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Metatranscriptomes‑based sequence 
similarity networks uncover genetic signatures 
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Abstract 

Background  Microbial eukaryotes play a crucial role in biochemical cycles and aquatic trophic food webs. Their 
taxonomic and functional diversity are increasingly well described due to recent advances in sequencing technolo-
gies. However, the vast amount of data produced by -omics approaches require data-driven methodologies to make 
predictions about these microorganisms’ role within ecosystems. Using metatranscriptomics data, we employed 
a sequence similarity network-based approach to explore the metabolic specificities of microbial eukaryotes with dif-
ferent trophic modes in a freshwater ecosystem (Lake Pavin, France).

Results  A total of 2,165,106 proteins were clustered in connected components enabling analysis of a great number 
of sequences without any references in public databases. This approach coupled with the use of an in-house trophic 
modes database improved the number of proteins considered by 42%. Our study confirmed the versatility of mixo-
trophic metabolisms with a large number of shared protein families among mixotrophic and phototrophic micro-
organisms as well as mixotrophic and heterotrophic microorganisms. Genetic similarities in proteins of saprotrophs 
and parasites also suggest that fungi-like organisms from Lake Pavin, such as Chytridiomycota and Oomycetes, exhibit 
a wide range of lifestyles, influenced by their degree of dependence on a host. This plasticity may occur at a fine taxo-
nomic level (e.g., species level) and likely within a single organism in response to environmental parameters. While we 
observed a relative functional redundancy of primary metabolisms (e.g., amino acid and carbohydrate metabolism) 
nearly 130,000 protein families appeared to be trophic mode-specific. We found a particular specificity in obligate 
parasite-related Specific Protein Clusters, underscoring a high degree of specialization in these organisms.

Conclusions  Although no universal marker for parasitism was identified, candidate genes can be proposed at a fine 
taxonomic scale. We notably provide several protein families that could serve as keys to understanding host-parasite 
interactions representing pathogenicity factors (e.g., involved in hijacking host resources, or associated with immune 
evasion mechanisms). All these protein families could offer valuable insights for developing antiparasitic treatments 
in health and economic contexts.
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Background
Aquatic ecosystems, such as oceans, lakes, and rivers, 
host a wide array of microbial eukaryotes that play essen-
tial roles in nutrient cycling, energy transfer, and ecosys-
tem functioning. However, the functional diversity and 
ecological roles of these microbial eukaryotes remain 
largely unexplored. Traditional methods for studying 
microbial eukaryotes have limitations in capturing their 
functional potential and interactions within complex 
ecosystems. To overcome these limitations, researchers 
have turned to the use of omics approaches to predict the 
diversity and functional composition of microbial com-
munities based on environmental data [1–4]. Metatran-
scriptomics is one of the best available approaches for 
acquiring extensive genetic and functional information 
from uncultured organisms isolated from the environ-
ment. While freshwater microbial eukaryotes have been 
rarely studied using RNA seq analysis [5–7], numerous 
metatranscriptomic studies have been conducted on 
marine microbial communities across spatial and tempo-
ral scales. These studies have led to significant advance-
ments in our understanding of the physiology [8–12], 
nutritional modes [13, 14], and contributions to ocean 
biogeochemistry [15, 16] of these microbial eukaryotes.

As most current analyses depend on a species or func-
tion name, a considerable amount of newly generated 
sequences in environmental samples are overlooked. 
Microbial eukaryotes have indeed diverse and complex 
genomes, and this vast genes reservoir is for 40 to 60% 
without any match in functional databases [15, 17–19].

Current analytical approaches [20–24] generally do 
not include this uncharacterized fraction in downstream 
analyses, constraining their results to conserved path-
ways and housekeeping functions [21]. Sequence similar-
ity network (SSN)-based approaches are powerful tools 
for analyzing the large amount of data produced by high-
throughput sequencing and allow to study relationships 
between and within protein families (e.g., [25–33]). By 
clustering sequences while tuning appropriate similar-
ity and overlaps, these networks allow large-scale omics 
comparisons in ecological studies, and notably enable the 
inclusion of functionally unannotated sequences in the 
global analysis (e.g., [17, 28]). Using transcriptomes or 
metagenomes, previous SSN-based studies unveiled pro-
tein families characteristic of specific organismal traits 
(e.g., toxicity and symbiosis capability of Dinoflagellata 
[34]) or environmental conditions [3].

Well studied cellular mechanisms such as photosyn-
thesis, already benefit from markers which have been 
described from model organisms such as Diatoms, Cryp-
tophytes, and Haptophytes (e.g., gene psbO [35]), and 
which can be used to target phototrophic organisms and 
their activities directly in the environment. Markers for 

other trophic modes can be more complicated to estab-
lish. However, phagotrophy is being increasingly studied; 
peptidases, proton pumps, and lysosome enzymes (cath-
epsin and rhodopsin) have been noted as candidate genes 
to target for this ecologically important feeding strategy 
(e.g., in heterotrophic Stramenopiles [36, 37]). Moreo-
ver, phagotrophy used by photosynthetic organisms (i.e., 
phago-mixotrophic organisms) has been the subject of 
many recent studies using experimental assays as well as 
in silico prediction models [14, 38, 39]. Although there is 
no clear marker for parasitism, parasites might be iden-
tified through the presence of various proteins involved 
in pathogenesis. The CRN domain or Crinkler proteins 
are, for instance, a class of effectors (proteins secreted 
into a host and modifying their behavior) known solely 
from parasites [40, 41]. However, the study of parasites 
is highly biased, suffering from the inherent difficulty in 
cultivating many species and the influence of an anthro-
pocentric perspective, where the primary focus has been 
on studying parasites that infect humans or hosts of eco-
nomic importance [42, 43].

In this study, the metabolic specificities of microbial 
eukaryotes representing a broad diversity of lifestyles (i.e., 
strict heterotrophic, photo-osmo-phago-mixotrophic, 
photo-osmo-mixotrophic, saprotrophic, and parasitic 
microorganisms) were explored in an understudied 
freshwater ecosystem using an original Sequence Simi-
larity Network (SSN)-based approach. Metatranscrip-
tomic dataset obtained from the meromictic Lake Pavin 
(France) was deeply investigated using this SSN-based 
approach, enabling the study of the abundant but under-
studied «  microbial dark matter  » (functionally and/or 
taxonomically uncharacterized sequences), along with 
depicting the potential shared genetic signatures of rela-
tively little-known freshwater parasitic microorganisms.

Methods
Figure 1 presents the workflow used in this study.

Study site and dataset description
This study was conducted on a dataset acquired from the 
pristine meromictic Lake Pavin (Massif Central, France, 
45° 29′ 45″ N, 2° 53′ 17″ E) [44]. This lake presents an 
exceptional opportunity to investigate diverse microbial 
communities occupying multiple ecological niches within 
a single ecosystem. It is indeed characterized by two per-
manently stratified water layers: an upper oxygenated 
layer (mixolimnion) extending from the surface to 60 m, 
and an anoxic lower layer (monimolimnion) extending 
from 60 to 92 m depth. Water sampling was carried out 
in both zones (i.e., at 9 m and 80 m) by day and night, 
at four contrasted periods in 2018 (April, June, Septem-
ber, and November) and for two size classes (0.8–10 
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Fig. 1  Workflow of the sequence similarity network approach
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and 10–50 µm), resulting in 32 samples as described in 
Monjot et al. [44]. The dataset analyzed in this study was 
obtained by Illumina NovaSeq 6000 (2 × 150 bp) sequenc-
ing (Illumina, San Diego, CA) and is publicly available 
under ENA accession number PRJEB61515.

Unigene catalog, protein prediction, and annotations
The metatranscriptome-derived unigene catalog was 
obtained as described in Carradec et al. [15] and Monjot 
et al. [44]. Briefly, paired-end reads from each metatran-
scriptomic sample were assembled using velvet (v1.2.07) 
with a kmer size of 89 as described in Carradec et al. [15]. 
Isoform detection was performed using Oases (v0.2.08). 
Contigs smaller than 150 bp were removed from further 
analysis. Contig redundancy was removed using CD-
HIT-EST (v4.6.1), with the following parameters: -id 95 
-aS 90 (95% nucleic identity over 90% of the length of the 
smallest sequence) as described in Carradec et  al. [15]. 
For each cluster of contigs, the longest sequence was kept 
as reference for the unigenes catalog.

Proteins were predicted from all unigenes with Trans-
decoder.LongOrfs followed by TransDecoder.Predict 
(v5.5.0) using the default parameters. Then, unigenes 
without predicted protein were used for a second run 
with a minimum protein length of 70 (-m). Finally, the 
predicted proteins were tested against the AntiFam 
database (v7.0) [45] with hmmsearch using the –cut_ga 
parameter [46].

The KEGG Orthology (KO) identifiers were assigned 
by KoFamScan (v1.3.0) with the KO’s HMM profiles 
(2022–01-03 release) [47]. For proteins without signifi-
cant hit, the best hit with an e-value < 1e − 5 was retained 
as described in Hu et al. [13].

Taxonomic affiliation was performed on proteins with 
the MMseqs2 suite (v407b315) [48], against the MetaEuk 
database [49] using mmseqs taxonomy and the param-
eters –tax-lineage 1 –lca-mode 2 –max-seqs 100 -e 
0.00001 -s 6 –max-accept 100. The dataset was cleaned of 
contaminants by excluding proteins affiliated to Bacteria, 
Archaea, and Viruses.

An in-house trophic mode association table was devel-
oped using 362 scientific articles. This table links 1052 
distinct taxonomic affiliations to five main trophic modes: 
phototrophic (considered as photo-osmo-mixotrophic, 
capable of mixotrophy by photosynthesis coupled to 
osmotrophy), mixotrophic (photo-osmo-phago-mixo-
trophic, capable of mixotrophy by photosynthesis cou-
pled to osmotrophy and phagotrophy), heterotrophic 
(dependent on organic matter from other organisms as 
a source of nutrients), saprotrophic (dependent on dead 
or decomposing organic matter as a source of nutrients), 
and parasitic (facultative and obligate, living in asso-
ciation with and at the expense of one or more hosts, 

partially or throughout their lives) (Table  S1). Proteins 
affiliated to organisms referenced in literature as multi-
cellular (i.e., Metazoan, some Basidiomycota and Asco-
mycota, Rhodophyta, Magnoliopsida, Pinopsida, and 
Polypodiopsida) were removed (Table S1).

SSN building
A sequence similarity network (SSN) where vertices cor-
respond to sequences and edges represent the similar-
ity and coverage between pairs of sequences was built. 
Diamond (v2.1.7) [50] was used in blastp mode to com-
pute the percentage of similarity between every pair 
of proteins detected in the metatranscriptomic data-
set, with the options -e 1e-5 –sensitive. Diamond out-
put was filtered using 80% identity and 80% coverage 
threshold. This coverage threshold is commonly used in 
SSN-based studies [34] and identity threshold is usually 
determined on the basis of maximum functional homo-
geneity between linked proteins [3]. The filtered output 
was used to build SSN with the igraph-python library 
(v0.10.4) [51]. The resulted SSN gathered singleton (i.e., 
vertices without any homology with other sequences) 
and CCs (connected components: subgraphs composed 
of at least two vertices disconnected from the rest of the 
network). Only CCs characterized by at least three ver-
tices were kept for the rest of the analysis. The resulting 
SSN was finally composed of 302,304 CCs, including 
2,165,106 proteins (5,317,694 proteins clustered in CCs 
characterized by less than 3 proteins were excluded from 
the analysis).

CC analysis
Statistical and CC analysis were performed using R 
(v4.3.3) [52]. Each CC was characterized by its protein 
sequences, which were taxonomically affiliated, trophi-
cally assigned, and functionally annotated against KEGG 
database. Using these annotations, functional homogene-
ity of each CC was assessed by computing a homogeneity 
score (Fhom) as described in Faure et al. [3]. The means 
of Fhom scores as well as CC number and their annota-
tions were compared for eight similarity thresholds (i.e., 
65%, 70%, 75%, 80%, 85%, 90%, 95%, and 100%) (Fig. S1). 
The intermediary 80% identity threshold was selected to 
maximize the functional homogeneity between linked 
proteins relative to the total number of CCs while 
minimizing the number of functionally unannotated 
components.

CCs were linked to a trophic mode when a majority of 
their proteins was associated to the same trophic mode. 
Considering potential taxonomic affiliation errors lead-
ing to mis-association of proteins, the proportion of 75% 
among the total assigned proteins of the component was 
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chosen. These specific components were called SPCs 
(Specific Protein Clusters) hereafter.

Correspondence analysis (CA) was realized to describe 
the relationship between CCs and trophic modes with the 
FactoMineR package (v2.6) [53] and using the number of 
proteins associated to each trophic mode for each CC. 
Wilcoxon signed-rank paired test was realized to meas-
ure the significance of the difference between trophic 
modes using the number of proteins within each CC.

CCs which clustered both unknown (trophically, 
functionally, and/or taxonomically uncharacterized) 
and known proteins characterized by the same func-
tional annotation, taxonomic affiliation, and trophic 
mode assignment were used to estimate the number of 
unknown proteins that could be by extension labeled 
with the same information (trophic, functional, or 
taxonomic).

SPCs related to parasitism
This study focused on the SPCs related to parasitism. 
Among them, SPCs which contained at least one pro-
tein associated to an obligate parasite were kept in order 
to select proteins potentially involved in host-parasite 
relationships. Barycenter positions on the CA were 
computed for each KO id (KEGG Orthology identifier)-
related to metabolic pathway (KEGGPATHWAY​ = Metabo-
lism) detected among obligate parasite-related SPCs. 
Briefly, the barycenter positions ( xb , yb , and zb ) were 
calculated for each KO id using the positions ( xi , yi , and 
zi ) of n CCs (clustering at least one protein annotated 
with this identifier, among the totality of CCs of the data 
set) following the formulae: xb =

n
i=1

xi
n ;yb =

∑n
i=1

yi
n  ; 

zb =

∑n
i=1

zi
n  . We used the first three dimensions which 

collectively explain 65.7% of the variance (Fig. S2). These 
dimensions provide the best differentiation between 
parasites and the other trophic modes. These barycent-
ers therefore represent the gravity centers of each KO 
id within a tri-dimensional space (i.e., CA). The obli-
gate parasite-related SPCs were graphically represented 
using ggraph (v2.1.0) [54], tydigraph (v1.2.3) [55], and the 
igraph R package (v1.5.0) [51]. Upset plot were generated 
using the ggupset R package (v0.3.0) (https://​github.​com/​
const-​ae/​ggups​et).

Results
Sequence similarity network statistics
Almost 10 million transcripts were retrieved from the 
Lake Pavin metatranscriptomic dataset. From these 
transcripts, 7,511,376 proteins have been predicted and 
compared to each other (i.e., 107,650,304 diamond align-
ments) to build a  sequence similarity network (SSN). 
After filtration steps, 302,304 connected components 
(CCs) were obtained, ranging from 3 to 6203 proteins 

(Fig. S3) and gathered a total of 2,165,106 proteins. 
Among them, 32.5% were taxonomically affiliated and 
18.5% were assigned to a trophic mode (703,930 and 
401,570 proteins, respectively; Fig. 2). Trophically unas-
signed proteins were predominantly affiliated to Alveo-
lata, Stramenopiles, Chlorophyta, and Opisthokonta, 
accounting, for example, for more than half of the Alve-
olata-affiliated proteins. Among trophically assigned 
proteins, mixotrophs dominated (n = 156,485) and were 
mainly affiliated to Alveolata, Euglenozoa, Strameno-
piles, Haptista, and Cryptophyta. Phototrophs affili-
ated to Chlorophyta, Stramenopiles, and Dinoflagellata 
comprised 136,946 assigned proteins. Heterotrophs 
(n = 77,955) represented about half the number of pro-
teins assigned to mixotrophs. These heterotrophs 
included a diverse range of organisms from various 
groups: Stramenopiles, Alveolata, Opisthokonta, Eugle-
nozoa, Cryptophyta, and Amoebozoa. The proportion 
of proteins associated with parasites and saprotrophs 
was low (24,232 and 5952, respectively) and the majority 
was affiliated to Opisthokonta. Proteins assigned to para-
sites were also found among Stramenopiles, Amoebozoa, 
Alveolata, Heterolobosea, Metamonada, and Rhizaria. 
Facultative parasites mainly affiliated to Opisthokonta, 
Stramenopiles, and Amoebozoa were represented by 
20,152 proteins, while those with an obligatory life-
style accounted for only 4080 proteins and were found 
in majority among Alveolata, Rhizaria, Euglenozoa, 
Opisthokonta, and Stramenopiles (Fig. 2).

CC distribution among trophic modes
More than half of CCs grouped proteins without any 
trophic assignment (i.e., 162,001 CCs). The remain-
ing CCs clustered proteins (i.e., a total of 1,400,022 
sequences) assigned to one (129,151 CCs) and up to the 
five trophic modes (162 CCs). Eighteen thousand nine 
hundred sixty CCs were composed solely of trophically 
assigned proteins, while 121,343 CCs contained both 
assigned and unassigned proteins (Fig.  3). Among the 
specific CCs (i.e., all trophically assigned proteins within 
the component were assigned to the same trophic mode): 
(i) 52,682 (including 7007 CCs for which all the proteins 
were assigned) were linked to mixotrophs, (ii) 42,561 
(6258) to phototrophs, (iii) 25,389 (3458) to hetero-
trophs, (iv) 6920 (1203) to parasites, and (v) 1599 (215) to 
saprotrophs.

CCs linked to multiple trophic modes suggest shared 
common features. Mixotrophs shared 4171 CCs with 
phototrophs and 2498 with heterotrophs (exclusively). 
Parasites shared a significant number of CCs with sap-
rotrophs (i.e., 1103) and heterotrophs (490) (exclusively; 
Fig. 3).

https://github.com/const-ae/ggupset
https://github.com/const-ae/ggupset
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Using the number of proteins associated with each 
trophic mode within each CC, correspondence analysis 
(CA) showed significant differences (Wilcoxon signed-
rank p-value < 0.001) between almost all of trophic modes 
(with the three first dimensions explaining 65.7% of the 
variance) (Fig.  4, S2). The first dimension dissociated 
parasites and saprotrophs from the other trophic modes, 
while second and third dimensions split phototrophs, 
heterotrophs, and mixotrophs.

Taxonomic specificities and genetic basis of microbial 
eukaryotic trophic modes
Mixotrophs, phototrophs, and heterotrophs were rep-
resented by numerous Specific Protein Clusters (SPCs). 
SPCs are Connected Components for which at least 75% 
of assigned proteins were assigned to the same trophic 
mode. The study found 53,962 SPCs for mixotrophs (con-
taining 403,174 proteins), 43,291 SPCs for phototrophs 
(334,474 proteins), and 26,063 SPCs for heterotrophs 
(181,251 proteins). Nearly half of these protein sequences 
were identified by their taxonomic classification, as 

shown in Fig.  5. Although some taxa appeared in more 
than one of these three trophic modes (e.g., Dinophyceae, 
Chromulinales), taxonomic diversity greatly differed 
at low taxonomic levels (< Class) (Fig.  5). Parasites and 
saprotrophs were characterized by a lower number of 
SPCs: 7236 and 1647, respectively, grouping only 49,148 
and 9034 proteins with an average taxonomic affiliation 
rate of 46.9%. Proteins clustered in SPCs of both trophic 
modes mainly belonged to Chytridiomycota and Asco-
mycota (Opisthokonta: Fungi). Parasites were also char-
acterized by numerous proteins affiliated to Longamoebia 
(Amoebozoa: Discosea), Saprolegniales, Peronosporales, 
and Labyrinthulomycetes (Stramenopiles: Oomycetes 
and Bigyra), Trypanosomatidae (Euglenozoa: Kineto-
plastida), and Plasmodiophorida (Rhizaria: Endomyxa).

Functional annotation against the KEGG database 
allowed the identification of more than half of the pro-
teins clustered in SPCs for phototrophs, heterotrophs, 
saprotrophs, and parasites (Fig. S4) (i.e., 53.9% of the total 
proteins were annotated with a KO id (KEGG Orthology 
identifier)). Mixotrophs were the least annotated mode, 

Fig. 2  Taxonomic diversity and trophic assignment of proteins integrated in the sequence similarity network. From inner to outer circles, colors 
represent taxonomic affiliation, trophic assignment, and parasitic lifestyle. The proportion of each trophic mode is documented for every eukaryotic 
lineage. Information specific to parasites is also provided (i.e., their lifestyle, which is categorized based on the degree of host dependence: obligate 
or facultative). The most abundant parasite groups integrated in the SSN are specified for each parasitic lifestyle within each taxonomic group. The 
term “Environmental samples” is a classification used by the NCBI taxonomy database and refers to sequences that have been obtained directly 
from the environment, without specific identification of the source organism
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Fig. 3  Upset plot and Venn diagram displaying shared and unique connected components across trophic modes. The occurrence of each 
combination of proteins trophic mode assignment within CCs are displayed on the bar plot. The Y axis is represented on a pseudo-logarithmic scale 
(base 2)

Fig. 4  Correspondence analysis testing the relationship between CCs and trophic modes. This analysis is processed using the number 
of proteins associated to each trophic mode for each CC. CCs with a 75% specificity to a trophic mode, i.e., SPCs, are labelled with different colors 
while non-specific components (specified as unassigned) are filled in red
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with only 46% of functionally annotated proteins. Metab-
olisms-related proteins accounted for almost a third of 
annotations, ranging from 11.4% (mixotrophs) to 21.5% 
(saprotrophs).

Contrary to the high variability of taxonomic affilia-
tions between the SPCs of each trophic mode, their func-
tional annotations varied less considering the B level (i.e., 
intermediary level in classification of functional pathway 
in KEGG database) of KEGG metabolism annotations 
(Fig. S4). Amino acids, carbohydrates, lipids, and energy 
metabolism were the most common across all trophic 
modes.

However, more variations between trophic modes 
were recorded at the C level (Fig.  6). Although hetero-
trophs and parasites showed an important proportion 
of proteins related to lipid metabolisms, such as those 
involved in fatty acid degradation, some specificities 
were detected: (i) heterotrophs were characterized by 
numerous proteins involved in sphingolipid and glycer-
ophospholipid metabolism; (ii) parasites seem to allocate 
a significant portion of their metabolic capacity to the 

biosynthesis of unsaturated fatty acids and glycerophos-
pholipid metabolism. Saprotrophs SPCs also clustered 
proteins involved in glycerophospholipid as well as sul-
fur metabolism and prodigiosin biosynthesis. Finally, a 
great proportion of proteins linked to photosynthetic 
organisms (phototrophs and mixotrophs) are involved 
in photosynthesis (e.g., antenna proteins) and carotenoid 
biosynthesis (Fig. 6).

Using SSN to consider the unknown
Evaluating homology between proteins obtained from 
metatranscriptomes enables the inclusion of unknown 
sequences (i.e., no functional annotation and/or no tax-
onomic affiliation) in the analysis. As a result, 57.8% of 
total sequences were taken into account in the analysis 
(1,252,112 distributed in 124,455 CCs), while only 15.7% 
(340,482 proteins) were actually functionally annotated 
and taxonomically affiliated (Fig. 7). Similarly, 1,400,022 
sequences (64.6% of the dataset) were linked to trophic 
mode information while 18.5% were initially labelled 
(Fig. 7).

Fig. 5  Taxonomic affiliation of proteins gathered in Specific Proteins Clusters (SPCs) of each trophic mode. Number of SPCs, total number 
of proteins within SPCs, and affiliation rate are displayed on the horizontal histograms (on the left) for each tropic mode. The taxonomic affiliation 
of proteins is reported on the right and the size of boxes shows the proportion of proteins taxonomically affiliated to each eukaryotic lineage
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Furthermore, assuming that unknown proteins, 
which grouped with known proteins characterized by 
the same taxonomic, functional, and trophic informa-
tion were closely related, we could estimate the num-
ber of unknown proteins that can be identified through 
the use of SSN (i.e., by transitive transfer of annota-
tions). This re-evaluation allowed for an increase in 
the taxonomic affiliation rate of the proteins by an 
average of 6% at all taxonomic levels (i.e., from 25.09 
to 31.96% (Class/Order), from 29.95 to 36.32% (Phy-
lum) and from 32.51 to 38.74% (Division)). Addition-
ally, the functional annotation improved from 53.91 

to 57.38% and the trophic assignment showed an 8% 
improvement (from 18.54 to 26.18%).

SPCs related to parasitism
Parasite SPCs were reduced to 1679 when selecting 
those that grouped at least one protein affiliated with 
an obligate parasite. They clustered 12,946 proteins, of 
which 35.6% were affiliated (i.e., 4604 proteins). Among 
them, 62% were assigned to obligate parasites (2850), 
9.2% to facultative parasites (including Amoebozoa, 
Opisthokonta, and Stramenopiles) (425), 1.6% to sapro-
trophs (e.g., Opisthokonta and Stramenopiles) (72), and 

Fig. 6  Proportion of proteins functionally annotated with the most fluctuating KEGG metabolic pathways for each trophic mode. Values 
at the center are the minimum proportion value for this KEGG category while those at the exterior represent maximum proportion value
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26.8% remained trophically unassigned (1229) (Fig.  8). 
This selection also reduced distinct functional anno-
tations from 3268 to 1143 KO ids, which were likely to 
be involved in host-parasite relationships. Among the 
selected SPCs, 496 had no protein functional annotation 
(e.g., SPC n°18 (Fig. 9)), 837 were annotated to a unique 
KO id (e.g., SPC n°33938), and 346 had multiple annota-
tions (e.g., SPC n°32689).

Although some SPCs grouped proteins with differ-
ent taxonomic affiliations (at the class level such as the 
SPCs n°32689 and n°18 grouping respectively Oomy-
cetes and Fungi, or at the phylum level such as the SPC 
n°33938 which clustered Cercozoa, Discosea, and Fungi) 
the majority clustered few proteins (≈7.3 proteins/SPC) 
with similar taxonomic affiliations (e.g., SPCs n°24890 
and n°29238 (Fig. 9)).

To identify proteins likely to be involved in host-par-
asite interactions, barycenter of each KO id character-
izing proteins of obligate parasite-related SPCs were 
computed on the CA (Fig.  10). This strategy enabled to 
overcome protein filtration bias by considering function-
ally unannotated proteins as well as proteins clustered 

in SPCs of other trophic modes. By selecting all KO ids 
whose barycenter coordinates on axis 1 were among the 
most important (> 2), 40 identifiers likely to be involved 
in host-parasite interactions were obtained. SPCs con-
taining these identifiers (i.e., n = 74, Fig. S5) clustered 
very few proteins (≈6.7 proteins/SPC) characterized by 
similar taxonomic affiliations, suggesting that there is 
probably no overall protein family shared by all parasitic 
microbial eukaryotes.

Among these KO ids (complete list in Table  S2), two 
were linked to uncharacterized proteins in KEGG (i.e., 
K09795/K09983), 12 were not clearly related to parasit-
ism in literature (e.g., K13514, K10971, K14263), and 
26 were linked to host-parasite interaction (12 already 
described and 14 probably linked but not yet described).

Among those already described, we found proteins 
affiliated to Trypanosomatidae and involved in the well-
known mechanism of immunogenicity and extracellular 
survival of these microorganisms (i.e., K20656/K12167 
[56, 57]). Others affiliated with Fungi were related to 
resistance against toxic compounds (e.g., K06141, K09043 

Fig. 7  Taxonomic affiliation, functional annotation, and trophic assignment statistics of proteins using traditional metatranscriptomic approach 
(A) and with the implementation of SSN-based approach (B). Statistics of taxonomic affiliation, functional annotation, and trophic mode 
assignation of proteins are compared with (B) or without (A) the implementation of SSN-based approach. *: proteins are defined as “Known” 
when they clustered within the same CCs of proteins that are taxonomically affiliated, functionally annotated, and/or trophically assigned. They are 
not annotated using transitive transfer of annotation but only considered in the analysis
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[58, 59]) or described as stimulating parasite metabolism 
(e.g., K09240, K18278) (Table S2).

Finally, the other KO ids, although not yet described 
in a host-parasite interaction, were characterized by 
functions that may contribute to establishing this type 
of interaction or by features correlated with parasit-
ism. We found, among others, some (i) related to anti-
apoptotic agents and affiliated to Plasmodiophorida and 
Ascomycota (K20637/K17968 [60, 61]), (ii) involved in 
DNA repair process (K19465, K10791 [62]) with multiple 
affiliations (Conoidasida, Ascomycota and Oomycetes), 
(iii) corresponding to genes whose distribution within 
fungi-like organism diversity (e.g., Oomycetes, Fungi, 
Labyrinthulomycetes) seems to depend on their trophic 
capacity (saprotrophic or parasitic) (i.e., K07414, K21200, 
and K15629 which belong  to cytochrome P450 family 
[63]) (Table S2).

Discussion
Identify the unknown
The proportion of unknown (i.e., taxonomically and/
or functionally uncharacterized) in environmental data-
sets is high when examining functional diversity of 
eukaryotes and is rapidly increasing due to the deluge of 

sequences characteristics of the post-genomic era [64, 
65]. Recent extensive sequencing initiatives, such as the 
Marine Microbial Eukaryotic Transcriptome Sequencing 
Project (MMETSP, https://​www.​ncbi.​nlm.​nih.​gov/​biopr​
oject/​248394, [1]) and the global ocean atlas of eukary-
otic genes retrieved from TARA Ocean expeditions 
[15], report that an average of almost 50% of sequences 
remain without related sequences [34, 49]. Estimates 
of the unknown are even higher when considering the 
few large-scale metatranscriptomic studies conducted 
in freshwater ecosystems [5, 7], indicating that 85% of 
all predicted proteins lack both known functions and 
assigned taxonomies [6].

By taking into account both known and unknown pro-
teins, our SSN-based workflow enables improvement in 
the number of sequences analyzed by 42.1%, while tra-
ditional approaches would have used only 15.7% of the 
dataset by excluding proteins without functional anno-
tation and taxonomic affiliation (Fig. 7). Furthermore, it 
allows consideration of significantly more sequences that 
were neither functionally annotated nor taxonomically 
affiliated (decreasing from 29.3 to 9.6%) in accordance 
with previous SSN-based study which link 15% more pro-
teins to taxonomy or function [3].

Fig. 8  Taxonomic diversity and trophic assignment of proteins gathered in SPCs characterized by at least one protein assigned to obligate parasite. 
From inner to outer circles, colors represent taxonomic affiliation, trophic assignment, and parasitic lifestyle. The most abundant parasite groups are 
specified for each parasitic lifestyle within each taxonomic group

https://www.ncbi.nlm.nih.gov/bioproject/248394
https://www.ncbi.nlm.nih.gov/bioproject/248394
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Assuming that functional homogeneity is strictly 
maintained within connected components (i.e., each 
CC would group proteins sharing the same func-
tional characteristics), we estimate that an average 
of 6% of unknown proteins function could be identi-
fied by extrapolating information from known pro-
teins. However, the transitive transfer of annotations 
remains debatable [66, 67] and could be completed 
by further SSN-based prediction tools to substantially 
improve the consistency and accuracy of annotations. 

These tools could include methods on connectedness 
to refine annotations [68] or the construction of a 
probabilistic graphical model to assess the relevance of 
annotations [69].

Functional diversity of microbial eukaryotic trophic modes
Only 162 CCs encompass all trophic modes (≈0.05% 
of all CCs; Fig. 3) and may be recognized as constitut-
ing the core proteome of all eukaryotes. These results 
align with previous studies; for example, [34] stated 

Fig. 9  Upset plot displaying shared and unique obligate parasite-related SPCs across taxonomic phyla. The occurrence of each combination 
of protein taxonomic affiliation within obligate parasite- related SPCs are displayed on the bar plot. Only parasite-related SPCs which clustered 
at least one protein assigned to an obligate parasite are considered. The Y axis is represented on a pseudo-logarithmic scale (base 2). Examples 
of SPCs with various taxonomic combination features are represented on the top of the figure by sub-graphs gathering proteins (colored points) 
which are characterized by taxonomic affiliation, trophic assignment, and functional annotation (KO id). The mention “multiple” means that proteins 
of the SPC are annotated with multiple KO ids. The identification number of SPCs is referenced on the top of each sub-graph. Black outlined 
points represent a protein annotated with the KO id referenced at the top of the sub-graph (e.g., SPC n°33938). Bold phyla are those represented 
within example SPCs
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that the core proteome of Dinoflagellata was composed 
of 252 CCs (≈0.07% of all CCs), while another study at 
the eukaryotic domain scale reported 255 single-copy 
orthologs in at least 90% of 70 species (i.e., BUSCO set 
for eukaryotes [70, 71]). Although representing a small 
proportion of the network (3.69%), CCs connecting 
multiple trophic modes suggest metabolic similarity, 
as observed among phototrophs, mixotrophs, and het-
erotrophs. Mixotrophs exhibit many CCs solely shared 
with phototrophs (i.e., 4171) and heterotrophs (2498) 
(Fig.  3), in accordance with their metabolic versatility, 
being able to combine ability of both specialists (e.g., 
photosynthesis, osmotrophy, and phagotrophy [72, 
73]). This finding aligns with a previous study of Lam-
bert et  al. [14] which explored shared gene families 
between mixotrophic, heterotrophic, and phototrophic 
marine protists. In contrast, heterotrophs and photo-
trophs have fewer common CCs (i.e., 1225 CCs exclu-
sively grouping these two trophic modes). Parasites and 
saprotrophs also exhibit proteins that are clustered in 
common CCs. This clustering may be consistent with 
their potentially shared metabolic pathways, as well 

as their closely related taxonomy (e.g., Fungi). Indeed, 
the lifestyles of Fungi affiliated with Chytridiomycota 
and Ascomycota in freshwater environments span a 
large spectrum, ranging from obligate parasite to sap-
rotrophs (Table  S1). They also exhibit high variability 
from one species to another within the same genus 
[74–76].

The high quantity of Specific Protein Clusters (SPCs) 
(43.7% of the CCs) suggests that microorganisms of single 
trophic modes possess numerous specific genes involved 
in distinct metabolic pathways and/or are affiliated with 
highly divergent taxonomy. Within these SPCs, an aver-
age of 47.5% of proteins are taxonomically affiliated, and 
55.6% are functionally annotated (Fig.  5 and S4). While 
taxonomy appeared highly divergent depending on the 
trophic assignment (e.g., Opisthokonta and Amoebozoa 
are absent from photosynthetic groups, while Haptista, 
exclusively comprise photosynthetic members), func-
tional annotations varied much less, at least at a high 
level (i.e., level B: KEGGPATHWAY​ = Metabolism). Catego-
ries taking part in primary metabolisms such as amino 
acids, carbohydrate, or lipid metabolic pathways remain 

Fig. 10  Correspondence analysis testing the relationship between CCs and trophic modes with the addition of barycenter of KO ids correlated 
with parasitism. Barycenters representing the gravity centers of each KO id within a tri-dimensional space are represented by stars. Only 
barycenters of KO ids characterizing SPCs which contained at least one protein associated to an obligate parasite are kept. Those with coordinates 
on the dimension 1 (dimension discriminating parasite-related SPCs and the others) exceeding 2 highlight the KO ids likely to be involved 
in host-parasite interactions and are represented by darker stars. SPCs related to each trophic mode are labelled with different colors 
while unspecific components (specified as unassigned) are filled in red
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stable across all trophic modes, indicating a relative func-
tional redundancy which guarantees the resilience and 
stability of ecosystem functioning.

These relatively low differences should be considered 
with the understanding that we neither examined relative 
gene expression nor considered all genes, but analyzed 
the richness of those mapped in metabolic pathway cat-
egories in the KEGG database. Nevertheless, some func-
tional variations turned out to be significant at a finer 
level (i.e., C: KEGGPATHWAY​ = Metabolism) and appear 
to reflect the functional specificities of trophic modes 
(Fig. 6). For instance, in line with their trophic abilities, 
phototrophs and mixotrophs are characterized by numer-
ous genes involved in photosynthesis as well as in carot-
enoid biosynthesis as described in Lambert et al. [14]. In 
contrast, strict heterotrophs exhibit a substantial portion 
of their genes dedicated to fatty acid processes, includ-
ing sphingolipid and glycerolipid metabolism, along with 
fatty acid degradation, which are likely associated with 
their phagocytosis activity [77] and the synthesis of bio-
logical membranes [78]. Numerous genes involved in 
sulfur metabolism were found within saprotrophs, sug-
gesting their implication in the sulfur cycle. The sulfur 
cycle is an important biochemical cycle in Lake Pavin; 
however, the majority of the  research involves bacterial 
species [79, 80]. Yet, assimilation of conventional sources 
of sulfur by eukaryotes, such as Fungi, has already been 
demonstrated (e.g., in association with plant or involved 
in human pathologies) [81, 82] but their real contribu-
tion to biogeochemical cycles in freshwater ecosystems 
remains to be explored [83]. Finally, parasites have exten-
sive genes involved in fatty acid metabolism, which aligns 
with the expectation that lipid metabolism is highly 
developed within parasites of highly divergent taxon-
omy [84–87]. This development is necessary to establish 
host-parasite interactions and involves a high diversity of 
genes.

Toward a functional marker of parasitism
In this study, we consider that SPCs enable the investi-
gation of functional protein composition and specificities 
within trophic modes of microbial eukaryotes. It appears 
relevant to incorporate them into the process of identi-
fying potential genetic markers associated to parasit-
ism. Parasitic microorganisms are abundant and diverse 
in aquatic ecosystems; however, they remain enigmatic 
(in term of role and life cycle) and understudied. This is 
primarily due to the challenges associated with culturing 
parasites in association with their hosts, their relatively 
small size, and the difficulty of isolating rare parasites 
with very few free-living forms [88]. The use of envi-
ronmental DNA/RNA offers an alternative for assess-
ing parasite diversity and abundance as well as potential 

functions [88]. In this context, we focused on the 1679 
SPCs clustering at least one protein assigned to an obli-
gate parasite, aiming to identify genes likely playing a 
role in host-parasite interactions and propose potential 
marker candidates. Among the 4604 taxonomically anno-
tated proteins gathered in the selected SPCs, a majority 
are assigned to parasites (71.2%) with a limited number 
characterized by alternative assignments (i.e., 1.6% cor-
responding to saprotrophs) (Fig.  8). This suggests that 
parasite-assigned proteins may be relatively specific, 
and thus that derived functions are not shared by other 
trophic modes. These findings support the proposal that 
proteins involved in host-parasite interactions resulted 
from a long evolutionary process, constantly adapting to 
host pressures to ensure survival and reproductive suc-
cess. Facultative parasite-assigned proteins represent a 
small proportion (≈9.2%) and are affiliated mainly with 
Opisthokonta and Stramenopiles, as well as, to a lesser 
extent, Amoebozoa. Amoebozoa only include faculta-
tive representatives, which explains the low number of 
proteins in SPCs (Figs. 2 and 8). Opisthokonta and Stra-
menopiles group together both obligate and facultative 
parasites, indicating a relative genetic similarity between 
proteins of each trophic mode. Indeed, there is often a 
fine line between obligate, facultative, and saprotrophic 
organisms, and dissimilarity could be slight, reporting 
multiple degrees depending on the nature of the inter-
action (e.g., Oomycetes and Fungi may be characterized 
as facultative and obligate parasites, biotrophic, necro-
trophic, hemi-biotrophic or saprophytic) [74–76, 89, 90].

In contrast, the other divisions (i.e., mainly Alveolata, 
Euglenozoa, Metamonada, and Rhizaria (Fig. 8)) are only 
represented in SPCs by proteins assigned to obligate par-
asites. This suggests that selected parasite-related pro-
teins are involved in host-parasite interactions and have 
no homolog in free-living organisms of similar divisions. 
This is consistent with the fact that these divisions gather 
distinct phylogenetic levels of organisms known to be 
exclusively obligate parasite, such as Apicomplexa and 
Parabasalia phyla or Syndiniales, Plasmodiophorida, and 
Trypanosomatida orders.

Not one SPC grouping together all phyla with parasite 
relatives has been identified, thus preventing the identifi-
cation of a universal marker for parasitism (Fig. 9). While 
it might be argued that a less stringent identity thresh-
old could enhance the identification of potential para-
sitism marker genes, there is uncertainty regarding the 
possibility of other trophic modes also being included 
in parasite-related clusters, undermining the effective-
ness of the strategy. Nevertheless, by examining the link 
between KO  id barycenters and parasite-related SPCs 
(Fig. 10), we identified candidate genes that could be ref-
erenced as parasitism marker for specific phyla (Fig. 10, 
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S5, Table  S2). For example, we reported genes linked 
with the well-known mechanism of immunogenicity and 
extracellular survival of Trypanosoma coding for plasma-
nylethanolamine desaturase (involved in the biosynthesis 
of glycosylphosphatidylinositol, known as variant sur-
face glycoproteins (VSG) of Kinetoplastida [56, 91, 92]) 
as well as encoding E3 ubiquitin-protein ligase (involved 
in SUMOylation process, which positively regulate VSG 
expression [57]). We furthermore reported several genes 
linked to the pathogenicity of fungi-like organisms, such 
as MFS multidrug transporters or glyoxalase protein 
associated with toxic compound detoxification (in Asco-
mycota and Labyrinthulomycetes, respectively) [58, 93]. 
Other genes correspond to virulence factors in Ascomy-
cota (zinc-cluster proteins [94], sodium/hydrogen anti-
porter [95], thiamine precursor [96]; or proline-specific 
permease in Oomycetes [97, 98]) (Table S2).

Other genes, not yet described in a host-parasite interac-
tion but coding for proteins whose functions may coincide 
with parasitic lifestyle, such as anti-apoptotic agents, have 
been highlighted for Ascomycota, Plasmodiophorida, and 
Oomycetes. Genes involved in DNA repair processes are 
found within Labyrinthulomycetes, Conoidasida, Ascomy-
cota, and Oomycetes. Genes encoding cytochrome P450 
family proteins, which are described as distributed within 
fungi-like organisms depending on their trophic capacity 
[63], are found in Labyrinthulomycetes and Oomycetes. 
All the genes reported within parasite species that can 
cause diseases in humans or affect species of economic 
interest could represent interesting lines for consideration 
in a health or economic context for the development of 
antiparasitic treatments [92, 93, 99, 100].

Conclusion
The use of the SSN-based strategy to study trophic 
modes of microbial eukaryotes proves to be highly rel-
evant. It enables easy examination of genetic signatures 
across distant phyla that may share the same ecological 
function in the environment. It also allows consideration 
of the “unknown” of the dataset and therefore improves 
the number of sequences analyzed.

This study uncovered a significant number of shared 
protein families among mixotrophic and phototro-
phic microorganisms as well as mixotrophic and het-
erotrophic microorganisms, highlighting the metabolic 
versatility of mixotrophs. Similarly, we observed shared 
protein families between saprotrophs and parasites. 
These findings suggest that many microbial eukaryotes 
traditionally classified as facultative parasites, such as 
Chytridiomycota, may adopt a saprophytic lifestyle under 
certain environmental conditions. This lifestyle vari-
ability is not limited to individual species but extends to 

entire phyla known to contain parasitic members (e.g., 
Fungi, Oomycetes). Such adaptability likely plays a cru-
cial role in the ecological success and resilience of these 
microorganisms in Lake Pavin and across diverse envi-
ronmental conditions.

The high degree of specialization in parasitic organ-
isms is particularly evident in the specificity of obligate 
parasite-related Specific Protein Clusters (SPCs) and 
the significant proportion of parasitic protein involved 
in lipid metabolism. This specialization is the result of 
long-term evolutionary processes punctuated by rapid 
adaptations driven by the “arms race” phenomenon 
between hosts and parasites. Although no universal 
marker for parasitism was identified, candidate genes 
emerged at a fine taxonomic scale. This finding suggests 
that there is no evolutionary convergence of proteins 
induced solely by the parasitic lifestyle, at least not at 
high sequence similarity level (80% protein identity).

Overall, our study sheds new insights into the under-
standing of eukaryotic ecological role within aquatic 
ecosystems and provides several candidate protein fam-
ilies that could serve as keys to understanding host-par-
asites interactions regardless of the availability of these 
proteins in public databases.
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