemiological, entomological, or climate data for outbreak

prediction were termed “alarm-informed EWS.” EWS based on increased case numbers in

comparison with historical data were termed “case-informed EWS.” Further characteristics of

the studies taken into consideration were (a) methodological (case study, time series, and ran-

domized control trials (RCT), etc.); (b) the models/tools that have been investigated (and their

study scope); and (c) the disease(s) being investigated. Detailed information was extracted on

specific outcomes as sensitivity, specificity, PPV/NPV outputs of the models, local coverage of

the tool (central, district/province, or subdistrict level), integration (into national surveillance

program), and the level of implementation (central, district, or subdistrict levels).

FAU : PleaseconsiderrephrasingthesentenceFurthermore; theenduserofthetool:::forclarity:urthermore, the end user of the tool (e.g., public health officers, institutes, researchers, and

others), the user-friendliness of the EWS tool, its temporal and spatial risk prediction and its

integration feasibility including, resource needed to implement, prediction duration or timelag

and, the duration of dataset were all captured in this review. The data extraction form has been

further synthesized to evidence tables (Tables 1–3).

Evaluation criteria

Prediction models are typically evaluated according to their statistical and operational perfor-

mance. Statistically, the sensitivity, specificity, PPV, or NPV measures are used to quantify the

quality of prediction performance of the model. Based on common recommendations of

appropriate cutoff for model performance, we attributed a statistical measure of>50% to high

performance prediction models [20]. The spatial prediction is crucial in the context of vector

control and action plan; spatial prediction alone is less useful and must be combined with the

temporal model for effective public health response. Accordingly, we defined high temporal

prediction by a prediction window of 1 to 12 weeks (allowing sufficient time between
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Table 1. ID, study design, model, and statistics used.

Article

ID

Authors (year) Types of study design Publication year and

country/region

Types of models/statistics used Category of

study�

D1 [21] Hussain-Alkhateeb and

colleagues (2018)

Retrospective; cohort 2018 Multicountry Shewhart and endemic channel approach (moving

average)

1

D2 [26] Shi and colleagues

(2016)

Retrospective analysis of

surveillance data

2016 Singapore Machine learning: absolute shrinkage and selection

operator (LASSO)

1

D3 [12] Bowman and colleagues

(2016)

Retrospective analysis of

surveillance data

2016 Multicountry Shewhart and endemic channel approach (moving

average)

1

D4 [31] Ledien and colleagues

(2019)

Retrospective, Cross-

sectional study design

2019 Cambodia Bayesian algorithms to detect outbreaks using count data

series

2

D5 [28] Zhang and colleagues

(2014)

Prospective analysis of a

real-world system

2014 China Time series moving percentile method based on historical

data

2

D6 [27] Chen and colleagues

(2018)

Retrospective analysis of

surveillance design

2018 Singapore Derive dynamic risk maps for dengue transmission.

LASSO-based regression

1

D7 [57] Ramadona and

colleagues (2016)

Retrospective analysis of

surveillance data

2016 Indonesia Generalized linear regression models with a Gaussian link

of disease

2

D8 [30] Ortiz and colleagues

(2015)

Retroprospective time series

analyses

2015 Cuba Linear models, probability distributions or time series 2

D9 [38] Lee and colleagues

(2017)

Retrospective analysis of

surveillance data

2017 Colombia Nonlinear regression model 2

D10 [23] Semenza (2015) Retrospective analysis of

surveillance data

2015 Europe Hierarchical multivariate model 2

D11 [43] Sang and colleagues

(2015)

Retrospective analysis of

surveillance data

2014 China STL 2

D12 [41] Zhang and colleagues

(2016)

Retrospective analysis of

surveillance data

2016 China A negative binomial regression model with a log link

function

2

D13 [42] Li and colleagues

(2017)

Retrospective analysis of

surveillance data

2017 China GAMs 2

D14 [44] Adde and colleagues

(2016)

Retrospective analysis of

surveillance data

2016 French Guiana Lagged correlations and composite analyses 2

D15 [40] Eastin and colleagues

(2014)

Retrospective analysis of

surveillance data

2014 Colombia ARIMA model 2

D16 [45] Guo and colleagues

(2017)

Retrospective analysis of

surveillance data

2017 China Several machines learning algorithms (LASSO) linear

regression model and GAM

2

D17 [13] Hii and colleagues

(2012)

Retrospective analysis of

surveillance data

2012 Singapore Poisson multivariate regression model and autoregression 2

D18 [35] Wongkoon and

colleagues (2012)

Retrospective analysis of

surveillance data

2012 Thailand SARIMA 2

D19 [32] Putra and colleagues

(2017)

Mathematical simulation

modeling

2017 Indonesia Model was developed using logistic regression 2

D20 [33] Hidayati and colleagues

(2012)

Mathematical simulation

modeling

2012 Indonesia Stochastic spreadsheet model 2

D21 [39] Halide and colleagues

(2008)

Retrospective analysis of

surveillance data

2008 Indonesia Linear multiple regression model 2

D22 [58] Lowe and colleagues

(2011)

Retrospective analysis of

surveillance data

2011 Brazil A negative binomial model formulation extra-Poisson

variation (Bayesian framework) using MCMC

2

D23 [37] Yu and colleagues

(2011)

Retrospective analysis of

surveillance

2011 Taiwan Stochastic BME 2

D24 [29] Lowe and colleagues

(2016)

Prospective surveillance

design

2016 Brazil Bayesian spatiotemporal model 2

D25 [69] Lowe and colleagues

(2014)

Retrospective analysis of

surveillance data

2014 Brazil Spatiotemporal hierarchical Bayesian model 2

D26 [36] Lowe and colleagues

(2013)

Retrospective analysis of

surveillance data

2013 Brazil Spatiotemporal generalized linear mixed model with

parameters estimated in a Bayesian framework

2

D27 [56] Withanage and

colleagues (2018)

Retrospective analysis of

surveillance data

2018 Sri Lanka Time series regression model 2

(Continued)

PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009686 September 16, 2021 5 / 25

https://doi.org/10.1371/journal.pntd.0009686


prediction and action taken). WAU : PleasecheckwhethertheeditstothesentenceWedefinedhighspatialpredictionbythepredictionofhotspots:::arecorrect; andprovidecorrectwordingifnecessary:e defined high spatial prediction by the prediction of hotspots

within geographically defined areas of relatively small spatial scale such as villages, neighbor-

hood, or household levels in contrast to a resolution within district scale.

Results

Study characteristics

A total of 46,477 hits were obtained, with 11,710 studies focused on dengue, 2,757 on Zika,

2,706 on chikungunya, 24,611 on malaria, and 4,693 on yellow fever. After review by title and

abstract as well as the application of a cutoff after 120 Google Scholar hits, sorted by relevance,

279 dengue, 22 chikungunya, 39 Zika, 89 malaria, and 13 yellow fever articles were further

assessed. Based on the inclusion criteria and removing of duplicates, 151 articles were assessed

as full texts, but exclusion criteria finally retained 37 articles including 28 for dengue, 2 for

Zika, and 7 for malaria. Fig 1 summarizes the search process.

All of the 37 studies were published between 2001 and 2019, of which 33 between 2011 and

2018. Of the 28 dengue studies, 3 [12,21,22] were conducted across different countries (multi-

county) and 16 in Asia (5 in China, 4 in Indonesia, 3 in Singapore, and 1 each in Cambodia,

Sri Lanka, Taiwan, and Thailand). Another 8 studies were conducted in the Americas (4 in

Brazil, 2 in Colombia, 1 in Cuba, and 1 in French Guiana) and 1 [23] in Europe. The 2 Zika

studies were performed in the Americas [24,25].

Table 1. (Continued)

Article

ID

Authors (year) Types of study design Publication year and

country/region

Types of models/statistics used Category of

study�

D28 [22] Chen and colleagues

(2018)

Retrospective analysis of

surveillance data

2018 Multicountry Machine learning LASSO method 2

Z1 [24] Teng and colleagues

(2017)

Retrospective analysis of

surveillance data

2017 PAHO ARIMA model 2

Z2 [25] Chien and colleagues

(2018)

Retrospective analysis of

surveillance data

2018 Colombia Generalized linear model with additional cross-basis

functions

2

M1 [47] Githeko and colleagues

(2001)

Prospective surveillance

design

2001 Kenya Vector capacity and malaria epidemic prediction model

(additive model)

2

M2 [48] Githeko and colleagues

(2014)

Retrospective analysis of

surveillance data

2014 Multicountry Additive, multiplicative, and +18˚C models 2

M3 [34] Githeko and colleagues

(2018)

Retrospective analysis of

surveillance data

2018 Kenya Additive and multiplicative models 1

M4 [49] Midekisa and

colleagues (2012)

Prospective surveillance

design

2012 Ethiopia ARIMA models (SARIMA) 2

M5 [50] Smith and colleagues

(2017)

Prospective surveillance

design

2017 Solomon Islands SCOPIC 2

M6 [51] Ruiz and colleagues

(2006)

Prospective surveillance

design

2006 Colombia A combination of parasite transmission, simulation of

vector ecology, behavior patterns, and dynamics of

mosquitoes

2

M7 [46] Merkord and colleagues

(2017)

Retrospective validation

surveillance data

2017 Ethiopia Time series models 2

�1 = experience with existing EWS and 2 = EWS exercise.

Reference: Article ID; D = dengue, Z = Zika, and M = malaria.

AAU : AnabbreviationlisthasbeencompiledforthoseusedthroughoutTable1:Pleaseverifythatallentriesarecorrect:RIMA, autoregressive integrated moving average; BME, Bayesian maximum entropy; EWS, early warning system; GAM, generalized additive model; MCMC, Markov

chain Monte Carlo; PAHO, Pan American Health Organization; SARIMA, seasonal autoregressive integrated moving average; SCOPIC, seasonal climate outlooks in

Pacific Island countries; STL, seasonal-trend decomposition procedure based on loess.

https://doi.org/10.1371/journal.pntd.0009686.t001
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Table 2. Characteristics of EWARS systems under investigation.

Article

ID

Case- or

alarm-

informed EWS

IBS

or

EBS

Resource needed to

implement and use

Outbreak indicator Alarm indicators Source of data

D1 [21] Alarm

informed

IBS Routine access to data, staff

training (suitable for

unskilled)

Weekly hospitalized cases Multiple of meteorological,

epidemiological, and

entomological variables

National surveillance system and

local meteorological stations

D2 [26] Alarm

informed

IBS Routine access to data, staff

training (suitable for

unskilled)

Weekly reported cases Multiple of meteorological,

epidemiological, and

entomological variables

National surveillance system, local

meteorological stations, and

Department of Statistics for the

demographics

D3 [12] Alarm

informed

IBS Routine access to data, staff

training (suitable for

unskilled)

Weekly probable and

hospitalized cases

Multiple of meteorological,

epidemiological, and

entomological variables

National surveillance system and

local meteorological stations

D4 [31] Case informed IBS Routine access to data, staff

training (suitable for

unskilled)

Weekly probable and lab-

confirmed cases

Predictive distribution of

provincial weekly reported cases

National surveillance system

D5 [28] Case informed IBS Routine access to data, staff

training (suitable for

unskilled)

Biweekly suspected, and

lab-confirmed cases

Predictive distribution of

provincial weekly reported cases

CDC

D6 [27] Alarm

informed

IBS Routine access to data (users’

training and level of skills not

discussed)

Weekly confirmed or lab-

confirmed cases

Weekly meteorological

information

MOH and the Centre for Remote

Imaging, Sensing, and Processing

D7 [57] Alarm

informed

IBS Routine access to data (users’

training and level of skills not

discussed)

Lab-confirmed cases Meteorological and number of

cases

Provincial surveillance system and

local meteorological stations

D8 [30] Alarm

informed

IBS Routine access to data (users’

training and level of skills not

discussed)

Mathematically

simulated: infestation

index of Aedes aegypti

Extensive meteorological data National surveillance system and

local meteorological stations

D9 [38] Alarm

informed

IBS Routine access to data (users’

training and level of skills not

discussed)

Monthly incidence cases Multiple of meteorological,

epidemiological, and remote

sensing data

National surveillance system

D10

[23]

Alarm

informed

IBS Not discussed Imported cases Monthly meteorological

information

The European environment and

epidemiology (E3) network

D11

[43]

Alarm

informed

IBS Routine access to data, staff

training (users’ skills not

discussed)

Lab-confirmed cases Monthly meteorological

information

National surveillance system

D12 41] Alarm

informed

IBS Not discussed Weekly notifiable cases Meteorological information National CDC, provincial,

meteorological and demographic

data

D13

[42]

Alarm

informed

IBS Routine access to data and

high statistical skills

Weekly notifiable cases Meteorological information National surveillance,

meteorological systems, and search

engine of Baidu index database

D14

[44]

Alarm

informed

IBS Routine access to time series

data and high statistical skills

Weekly confirmed cases Meteorological information Local Arbovirus National Reference

Centre

D15

[40]

Alarm

informed

IBS Routine access to time series

data and high statistical skills

Lab-confirmed cases Meteorological information National surveillance system and the

Global Historical Climate Network

D16

[45]

Alarm

informed

IBS Routine access to time series

data and high statistical skills

Lab-confirmed cases Weekly meteorological

information

National surveillance and

meteorological systems

D17

[13]

Alarm

informed

IBS Not discussed Lab-confirmed cases Weekly meteorological

information

MOH, national climatic, and

National Oceanic and Atmospheric

Administration

D18

[35]

Case informed IBS Routine access to time series

data and high statistical skills

Monthly confirmed cases Historical cases National surveillance system and

MOPH

D19

[32]

Case informed IBS Routine access to time series

data and high statistical skills

Monthly lab-confirmed

cases

Index of mosquito survival and

disease resistance

(entomological data)

Health department and the Center

for Climate data

(Continued)
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Table 2. (Continued)

Article

ID

Case- or

alarm-

informed EWS

IBS

or

EBS

Resource needed to

implement and use

Outbreak indicator Alarm indicators Source of data

D20

[33]

Alarm

informed

IBS Routine access to time series

data and high statistical skills

Dengue cases Information of dengue

incidence and meteorological

information

MOH

D21

[39]

Alarm

informed

IBS Routine access to time series

data and high statistical skills

Monthly confirmed cases Historical cases and

meteorological information

MOH and WMO

D22

[58]

Alarm

informed

IBS Routine access to time series

data and high statistical skills

Lab-confirmed cases Meteorological information National surveillance system and

cartographic data

D23

[37]

Alarm

informed

IBS Routine access to time series

data and high statistical skills

Lab-confirmed cases Meteorological and

entomological information

National surveillance system and

local entomological and

meteorological stations

D24

[29]

Alarm

informed

IBS Routine access to time series

data and high statistical skills

Dengue cases Meteorological and

entomological information

Surveillance system (MOH)

D25

[69]

Alarm

informed

IBS Routine access to time series

data and high statistical skills

Dengue cases Meteorological information Surveillance system (MOH) and

ECMWF

D26

[36]

Alarm

informed

IBS Routine access to time series

data and high statistical skills

Monthly confirmed cases Meteorological, entomological,

cartographic, and

epidemiological information

National surveillance,

meteorological systems, and

Institute for Geography and

Statistics

D27

[56]

Alarm

informed

IBS Routine access to time series

data and high statistical skills

Monthly confirmed cases Meteorological information Regional epidemiology and

meteorological stations

D28

[22]

Alarm

informed

IBS Routine access to time series

data and high statistical skills

Monthly confirmed cases Meteorological information Local MOH and meteorological

stations (Japan, Singapore, Taiwan,

and Thailand)

Z1 [24] Alarm

informed

EBS Routine access to time series

data and Google Trends

search data and high

statistical skills

Confirmed and suspected

cases

Google Trends search Google, national surveillance data,

and PAHO

Z2 [25] Alarm

informed

IBS Routine access to time series

data and high statistical skills

Suspected cases Meteorological information National surveillance system and

local meteorological stations

M1 [47] Alarm

informed

IBS Routine access to time series

data and high statistical skills

Hospitalized and lab-

confirmed cases

Meteorological information International Research Institute for

Climate Prediction

M2 [48] Alarm

informed

IBS Routine access to time series

data

Lab-confirmed cases Meteorological information Meteorological stations

M3 [34] Alarm

informed

IBS Routine access to time series

data

Lab-confirmed cases Meteorological information MOH

M4 [49] Alarm

informed

IBS Routine access to time series

data and high statistical skills

Lab-confirmed cases Meteorological information,

vegetation indices, and actual

evapotranspiration

Satellite-derived meteorological data

and earth sciences data

M5 [50] Alarm

informed

IBS Routine access to time series

data and high statistical skills

Monthly confirmed cases Meteorological information N/A

M6 [51] Alarm

informed

IBS Routine access to time series

data and high statistical skills

Model simulation (no

cases)

Meteorological information Local meteorological and national

surveillance

M7 [46] Case informed EBS Routine access to time series

data and high statistical skills

Incidence of malaria N/A ARHB US NASA

Reference: Article ID; D = dengue, Z = Zika, and M = malaria.

AAU : TheabbreviationlistofTable2hasbeenupdated:Pleaseverifythatallentriesarecorrect:RHB, Amhara Regional Health Bureau; CDC, Centre for Disease Control and Prevention; EBS, event-based surveillance; ECMWF, European Centre for Medium-

Range Weather Forecast; EWARS, early warning and response system; IBS, indicator-based surveillance; lab, laboratory; MOH, Ministry of Health; MOPH, Ministry of

Public Health; N/A, not available/no answer; NASA, National Aeronautics and Space Administration; PAHO, Pan American Health Organization; WMO, World

Meteorological Organization.

https://doi.org/10.1371/journal.pntd.0009686.t002
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Table 3. Main findings, conclusions, and limitations of the studies.

Article

ID

Main study findings, including

prediction quality (sensitivity + PPV)

Temporal and

spatial risk

prediction

Prediction

time lag

Study or model limitations Conclusions

D1 [21] Improved prediction, user-friendly,

implementable tool. Sensitivity: 50%–

100% and PPV: 40%–88%

High temporal

prediction, low

spatial prediction

(district level)

A range of

1–12 weeks

Lacks predictions at small spatial unit

and requires weekly to enable

operational forecasting

The tool is pragmatic and useful for

detecting imminent outbreaks

D2 [26] Operationally useful, LASSO was

superior to methods (SARIMA

model) except the first 2-week

window

High temporal

precision, low

spatial prediction

(district level)

12 weeks LASSO methods are not amenable to

interpretation (mainly at longer

forecasting window), hindered by the

numerous covariates acting at

different lags

Automated machine learning methods

such as LASSO can markedly improve

forecasting techniques

D3 [12] Sensitivities: 72%–97% and PPV:

45%–86% at a lag of 1–12 weeks

High temporal

precision, low

spatial prediction

(district level)

1–12 weeks Can be disturbed by inconsistent and

missing data especially with regard to

entomological indices

Probable cases and meteorological

variables indicate for increased risk of

transmission

D4 [31] Sensitivity: 50%–100% and specificity:

75%–100%

High temporal

precision, low

spatial prediction

(district level)

5 weeks Algorithm used needs to be trained,

which may cause a loss of robustness

if the outbreak pattern changes or

differs significantly from previous

years

Surveillance R-package algorithms are

free and implementable. Time-space

trends monitoring can also be useful

D5 [28] Sensitivity: 100% and specificity:

99.8% and a median time to detection

of 3 days

Low temporal

prediction but

high spatial

prediction

3 days N/A CIDARS had good sensitivity,

specificity and timeliness of outbreak

detection

D6 [27] AUCs are 75% for forecasting 12

weeks and 80% for 5 weeks in advance

High temporal

and high spatial

predictions

1–12 weeks The model is highly reliant on a rich

dataset of georeferenced case

identifications and demand regular

update and the adaptation require

pre-adjustments to the grid used in

different geo-areas.

Spatially resolved forecasts of

geographically structured diseases can

be obtained at a neighborhood level in

urban and rural environments for

guiding control efforts

D7 [57] A combination of surveillance and

meteorological was optimal;

temperature at lag 3 weeks, rainfall at

lag 2 weeks, and rainfall at lag 3 weeks.

Sensitivity: 88.9%, specificity: 81.0%,

PPV: 74.4%, and NPV: 92.2%

High temporal

level but low

spatial prediction

12 weeks Predictive model could explain only

64% of the variation in the

occurrence of cases and is biased by

underreporting of cases

Past disease incidence data, up to

years, are crucial predictive possibly

indicating cross-immunity status of

the population

D8 [30] Models for describing, simulating,

and predicting spatial patterns of

Aedes aegypti populations associated

with climate variability patterns

Unknown

temporal but low

spatial prediction

N/A N/A Using indices of climate variability

can construct spatial models

providing warning of potential

changes in vector populations in rainy

and dry seasons and by months

D9 [38] Sensitivity: 75% (lag, 1–5 months) and

PPV: 12.5%. Climate predictors were

good classifiers of risk areas based on

the different climate in different

regions

High temporal

and high spatial

predictions

4–52 weeks The model is limited to issuing alerts

with short-time intervals (1–5 months

ahead), which may not be practical in

operational modes

It is possible to detect dengue

outbreaks ahead of time and identify

populations at high risk

D10

[23]

A 9% increase in the incidence of

imported cases for every additional

10,000 travelers arriving from affected

areas

No temporal

prediction but low

spatial prediction

N/A N/A The risk of disease importation was

computed with the volume of

international traveler from disease-

affected areas worldwide

D11

[43]

Time series Poisson model using

climate data well predicted at time lag

of 3 months after controlling the

autocorrelation, seasonality, and long-

term trend

High temporal but

low spatial

prediction

48–96 weeks N/A Transmission vector Aedes albopictus,
imported cases, monthly climatic

information are useful for cheap and

effective EWS

(Continued)
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Table 3. (Continued)

Article

ID

Main study findings, including

prediction quality (sensitivity + PPV)

Temporal and

spatial risk

prediction

Prediction

time lag

Study or model limitations Conclusions

D12

[41]

Sensitivity/specificity: 78%/92% for a

threshold of 3 cases per week,

sensitivity/specificity: 91%/91% for a

threshold of 2 cases per week, and

sensitivity/specificity: 85%/87% for a

threshold of 1 case per week

Low temporal

prediction but no

spatial prediction

1 week Limited to climatic factors and can be

biased by underreporting of cases

Occurrence of outbreaks in the study

city could impact disease outbreaks in

neighboring city under suitable

weather conditions

D13

[42]

Models with DBSI (ICC: 0.94 and

RMSE: 59.86) is better than the model

without (ICC: 0.72 and RMSE: 203.29)

Low temporal but

poor or no spatial

prediction

1 week Uses short-term time series data and

prone to confounding effect

DBSI combined with traditional

disease surveillance and

meteorological data can improve the

dengue EWS

D14

[44]

Summer Equatorial Pacific Ocean sea

surface temperatures and Azores high

sea-level pressure model correctly

predicted 80% and missed 15% of the

nonepidemic years

Low temporal and

Low spatial

prediction

Annual (year-

to-year

variability)

N/A Outbreak resurgence can be modeled

using a simple combination of climate

indicators

D15

[40]

Environment-based, multivariate,

autoregressive models predicted 2–26

weeks ahead

High temporal

and Low or no

spatial prediction

8–26 weeks N/A Outbreaks often occurred when

extreme daily temperatures are

confined within the 18–32˚C range,

Patterns of spatial variability across

endemic regions may be related to

variations in the built environment,

ecology, local weather, population

density, mitigation efforts, and host

mobility

D16

[45]

SVR model selected by a cross-

validation technique accurately

forecasted at 12 weeks with smallest

prediction error

High temporal but

low or no spatial

prediction

12 weeks Internet searching behavior is

susceptible to the impact of media

reports, which may affect the

performance of the model

SVR model achieved a superior

performance in comparison with

other forecasting techniques

D17

[13]

The model predicted accurately with

<3% false alarm

Good temporal

but poor or no

spatial prediction

16 weeks N/A Models using temperature and rainfall

could be simple, precise, and low-cost

tools for disease forecasting

D18

[35]

SARIMA model is robust and

autoregression, moving average and

seasonal moving average are key

determinants of transmission

Low temporal and

low spatial

prediction

Annual Long history of data is required and a

sophisticated analysis that requires a

skilled user

SARIMA has great potential to be

used as a decision supportive tool due

to its ability to predict when and

where

D19

[32]

Ratio of basic offspring number and

basic reproductive ratio is considered

outbreak if > = 0.5

Low temporal and

low spatial

predictions

N/A Warrant for more assessment for

increasing its sensitivity

Model simulations show that

mosquito population are more

affected by weather factors than

human

D20

[33]

Climate factor and incidence rate of

dengue before prediction period were

superior to rainfall index of week-n

High temporal

and low spatial

prediction

2–7 weeks N/A The provision of both structure and

infrastructure is recommended to be

in line with incidence rate prediction

value

D21

[39]

The model has useful only up to lead 6

times, i.e., correlation >0.5, and as the

lead times increase, the match

between prediction and observation

deteriorates

High temporal but

low spatial

prediction

4–24 weeks Requires long historical data for the

evaluation

The model is well suited due to its

simplicity in data requirement and

computational effort

D22

[58]

Predictions are improved both

spatially and temporally when using

the GLMM; sensitivity of 83% and

false alarm of 8%

high temporal and

low spatial

prediction

12 weeks Fails to capture the temporal

variability in case counts (due to

population immunity to the

dominant circulating serotype or

specific health interventions)

Seasonal climate forecasts could

predict incidence months in advance

D23

[37]

Models link outbreaks and climatic

conditions and yielded 1-week lag

based on spatiotemporal predictions

High temporal

and low spatial

prediction

8–12 weeks N/A SBME is valuable to timely identify,

control, and efficiently prevent disease

spreading in time and space

(Continued)
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Table 3. (Continued)

Article

ID

Main study findings, including

prediction quality (sensitivity + PPV)

Temporal and

spatial risk

prediction

Prediction

time lag

Study or model limitations Conclusions

D24

[29]

The model was superior (sensitivity:

57%) to the null model (33%)

High temporal

and low spatial

prediction

4–12 weeks N/A Incorporating real-time seasonal

climate forecasts and epidemiological

data is beneficial for prediction

D25

[69]

The rank probability skill score RPSS

was superior to the benchmark with

AUC of 0.86 for temperature and 0.84

for rainfall

High temporal

and low spatial

prediction

12 weeks N/A Close collaboration between public

health specialists, climate scientists,

and mathematical modelers is crucial

for successful implementation of

seasonal climate forecasts

D26

[36]

The prediction improved with

applying criterion >50% chance of

exceeding 300 cases per 100,000

inhabitants, with false alarm: 25%

High temporal

and low spatial

prediction

12 weeks N/A Visualization technique to map

ternary probabilistic forecasts can

identify areas where the model

predicts with certainty a particular

disease risk category

D27

[56]

The model detected 5 and rejected 14

within 24 months. The Pierce skill

score was 0.49, with AUC: 86% and

sensitivity: 92%

Low temporal and

low spatial

prediction

Annual (year-

to-year

variability)

There is no proper mechanism to

track commute-related infections to

neighboring districts

Depending upon climatic factors, the

previous month’s disease cases had a

significant effect on disease incidences

of the current month

D28

[22]

Sensitivity: 75% at 5 weeks but less

sensitive to the outbreak size.

Prediction improves when climatic

variables and incidence in regions

further away from the equator.

High temporal

and low spatial

prediction

1–5 weeks Prediction accuracy might improve if

incidence and weather information

can be collected at a finer resolution

Short-term LASSO models

predictions perform better than

longer-term predictions, encouraging

public health agencies to respond at

short-notice to early warnings

Z1 [24] Integer-valued autoregression is

useful predictive model and enhanced

by incorporating Google Trends data

High temporal

and low spatial

prediction

1–12 weeks N/A Accessible and flexible dynamic

forecast model can advance early

warning prediction

Z2 [25] Average humidity, total rainfall, and

maximum temperature were best

meteorological factors with prediction

lag between 15 and 20 weeks

High temporal

and low spatial

prediction

4–20 weeks The interaction term between the

nonlinear smoothing function of time

and the spatial function is unavailable

in the model, so a real spatiotemporal

pattern was unable to be investigated

in this study

Meteorological factors are useful for

predicting ZIKV epidemics

M1 [47] The model was able to predict both El

Niño and non-El Niño malaria

outbreaks with high specificity and

sensitivity

High temporal

prediction

3–4 months Data may not be readily available at

the district level, and it may not be

site specific

Rainfall and unusually high maximum

temperatures and the number of

inpatient malaria cases 3–4 months

later provide a good prediction model

M2 [48] Additive model are most suited for

poorly drained U-shaped valley

ecosystems while the multiplicative

model was most suited for the well-

drained V-shaped valley ecosystem

High temporal

prediction

2–4 months N/A Additive and multiplicative models

are designed for use in the common,

well-, and poorly drained valley

ecosystems

M3 [34] The models indicated that climate

variability remains a major driver of

malaria epidemics

High temporal

prediction

2–4 months N/A The multiplicative model maintained

consistent prediction due to

stakeholders’ confidence

M4 [49] Malaria cases exhibited positive

associations with LST at a lag of 1

month and positive associations with

indicators of moisture at lags between

1 and 3 months

High temporal

and low spatial

prediction

1–3 months Requires weekly rather than monthly

intervals, to enable operational

forecasting

Integrating modeling approaches

based on historical case data (early

detection) and environmental data

(early warning) can enhance the

effectiveness of risk forecasting

M5 [50] Only rainfall had a consistently

significant relationship with malaria

High temporal

and low spatial

prediction

1–6 months N/A Rainfall provides the best predictor of

malaria transmission

M6 [51] Temperature is the most relevant

climatic parameter thus. Sporogonic

and gonotrophic cycles showed to be

key entomological variables

controlling the transmission

High temporal

prediction

1 month Too many variables and phases that

make it difficult to set in place on

daily basis

Environmental factors and climate

variability can be merged with selected

mathematical tools (statistical and

biological/eco-epidemiological

models) for improved prediction tool

(Continued)
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Table 3. (Continued)

Article

ID

Main study findings, including

prediction quality (sensitivity + PPV)

Temporal and

spatial risk

prediction

Prediction

time lag

Study or model limitations Conclusions

M7 [46] Within early detection window (the

past 6 weeks) and an early warning

forecast window (the upcoming 4

weeks), the mean observed or

forecasted incidence was classified as

being above the mean outbreak

threshold, between the mean

threshold and the mean expected

incidence, or below the mean

expected incidence

High temporal

and spatial

prediction

1–4 weeks N/A Malaria surveillance data and

environmental monitoring data can be

integrated to enable near real time

malaria forecast in the Amhara region

Reference: Article ID; D = dengue, Z = Zika, and M = malaria.

AUC, area under the curve; CIDARS, China Infectious Disease Automated-alert and Response System; DBSI, Dengue Baidu Search Index; EWS, early warning system;

GLMM, generalized linear mixed model; ICC, intraclass correlation coefficient; LASSO, least absolute shrinkage and selection operator; LST, land surface temperature;

N/A, not available/no answer; NPV, negative predictive value; PPV, positive predictive value; RMSE, root mean squared error; RPSS, rank probability skill score;

SARIMA, seasonal autoregressive integrated moving average; SBME, stochastic Bayesian maximum entropy; SVR, support vector regression; ZIKV, Zika virus.

https://doi.org/10.1371/journal.pntd.0009686.t003

Fig 1. Screening and selection of articles for a scoping review on EWS. CAU : AnabbreviationlisthasbeencompiledforthosesuedthroughoutFig1:Pleaseverifythatallentriesarecorrect:DSR, Cochrane Database of Systematic

Reviews; CENTRAL, Cochrane Central Register of Controlled Trials; CIDG, Cochrane Infectious Diseases Group;

EWS, early warning system; LILACS, Latin American and Caribbean Health Sciences Literature.

https://doi.org/10.1371/journal.pntd.0009686.g001
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From the 7 malaria studies that were retrieved, 1 was conducted in Colombia and 6 in

Africa (2 in Ethiopia and Kenya, 1 in Tanzania, and 1 in Uganda) and 1 in the Solomon Islands

in the Pacific. For details of the papers, see Fig 2 and S1 Text (country distribution of included

studies).

Of the 28 studies addressing EWS for dengue outbreaks, only 4 studies presented the user

perspective on implementing EWS within national programs [12,21,26,27], and 24 studies

showed EWS under development (i.e., model exercise); see Table 1. Only 2 dengue studies

used a prospective study design [28,29], and one applied both prospective and retrospective

approaches [30]; the other 23 were retrospective analyses of surveillance data (1 of those speci-

fied as cohort study [21], 1 with a cross-sectional design [31], and 1 as a time series analysis

[30]), and 2 studies were exclusively relying on mathematical simulation models [32,33]. The 2

Zika studies reported on exercises of testing EWS [24,25]. The 7 EWS malaria studies included

only one existing EWS [34], while 6 other studies reported on potential EWSs or under devel-

opment. The studies used a large variety of statistical methods as summarized in Table 1.

EWS features per disease

Outbreak indicators of EWSs varied considerably across the selected studies, and, hence, we

stratified the findings of the relevant outcomes by the 3 diseases (no studies were retrieved for

chikungunya and yellow fewer) that were ultimately retained from the search. In line with the

Fig 2. Geographic distribution of included studies.

https://doi.org/10.1371/journal.pntd.0009686.g002
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respective case definition used in the diverse reporting systems across national surveillance

programs and between diseases, the outbreak indicators were grouped as hospitalized, labora-

tory-confirmed (including “reported,” “confirmed,” or “imported from neighboring dis-

tricts”), and suspected cases (including “probable” cases as they were often not distinguished

from “suspected”) as well as case numbers resulting from mathematical modeling (no real

cases but estimates based on other covariates). The alarm indicators were categorized as ento-

mological (including an index of mosquito survival), meteorological (including the El Niño

Southern Oscillation [ENSO] index and others), epidemiological (including sociodemographic

information), and social media (such as “Google Trends”).

Study results

Dengue

EWS characteristics and features. All 28 dengue studies relied on IBS, of which 24 stud-

ies were alarm informed, i.e., of outbreak predictive nature—using at least 1 meteorological,

entomological or epidemiological indicator—and 4 studies [28,31,32,35] were case-informed

EWS, i.e., of early outbreak detection—relying solely on previous trends of cases for outbreaks.

Almost all studies demanded routine access to data as well as advanced statistical and analyti-

cal skills, but 5 studies [12,21,26,28,31] reported prediction tools that are adapted for less

skilled users. The outbreak indicators used were hospitalized cases (2 studies) [12,21], labora-

tory-confirmed cases (23 studies), or suspected cases (3 studies) [12,28,31]. One study [30]

used mathematically simulated cases. All cases were reported by the surveillance system on

either weekly or monthly basis, and, occasionally, data were obtained directly from the Minis-

try of Health (MOH).

The dengue studies applied a spectrum of alarm indicators using meteorological (24 stud-

ies), entomological (7 studies) [12,21,26,29,32,36,37], epidemiological (5 studies)

[12,21,26,36,38], and one study [36] used a cartographic indicator—these are nonclimatic indi-

cators of altitude and aggregated census data related to urban setting.

With reference to the alarm indicators, 13 studies reported the use of data from local/

regional meteorological stations, whereas 3 studies referred to international sources such as

the “World Meteorological Organization” [39], the “Global Historical Climate Network” [40],

and the “National Oceanic and Atmospheric Administration” [13]. Furthermore, one study

[23] used data from the regional Environment and Epidemiology Network (Table 2).

Summary findings and reported limitations. This section presents key findings

extracted from EWS studies (see Table 3) following the evaluation criteria presented in the

methodology and their reported limitations. Most of the studies presented sensitivity, specific-

ity, and NPV/PPV as measurements of the validity of the corresponding models. A range

between 40% and 100% for sensitivity and 12.5% to 100% for the PPV have been reported,

depending primarily on the type of model and the alarm indicators used. Generally, meteoro-

logical indicators were the best performing predictors, but a combination of meteorological

and other indicators outperformed the single indicator prediction—i.e., the prediction model

improved when other nonclimatic alarm indicators were included to the model containing cli-

mate indicators. While several EWSs demonstrated reasonable predictive abilities, 5 models

showed outstanding performance using the following alarm indicators: (1) the dynamic risk

maps absolute shrinkage and selection operator (LASSO) processing multiple meteorological

information (with 1 study adding on epidemiological and entomological alarm indicators)

[26]; (2) autoregression integrated moving average (ARIMA) using meteorological informa-

tion and Google Trends data [40]; (3) Shewhart moving average regression model (SMAR)

maintaining a combination of meteorological, epidemiological, and entomological alarm
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indicators [12,21]; (4) seasonal autoregressive integrated moving average (SARIMA) [35]; and (5)

the stochastic Bayesian maximum entropy (BME) model using a mix of meteorological and ento-

mological alarm indicators [37]. A total of 20 EWS studies demonstrated high temporal prediction

ability, but only 3 [27,28,38] showed high spatial prediction ability. Several studies reported data-

or model-related limitations, with 10 studies indicating issues related to the outbreak information

(such as poor or unreliable case reporting, small historical records, bias created by interventions

or other confounders, and lack of geotagged weekly records). Three studies [22,41,42] referred to

the lack of climate information and biased, inaccessible, or poor resolution data. Other limitations

addressed the methodological approach with 3 studies [26,31,35] declaring method-related issues

such as that methods (like LASSO) are not amenable to direct interpretation, requiring advanced

statistical skills, or have a limited prediction robustness.

Concerning the EWS implementation, the following information has been provided: All

studies described the EWS prediction coverage for national and district levels, but only 2 studies

[27,38] showed predictions for the subdistrict level. Furthermore, half of the studies (14) fea-

tured the possibility of successfully implementing EWS, at national or district levels, but only 5

studies [21,26,28,36,43] showed the feasibility to be integrated into existing national surveillance

programs. The users’ perception of EWS was insufficiently assessed in several studies, but 18

indicated the possibility to be used by health managers at the MOH and district levels; 5 studies

[32,39,40,44,45] reported the use of EWS being limited to research institutes. The user-friendli-

ness of EWS was reported in only 2 studies [21,31], showing a general satisfaction by users.

Zika

EWS characteristics and features. Studies on Zika were primarily triggered by the 2015

to 2016 Zika virus (ZIKV) epidemic. Thus, only 2 studies were retrieved, which discussed the

EWS for Zika outbreaks that matched our selection criteria. Both studies, of which one was an

IBS-based and the second was an EBS-based study, applied new algorithms using alarm-

informed EWS. Both studies described the need for routinely accessing alarm information for

running the tools. One study used both confirmed and suspected cases for early outbreak

warning [24], while the other study referred only to suspected cases that reflects the diagnostic

and reporting complexity associated with this disease. One study employed social media infor-

mation (Google Trends search) [24], and another used meteorological information as predic-

tors [25]; however, both studies used the national surveillance programs as sources for

processing their data.

Summary findings and reported limitations. There was no validity testing presented by

both studies, such as sensitivity or specificity. In one study [24], ARIMA was reported as a

model to improve the prediction of Zika outbreaks when integrated with Google Trends data.

The other study [25] showed the usefulness of humidity, rainfall, and maximum air tempera-

ture as alarm indicators for outbreak prediction. As concluded by Teng and colleagues, using

dynamic data from Google Trends as indicators can significantly advance the prediction

model mainly when more sophisticated statistical models like ARIMA are used [24]. Neverthe-

less, meteorological alarm indicators have generated high temporal predictions with up to 20

weeks ahead of an outbreak, but both studies failed the spatial prediction. No major limitations

were reported, but one study showed a model-related limitation due to the complexity in han-

dling temporal functions in relation to the spatial functions of the model [25].

Malaria

EWS characteristics and features. Out of the 7 EWS malaria studies, 6 used IBS and 1

[46] used an EBS—processing at least 1 meteorological, entomological, or epidemiological
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indicator. All studies demanded routine access to data, and all but 2 required advanced statisti-

cal and analytical skills for practicing or integrating the tool. The outbreak indicators used

were hospitalized (1 study) [47] or laboratory-confirmed cases (3 studies) [34,48,49], while 2

studies [46,50] used clinically confirmed cases (hospitalized). Data collection was done on a

weekly or monthly basis, and studies demonstrated a spectrum of indicators: All used meteo-

rological and epidemiological information, some entomological (3 studies) [47,48,51], and one

study demonstrated the cartographic indicator. None of the studies assessed the user experi-

ence with EWS, but one [34] described how the involvement of stakeholders improved the

support and institutionalization of the tool; 3 studies [34,46,48] stated that the tool integration

into existing epidemiological and climatic data hub created a better environment for further

development and use of the tool. All studies used meteorological information as predictors.

Surveillance data were obtained from local, regional, or national databases, and meteorological

information was obtained from local stations or satellites.

Summary findings and reported limitations. Sensitivity and specificity were reported to

be high in one study [48], mentioned to be high but not measured in 2 studies [47,49] and var-

ied according to mosquito survival probability and temperature in a fourth study [51]. Several

mathematical models were used to create predictions, with the additive and multiplicative

models being the ones with high sensitivity and specificity. Several meteorological indicators

were used as predictors of which temperature and rainfall were the most frequently used indi-

cators. In general, environmental factors and climate variability correlated with malaria inci-

dence, but no outbreak prediction model has been developed that includes different types of

epidemiological, environmental, and meteorological alarm indicators. The alarm indicators

have managed to generate a high temporal prediction with up to 6 months ahead of outbreak,

particularly if unusual weather conditions like ENSO were concerned. Several limitations were

noted: Some models were tested for specific settings (e.g., highlands in Africa), others include

only remotely sensed environmental indicators—remote sensing is a useful approach in the

context of climate predictions, including flood and earthquake disaster prediction, but tends

to lack sufficient evidence for early warning of infectious diseases in general. Thus, when used

solely in an early warning, they are viewed as a limitation in the model. Confounding factors

that affect malaria risk such as land use/land cover, population mobility, local hydrology,

socioeconomic factors, and public health interventions were not captured.

Discussion

When searching for high-level evidence in the area under investigation, we found 2 systematic

reviews [52,53] reporting on predictive modeling tools particularly for dengue. However, we

found no high-level evidence on tools applications outside their mathematical modeling or on

potential alarm indicators to be used, although these were the prime focus of both reviews. The

study by Racloz and colleagues has successfully summarized the benefits of combining various

epidemiological tools focusing on the ability to incorporate climatic, environmental, epidemi-

ological, and socioeconomic factors to create an EWS and has outlined optimal prediction

models [52]. The second study by Louis and colleagues addressed the risk mapping–related

issues and human mobility as promising alarm indicators and maintained a thorough review

of their limitations [53]. Besides the structural and statistical features of the tool, our review

has additionally addressed essential operational aspects (prediction quality, the implementa-

tion, integration, and user perspectives of EWS) and public health implications of EWS, inde-

pendently for each retrieved disease, keeping in mind that for any outbreak prediction, a

reliable surveillance system is essential. For instance, misclassifications, data arriving late,

missing values, and human errors during the data entry may compromise the EWS.
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Dengue

All 28 identified dengue studies maintained an IBS approach, and these demanded routine

and timely access to surveillance information potentially impacting the effectiveness of early

warning tools. Published studies show that consistent and frequent case reporting has stronger

predictive capacity, which usually tends to be delayed by monthly reporting schedules [54].

Our results show that weekly reporting of surveillance data correlate with increased sensitivity

and PPV; however, only one-third of all dengue studies presented weekly data, negatively

impacting the effectiveness and potentially cost-effectiveness of the early warning process

[12,21,26–28,31,41,42,44].

A total of 27 dengue studies demonstrated outbreak forecasting, using multiple (9/27) and

single alarm (18/27) indicators mostly meteorological ones. However, access to meteorological

information on a regular time basis is challenging in several settings [55]. Three studies

included regional or international data resources, which, however, demand highly skilled users

and advanced digital systems for international data processing [23,33,56].

Furthermore, the mathematical model was identified to affect the predictive ability of EWS

due to (1) the choice of the analytical approach employed; and (2) the range of lag times

between independent variables and epidemic dengue transmission as demonstrated by Racloz

and colleagues and others [52]. Among the retrieved dengue studies, almost all reported esti-

mates on sensitivity, specificity, NPV, or PPV but their prediction performances varied sub-

stantially depending on the statistical model used and the data quality. Out of the 19 studies

with reported high temporal prediction quality (Table 3), the Bayesian algorithms and general-

ized linear models were the most prevalent [29,31,36,39,45,57,58]. Additionally, 4 studies used

LASSO [22,26,27,45], 3 with ARIMA and time series analysis [28,40,56] independently, and 2

used the Shewhart/endemic channel method [12,21]. Only 4 studies showed evidence of adap-

tation to less skilled users, which can be significant for public health use [12,21,26,27].

The interaction between changing climate and increasing human mobility as drivers for

emerging diseases warrants novel frameworks for assessing the linkage between disease trans-

mission, climate change, and public health intervention in order to reach effective EWS. The

use of data mining techniques, such as social media or travel information, in combination with

surveillance data has emerged as an alternative source of real-time high-resolution geospatial

data on a large scale [59]. However, our review showed minimal evidence of studies exercising

such potential alarm indicators, which limits their contribution to outbreak preparedness and

response planning [59,60]. The LASSO model is one typical example of such a tool that can

potentially contribute to this concept. However, LASSO or similar model concepts demand

high-quality big data. As these resources are (a) typically scarce in many countries; and (b)

having a tendency to complicate the interpretation of the prediction outputs [26,45], the appli-

cation in data-constrained settings and by unskilled users is likely to be limited. While limited

data accessibility and poor quality have been described by several studies [32,35,41,42,56], pub-

lished reports highlight the benefits of combining temporal data for analysis of the temporal

kinetics and spatial data for the identification of high risk areas [61]. Only 3 retrieved studies

[27,28,38] demonstrated high spatial prediction abilities, all attributed to settings with

advanced data and surveillance systems. Two of those showed high temporal and spatial pre-

diction, allowing for identification of population at risk at smaller spatial units, which can sig-

nificantly contribute to targeted vector control [27,38].

Zika

Since the Zika emergence in 2015, the number of PubMed references for ZIKV has risen from

181 to 516 in 2019, with a high proportion focusing on the consequences of ZIKV infection
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during pregnancy [62]. Only 2 studies have been identified in this review, with a focus on EWS

for Zika outbreaks in the Americas. One study had explored the use of Google Trends data as a

predictor [24], and the other used a set of meteorological information for generating outbreak

predictions [25]. The use of “suspected cases” as outcome variables in both retrieved studies

could possibly be explained by the complexity of the Zika diagnosis and the large number of

mild cases [62]. For dengue, the prediction accuracy of EWS was superior when using hospital-

ized or laboratory-confirmed cases compared to suspected cases [12,21]. However, no mea-

surements of sensitivity or PPV were used in both Zika studies, albeit both ARIMA and

generalized linear models predicted up to 20 weeks ahead of the outbreak. Limitations of zika

outbreak predictions are not discussed in the respective papers, but are likely to be similar as

those shown for dengue predictions.

Malaria

Since the inception of Roll Back Malaria (RBM) in 1998, it was clear that the early detection,

containment, and prevention of malaria epidemics were key elements of the Global Malaria

Control Strategy and Malaria Early Warning Systems (MEWS) [63,64]. Some countries have

developed epidemic risk monitoring using simple transmission risk indicators such as excess

rainfall [65], but only Kenya has published the development and implementation of MEWS

[34]. Since then, several studies and initiatives for EWS have been developed; however, the lit-

erature to address the tools’ scope of its predictability, implementability, and users’ perspec-

tives are significantly scarce. The 7 studies identified in this review used different

mathematical models and different combinations of indicators. Most of the mathematical

models found in this review applied time series including additive and multiplicative models

[34,46–48], but lacked vulnerability indicators such as low immunity or drug resistance, which

might be prevalent in these study settings. Meteorological indicators ranged from common

indicators like rainfall and humidity to land surface temperature or vegetation indices

obtained through more sophisticated satellite systems that are usually provided by projects or

partnerships, of which their sustainability was never assessed. Like the case with dengue, this

wide range of indicators is augmented by additional data sources sought from regional or

international entities. The development of implementable and user-friendly malaria EWSs, as

shown in the reviews by Githeko and colleagues and Merkord and colleagues [34,46], is a key

factor for better disease preparedness and timely response activities.

Public health implications for EWS applications

The EWS tool is primarily aimed at supporting district health managers and national health

planners to mitigate or prevent disease outbreaks, ideally using tools that are integrated in the

national surveillance programs [66,67]. To further ensure effective functions, EWS should

conceptually be perceived as an information system designed to support the decision-making

of national- and local-level institutions but also enable vulnerable groups in the society to take

actions to mitigate the impacts of an impending risk. As apparent from this review, users of

current EWSs were mostly from the central (MOH) levels, with only few tools facilitating dis-

trict-level applications. The integration of EWS into existing national surveillance program

was marginal with only 5 studies [12,21,26,27,34], out of 37, demonstrating their experience of

integration (Table 1). Furthermore, the majority of studies have not assessed the feasibility of

implementing EWS into national programs, and a few studies have declared the need for high-

skilled users and resources—2 limiting factors that are unlikely to exist at small spatial levels in

settings where disease outbreaks are public health burdens. Nevertheless, there is an observed

trend toward applications of more advanced statistical models with higher predictive abilities
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that can further advance the prediction and control of disease outbreaks. Generally, early

warning and response system that are capable of demonstrating evidence of prospective

predictive ability and allows technical and practical adaptations of local public health

responses while augmenting communications channels between users at central and district

levels are tools that are more likely to be implemented into national surveillance programs.

Advancing into frameworks that can facilitate at a low-cost IT maintenance and adapted

to unskilled users are features of tools that are plausibly integrable into existing national

systems.

As shown in the method section, the IBS and EBS are 2 main channels of information for

a functioning EWS. Almost all studies reviewed in this paper maintained an IBS type of appli-

cation to support EWS, with the exception of 1 Zika- and 1 malaria-related study using the

EBS approach [24,46]. The combined use of both could potentially include other sources of

information, such as sources from outside the health sector, which is the prime concept of the

EBS. With the majority being of IBS-based EWS, the applications of the forecasting tools tend

to be less efficient and deviate from the epidemic intelligence concept—the systematic collec-

tion, analysis, and communication of any information to detect, verify, assess, and investigate

events and health risks with an early warning objective, as opposed to monitoring of disease

trends or burdens [68]—which ideally combines both IBS and EBS for more robust outbreak

detection.

Meteorological indicators are key predictors, but they are often inaccessible on a timely

basis for health services managing the EWS. Benefiting from multiple assessments of users’

perspectives while defining the tool end users, countries like Mexico and Brazil, for instance,

have managed to recognize the essence of the availability of local meteorological stations and

have therefore organized an improved access to meteorological information [21,29,36,58,69].

Our literature review has identified very limited information for chikungunya and yellow

fever outbreaks prediction, none of them fulfilling the inclusion criteria. Studies of EWS for

yellow fever outbreaks are limited probably due to the existence of vaccines for this disease.

However, chikungunya has now expanded from Africa, Latin America, and Asia to the Euro-

pean region [70,71]. It is quite worrying that studies on EWS tools for diseases like chikungu-

nya are scarce. Although many EWS rely on meteorological information, only 3 studies

[28,29,47] performed a prospective type analysis of early warning performance, with no rigor-

ous study could be found.

Limitations of our study

The authors decided to include EWS on malaria to broaden the scope and eventually learn

mutually from applications of different fields of disease control (Aedes borne versus Anopheles
borne), but also by including yellow fever (vaccine preventable) and other vector-borne disease

(mainly relying on vector control interventions). By virtue of their variability in terminology

and definitions as well as difficulties in synthesis, the format of a scoping review was applied as

a form of review design. Nevertheless, this scoping review follows the PRISMA criteria for con-

ducting a systematic review without performing rigorous critical appraisal of included studies

due to time constraints. However, we think that by including only peer-reviewed papers focus-

ing on implemented EWSs or those under development provides a certain guarantee for high-

quality papers, which will be an added value to the existing literature. The search strategy was

limited to the target diseases not including search terms as “arboviruses” or “febrile illnesses”

or “priority diseases” or others, which might be potentially relevant to the review, considering

the broadness of the scoping review, Furthermore, stakeholders have been occasionally

involved during the 14-month duration of this scoping process—during an Andean regional
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meeting in Bogota and in Colombia with an expert panel in charge of EWSs. Another limita-

tion might be that we may have missed a few relevant studies; however, by including the Goo-

gle Scholar search engine, we could overcome this issue, assuming that relevant papers could

be identified, which were not indexed in other databases like PubMed. Due to the language

barrier, we were unable to include publications in Chinese language, but several English papers

from China were included, which could adequately represent the rich experience from the

Chinese context.

Conclusions

This scoping review demonstrated gaps and challenges related to the structural, statistical, and

operational designs of EWS, and these varied per disease and their corresponding settings. The

country surveillance system is an integral part in the overall early warning process where the

lack of accessibility to timely and quality data is crucial for establishing a reasonable EWS.

Nevertheless, a substantial number of studies (except for dengue) failed to demonstrate any

predictive power mainly that predictions based on complicated statistical models are difficult

to carry out in low- and middle-income countries. This review has furthermore revealed a sig-

nificant gap in effectively evaluating the role of EWS in the disease outbreak prediction and

control given that the majority of EWS assessment studies have primarily been of retrospective

designs. The lack of tool assessments regarding the implementation into existing routine sur-

veillance as well as the feasibility of translating model outputs into local vector control and

action plans will unlikely support the global health agenda for controlling disease outbreaks.

Likewise, the missing user perspectives in the retrieved studies signals shows that most of the

EWSs remain in the academic environment, and little effort has been spent on testing their

effectiveness or cost-effectiveness in reducing disease outbreaks. Collectively, findings from

this review claim the need for more pragmatic and context-adapted EWS tools, which address

the user perspectives and its effectiveness in predicting outbreaks in local settings and trigger

response activities.

Key learning points

• Only minimal studies have addressed the early warning system (EWS) users’ perspec-

tives with significant lack of implementation research assessments of EWS for chikun-

gunya, dengue, malaria, yellow fever, and Zika outbreaks.

• While the majority of studies have focused on the development and applications of the

temporal prediction of the EWS, the spatial analysis of the disease prediction is crucial

for effective vector control and response but rarely discussed or assessed in the

literature.

• The EWSs should be viewed as frameworks for improving the coordination of the

overall disease outbreak control and response where full stakeholder involvement and

assessment are warranted.
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7. Rocklöv J, Quam MB, Sudre B, German M, Kraemer MUG, Brady O, et al. Assessing Seasonal Risks

for the Introduction and Mosquito-borne Spread of Zika Virus in Europe. EBioMedicine 2016; 9: 250–

256. https://doi.org/10.1016/j.ebiom.2016.06.009 PMID: 27344225; PubMed Central PMCID:

PMC4972550.

8. Massad E, Amaku M, Coutinho FAB, Struchiner CJ, Burattini MN, Khan K, et al. Estimating the probabil-

ity of dengue virus introduction and secondary autochthonous cases in Europe. Sci Rep 2018; 8: 4629.

https://doi.org/10.1038/s41598-018-22590-5 PMID: 29545610; PubMed Central PMCID:

PMC5854675.

9. Snow RW, Sartorius B, Kyalo D, Maina J, Amratia P, Mundia CW, et al. The prevalence of Plasmodium

falciparum in sub-Saharan Africa since 1900. Nature 2017; 550: 515–518. https://doi.org/10.1038/

nature24059 PMID: 29019978; PubMed Central PMCID: PMC5660624.

10. World Health Organization. World malaria report 2019. Geneva; 2019. p. 1–232 Available from: https://

www.who.int/publications-detail-redirect/9789241565721

11. World Health Organization. Dengue vaccine: WHO position paper -July 2016. Wkly Epidemiol Rec.

Geneva; 2016. p. 349–364. Available from: https://www.who.int/wer/2016/wer9130.pdf?ua=1 PMID:

27476189

12. Bowman LR, Tejeda GS, Coelho GE, Sulaiman LH, Gill BS, McCall PJ, et al. Alarm Variables for Den-

gue Outbreaks: A Multi-Centre Study in Asia and Latin America. PLoS ONE 2016; 11: e0157971.

https://doi.org/10.1371/journal.pone.0157971 PMID: 27348752; PubMed Central PMCID:

PMC4922573.
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