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Abstract

Background: Introgression populations are used to make the genetic variation of unadapted germplasm or wild
relatives of crops available for plant breeding. They consist of introgression lines that carry small chromosome
segments from an exotic donor in the genetic background of an elite line. The goal of our study was to investigate the
detection of favorable donor chromosome segments in introgression lines with statistical methods developed for
genome-wide prediction.

Results: Computer simulations showed that genome-wide prediction employing heteroscedastic marker variances
had a greater power and a lower false positive rate compared with homoscedastic marker variances when the
phenotypic difference between the donor and recipient lines was controlled by few genes. The simulations helped to
interpret the analyses of glycosinolate and linolenic acid content in a rapeseed introgression population and plant
height in a rye introgression population. These analyses support the superiority of genome-wide prediction
approaches that use heteroscedastic marker variances.

Conclusions: We conclude that genome-wide prediction methods in combination with permutation tests can be
employed for analysis of introgression populations. They are particularly useful when introgression lines carry several
donor segments or when the donor segments of different introgression lines are overlapping.

Background
If the genetic variability for traits of agronomical interest
is limited, plant breeders attempt to make available favor-
able alleles from exotic material in breeding programs. A
main problem is that lines derived from crosses of elite
and exotic parents lack adaptation and their agronomic
performance is so poor that they cannot be directly used
in the breeding process. So called introgression libraries
or introgression populations [1] are a concept that tries
to overcome the problem by establishing introgression
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lines, of which the genome originates in large part from
an elite line and only small chromosome segments orig-
inate from an exotic donor. The goal of this concept is
to generate lines that have the adaptation and agronomic
performance of the elite parent, and are enhanced by small
chromosome segments from the exotic donor, which pro-
vide favorable alleles for specific traits that should be
improved.

Introgression populations have been developed first in
tomato [2] and subsequently in other crops [3-6]. In most
experiments [5-13] the Dunnett test [14] was used to
detect whether an introgression line differs significantly
from the recipient elite line. If a line, that is significantly
better than the recipient with respect to a certain trait,
contains only one single donor chromosome segment,
then such an analysis is able to identify this segment as
affecting the trait. However, the lines of an introgression
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populations typically carry more than one donor segment
[5,15]. For such introgression lines, the Dunnett test is not
able to identify which of the donor segments affects the
trait.

A linear model in which each donor segment has a
fixed effect [16], can be used to analyse introgression
popualtions with lines that carry more than one donor
segment. It can be employed, if the number of donor seg-
ments in the introgression library does not surpass the
number of introgression lines, i.e., if the design matrix of
the linear model has full rank. For introgression popula-
tions, in which the number of donor segments exceeds
the number of introgression lines, the donor segment
effects are not estimable with a fixed linear model. Sta-
tistical analysis methods for such situations were not yet
investigated.

The goal of our study was to investigate the useful-
ness of statistical methods developed in the context of
genome-wide prediction for the analysis of introgres-
sion populations. In particular, our objectives were to (1)
apply the BLUP [17] and RMLV [18] methods to simu-
lated and experimental data, (2) investigate their power of
detecting donor chromosome segments that have effects
on the phenotype of an introgression line, as well as
their false positive rate, and to (3) draw conclusions on
their potential application for the analysis of introgression
populations.

Methods
Estimating donor segment effects
The genetic effects of the donor segments on a phenotypic
trait were estimated with the linear model y = 1β0 +Zu+
e. Here, y is the vector of the phenotypic values of N intro-
gression lines, β0 a fixed intercept, Z the design matrix
relating the donor segments to the introgression lines, u
the vector of the donor segment effects, and e the vector
of residuals.

To construct the the design matrix Z, markers for which
the alleles were in complete linkage disequilibrium in
the introgression population were combined to donor
segments. The elements of Z are coded in the design
matrix such that the number represents the donor seg-
ment zygosity, i.e., as 0, 1, 2. The structure of the design
matrix Z is illustrated in Figure 1B for the two hypotheti-
cal introgression populations shown in Figure 1A.

For estimation of the donor segment effects, we used (a)
least squares estimation (LSQ) assuming fixed donor seg-
ment effects, (b) best linear unbiased prediction (BLUP)
assuming that the donor segment effects were random
[17], or (c) the RMLV method suggested for genome-wide
prediction [18]. For the LSQ analysis the intercept β0
was removed from the model. Calculations were carried
out with the software SelectionTools (www.uni-giessen.
de/population-genetics/downloads).

Testing donor segment effects
For the LSQ analysis, the significance of the donor seg-
ment effects was tested with F-tests for linear contrasts.
For the BLUP and RMLV analyses, we adopted a per-
mutation test similar to that suggested by [19] for QTL
mapping. For carrying out the permutation test for the
effect ui of the ith donor segment, entries of the ith col-
umn of Z were randomly permuted and ui was estimated
for the random permutations. The distribution of the ui
from r random permutations was used to approximate
the distribution under the null-hypothesis that ‘the seg-
ment has no effect on the phenotype’. Comparison of the
effect estimate obtained for the actually observed pheno-
typic data with the approximated distribution of effects
under the null hypothesis was used to assign p-values to
the donor effect estimates. The p-values from testing lin-
ear contrasts and from the permutation test were adjusted
with a modified Bonferroni procedure [20].

Sample data sets
For investigating effect estimation in introgression pop-
ulations with genome-wide prediction methods, we con-
sidered two hypothetical introgression populations of
different genetic structure. The genome considered for
the simulations consisted of three chromosomes of length
120 cM. The introgression population 1 was an ideal intro-
gression population consisting of 9 lines, each carrying
a donor segment of length 40 cM. The donor segments
were not overlapping. In introgression population 2 the
donor segments had varying length, were overlapping,
and several donor chromosome regions were present in
more than one line. The graphical genotypes of both
introgression populations are shown in Figure 1A.

For a first analysis we considered one major gene located
in the center of chromosome 1 with an additive effect of
size 0.5. An observation vector y that results from this
genetic effect and a random error is shown in Figure 1B.

Simulations for comparing power and false positive rate
We carried out computer simulations with the introgres-
sion populations 1 and 2 to determine the power and
false positive rate of the LSQ, BLUP, and RMLV analy-
ses. We simulated a quantitative trait, controlled by 2, 4,
or 6 loci with additive gene action. The donor had a per-
formance that was 100 units better than the recipient,
hence, the effect of a favorable allele was 25, 12.5, and
8.3̄, respectively. The genes were assigned to random posi-
tions in the genome. Heritabilities between 0.50 and 0.99
were assumed. For introgression population 1 (Z has full
column rank), LSQ, BLUP, and RMLV analyses were car-
ried out. For introgression population 2 (Z doesn’t have
full column rank), BLUP and RMLV analyses were carried
out. The sum of correctly detected effects and the sum
of false positive effects was recorded for 5000 simulation
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Figure 1 Estimation of donor segment effects. A: Graphical genotypes of two hypothetical introgression populations. B: The observation vector
y contains phenotypic values and the design matrix Z illustrates the coding of the desing matrix for the two introgression populations. C: Estimated
effect sizes and significances for effect estimation with an LSQ analysis (introgression population 1 only) and RMLV and BLUP analyses (both
introgression populations).

runs with different random positions of the genes under-
lying the trait. For the permutation tests r = 1000 random
permutations were used.

Experimental data sets
We investigated two experimental data sets. The first data
set was a rapeseed (Brassica napus L.) introgression pop-
ulation consisting of of 350 DH lines. It originates from
a cross between the elite line variety Express and the
resynthesized line RS239 as donor. The introgression pop-
ulation was genotyped with 484 amplified fragment length
polymorphism (AFLP) markers that spanned 1885 cM
with an average marker distance of 4 cM. The intro-
gression population covered 100% of the genome of the
donor. The lines carried on average 2.8 donor segments,
with a mean length of 17 cM. Field trials were con-
ducted at 4 locations in the year 2008/09. Trait data were

collected for glucosinolate content (μmol/g) and linolenic
acid content (%) measured by using near-infrared spec-
troscopy. Adjusted entry means were determined with
a mixed linear model. The chromosomes in this data
set were randomized because the data set is proprietary
and the goal of our study is to investigate the analysis
methods and not to report QTL for the two traits under
consideration.

The second data set was a rye (Secale cereale L.)
introgression population consisting of 37 introgression
lines. It originates from a cross between the elite inbred
line L2053-N and the Iranian primitive rye population
Altevogt 14160 as donor. The plant height was assessed
in two years at five locations with two testers. A detailed
description of the experiment is available in earlier pub-
lications [5,12,21] where the data used in this study is
referred to as ‘Library A’. The lines were genotyped with
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the Rye5K SNP array containing 5,234 markers [22]. The
introgression population covered 94% of the genome of
the donor. The lines carried on average 4.6 donor seg-
ments, with a mean length of 27 cM. This is a public data
set, the marker and field data are provided together with
the analysis software SelectionTools.

Results
For introgression population 1 (Figure 1A) and the obser-
vation vector shown in Figure 1B, the LSQ, BLUP, and
RMLV analyses estimated effects of similar size for all
donor segments (Figure 1C). The F-tests for the LSQ
analysis as well as the permutation tests for the BLUP
and RMLV analyses correctly detected the effect in the
center of chromosome 1 as significant and all other
donor effects as not significant (Type 1 error rate:
0.01). For introgression population 2, the position of the
donor segment underlying the trait was detected cor-
rectly by the BLUP and RMLV analyses. However, the
BLUP analysis underestimated the effect size consider-
ably. In contrast, the RMLV analysis was able to provide
a more precise estimate of the donor segment effect also
with the non full-rank design matrix Z of introgression
population 2.

In the simulations with the introgression population 1,
the LSQ analysis resulted in a false positive rate that was
near the nominal type I error rate (Figure 2). The BLUP
and RMLV analyses showed greater false positives rates.
For heritabilities between 0.6 and 0.8 and four or six loci
underlying the trait, the sum of correctly detected effects
was considerably greater for the BLUP and RMLV analyses
than for the LSQ analysis.

In the simulations with introgression population 2, the
RMLV analysis had a greater rate of correctly detected
effects than the BLUP analysis for all scenarios with the
exception of heritabilities ≥ 0.9 and 6 loci underlying the
trait. For increasing heritabilities, the sum of false positive
effects increased for the BLUP analysis while it decreased
for the RMLV analysis. The false positive rate of the BLUP
analysis was particularly high when only two genes were
underlying the trait.

For both introgression populations and all three quanti-
tative genetic scenarios, the RMLV analysis had a consid-
erably greater rate of correctly detected effects than the
LSQ or BLUP analysis if the heritability was only 0.5. For
introgression population 2 and a heritability of 0.5, the
rates of correctly detected effects of the BLUP analysis
were below 10%.

The RMLV analysis detected that 8 of the 223 donor
segments in the rapeseed introgression population were
significant (p < 0.01) for glucosinolate content, the BLUP
analysis detected 69 significant segments (Figure 3). For
linolenic acid content the RMLV analysis found 25 donor
segments, and the BLUP analysis 81 (Figure 4). For both

traits the BLUP analysis estimated many small effects,
whereas the RMLV analysis estimated a few large effects
and many effects near zero.

In the rye introgression population the RMLV estima-
tion of effects for plant height showed a good model fit,
the correlation between observed and predicted values
was 0.96 (Figure 5). Three donor segments were detected
that significantly increased plant height, and one that
significantly reduced plant height. The donor segment
that reduced plant height had an additive effect of
2 cm.

Discussion
Genome-wide prediction models for the analysis of
introgression populations
Combining markers of which the alleles are in complete
linkage disequilibrium to donor segments results in a
design matrix Z with full column rank if (1) the donor seg-
ments are non-overlapping, (2) each donor allele occurs
exactly in one introgression line, and (3) the donor cover-
age is 100%. (All three conditions are fulfilled by introgres-
sion population 1 in Figure 1.) As a consequence, ZTZ is
regular and can be inverted. Hence, in a linear model with-
out intercept the donor segment effects ui are estimable
and can be tested with F-tests for linear contrasts.

For introgression populations that do not fulfill the
above conditions (1) to (3), the number of donor segment
effects (columns of Z) can be greater than the num-
ber of lines in the introgression population (rows of Z).
Because the row rank is smaller or equal to the num-
ber of rows, those matrices do not have full column rank,
resulting in singular ZTZ matrices. While for such situa-
tions the genetic effects ui are not estimable with ordinary
least squares, ridge regression can be employed. Both, the
BLUP and the RMLV analyses can be regarded as ridge
regression models, BLUP with an equal shrinkage factor
for all markers, and RMLV with shrinkage factors, that
differ depending on the marker.

Collinearity of the columns of Z may occur if condi-
tions (1) to (3) are not fulfilled, and collinearity of the rows
of Z may occur if strongly related sister lines are among
the lines of the introgression population. Such collinear-
ity can increase the false positive rate above the nominal
type 1 error rate used for construction of the permuta-
tion test. The strength of this departure depends on the
strength of the collinearity of the row and column vec-
tors of the Z. In conclusion, it can not be expected that
the permutation test adheres to its nominal type I error
rate, if collinearity is present in Z. However, even if the
permutation tests are only approximate, they provide a
means of analyzing introgression populations that depart
from conditions (1) to (3), as do most of the introgres-
sion populations that were constructed so far in crops
[5,6,10,15,23,24].
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Figure 2 Correctly detected effects and false positives. Simulation results for the sum of correctly detected effects (solid lines) and false positives
(dashed lines) for the RMLV (red), BLUP (blue), and LSQ (black) analyses of introgression population 1 (top) and for the RMLV and BLUP analyses of
introgression population 2 (bottom). Two to six loci were assumed to control the trait under consideration. The heritabilities ranged from 0.50 to 0.99.

Typically the vector of phenotypic values y in genome-
wide prediction models consists of phenotypic means or
of adjusted entry means from incomplete block designs.
Therefore the residual variance used for the significance

tests of the donor segments is only that which is unex-
plained by the genetic composition, not the full residual
variance due to the experimental error of the field trial.
This means that the pure experimental error of the plot
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Figure 3 Donor segment effects for glucosinolate content. Estimated size of the donor segment effects from BLUP (blue) and RMLV (red)
analyses of glucosinolate content (μmol/g) in the rapeseed introgression population plotted along the nineteen chromosomes of rapeseed; filled
symbols denote significant effects (p ≤ 0.01) and open symbols denote non-significant effects.

values is ignored, and the residual variance used in the
tests is underestimated. An alternative approach is to
adjust the plot values for the effects of the factors that
are determined by the experimental design, such as repli-
cation, year, or location. Using such adjusted plot values
in the genome-wide prediction model results in a more
precise estimate of the residual variance. This procedure
makes it possible to include the trial design in the analysis,
even if the statistical model for genome-wide prediction
does not allow to include directly factors for the field
design. We applied this approach for our rye data set.

Power of detecting favorable donor segments and false
positive rate
The LSQ analysis adhered in our simulations with introgres-
sion library 1 to the nominal type I error rate. However,

this was accompanied with a lower power of detecting
significant donor segments than the BLUP and RMLV
analyses for heritabilities between 0.6 and 0.8 and four
or six genes controlling the trait. Hence, with full rank
design matrices, the LSQ analysis seems the most suitable
method when it can be assumed that the trait is con-
trolled by one or two major genes and the heritabilities
are 0.8 or greater. For situations with low heritabilities
and in situations where the trait is assumed to be poly-
genic, the genome-wide prediction approaches might be
advantageous for the detection of donor effects, even for
full-rank design matrices. The higher type I error rate,
however, requires subsequent verification of the detected
donor segment effects.

The BLUP analysis showed a very high false positive
rate in the simulations with introgression population 2
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Figure 4 Donor segment effects for linolenic acid content. Estimated size of the donor segment effects from BLUP (blue) and RMLV (red)
analyses of linolenic acid content (%) in the rapeseed introgression population plotted along the nineteen chromosomes of rapeseed; filled symbols
denote significant effects (p ≤ 0.01) and open symbols denote non-significant effects.

when two loci controlled the trait. A possible expla-
nation is that the model underlying the BLUP analysis
assumes that each donor segment contributes equally to
the genetic variance, i.e., the donor segment variances
are homoscedastic. This assumption is severely violated
if only two genes control the trait under consideration.
As a consequence, large effects are underestimated and
small or zero effects are overestimated. This systematic
estimation error can be observed for the BLUP analysis of
introgression population 2 in Figure 1B. The overestima-
tion of small effects is likely the cause for the high false
positive rate in the permutation test of the BLUP analysis
with non-polygenic inheritance.

The RMLV analysis showed a considerably greater rate
of correctly detected effects than the BLUP analysis for
low heritabilities. This suggests that an RMLV analysis is

an option to detect donor segment effects, which would
otherwise remain undetected. Due to the high false pos-
itive rate, subsequently a thorough verification of the
detected segments is mandatory.

In general, the focus of introgression populations lies on
identifying donor segments that have a considerable effect
on the trait under consideration. Hence, the traits to be
improved are typically oligogenic and are controlled by
few major genes. Our simulations have shown that for few
genes an RMLV analysis is superior to a BLUP analysis.
This is in accordance with the theoretical expectations,
because the BLUP approach employs homoscedastic
genetic variances at all markers, which can be assumed
for highly polygenic traits, but not for oligogenic traits.
We conclude that for most applications of introgression
populations, where few genes are assumed to control
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Figure 5 Donor segment effects for plant height. A: Observed (obs.) and predicted (pred.) test cross values for plant height (cm) of the recipient
and the introgression lines 2101 to 2140 of the rye introgression population. In the graphical genotypes white color indicates chromosome
segments of the recipient and gray the introgressions from the donor. Green color denotes donor segments that increase plant height and red
color segments that decrease plant height. B: Estimated size of the donor segment effects from an RMLV analysis plotted along the seven
chromosomes of rye; gray circles denote donor segments that are not significant; green color denotes a significant (p ≤ 0.05) effect increasing
plant height and red a significant (p ≤ 0.05) effect decreasing plant height.
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the trait, a BLUP analysis is expected to be inferior to
models with heteroscedastic marker variances, such as
an RMLV analysis. It remains open to further research
how well other heteroscedastic approaches for genome-
wide prediction, such as Bayesian methods [17] or the
HEM method [25] perform when applied to introgression
populations.

A main difficulty of applying genome-wide prediction
methods to introgression populations is the rather high
false positive rate. It depends on the degree to which the
assumptions underlying the statistical models are violated
and can not be corrected by adjusting p-values for mul-
tiple testing. We therefore conclude that genome-wide
prediction methods have the potential to detect favorable
alleles, but a validation of the effects in subsequently con-
ducted well-designed trials with a reduced set of lines is
mandatory.

Application to experimental data sets
We applied the BLUP and RMLV analyses to two exper-
imental data sets to derive guidelines for the application
of genome-wide prediction methods to introgression pop-
ulations. In the analysis of the rapeseed introgression
population a major gene for glucosinolate content was
found, that controls the phenotypic difference between
the donor and the recipient (Figure 3). The RMLV analysis
estimated an effect size of 23 and the BLUP analy-
sis an effect size of 18. The BLUP analysis detected
in addition a large number of significant donor seg-
ments with small effects. Many of these were shrunken
near zero in the RMLV analysis. The results presented
in Figure 1C suggest that the true effect size might be
more closely to the RMLV estimate than to the BLUP
estimate, because the differences between donor and
recipient can mainly be attributed to a single major
gene.

For linolenic acid content the BLUP analysis detected
considerably more significant donor segments with small
effects than the RMLV analysis (Figure 3). Linolenic acid
content showed an oligogenic, but not a highly poly-
genic inheritance in QTL studies [26]. Therefore it can
be expected that also here the results of the RMLV anal-
ysis are closer to reality than the results of the BLUP
analysis.

Plant height in rye showed a polygenic inheritance, but
large parts of the genetic variance are controlled by major
genes [27,28]. Therefore, we employed an RMLV anal-
ysis for the rye introgression population. The graphical
genotypes of the rye introgression lines (Figure 5) indi-
cate that in this data set the rows of the design matrix Z
show a strong collinearity, because obviously sister lines
are included in the introgression population. This might
severely violate the assumptions underlying the permu-
tation test. Nevertheless, the RMLV analysis was able to

detect a donor segment on chromosome 2 as responsible
for the considerably shorter plant height of the lines 2124,
2125, and 2135.

A shorter plant height is a key agronomic property that
distinguishes modern rye lines from older breeding mate-
rial. The exotic donor had a considerably greater plant
height than the elite recipient [12,13,27]. Hence, the donor
segment that reduced plant height found by the RMLV
analysis may serve as a proof of concept that favorable alle-
les can be found in exotic donors, even if the exotic donor
itself is inferior to the recipient for a certain trait.

Conclusions
We conclude that genome-wide prediction methods can
be employed to detect favorable donor segments in intro-
gression populations. In particular they can, in contrast to
the typically employed Dunnett test [14], identify favor-
able donor segments when introgression lines carry more
than one donor segment and when the segments present
in different introgression lines are overlapping. In contrast
to fixed linear models, genome-wide prediction methods
can also be applied to over-parametrized data sets with
non full-rank design matrices.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
EB, GH, TM collected the data for the rye introgression populations, FB
collected the data for the rapeseed introgression populations GSM, KCF, MF
performed the analyses, KCF, GSM, MF wrote the manuscript. All authors read
and approved the final manuscript.

Acknowledgments
Funding from the German Federal Ministry of Education and Research (BMBF
Grants # 315951C), is gratefully acknowledged.

Author details
1Institute of Agronomy and Plant Breeding II, Justus Liebig University, 35392
Giessen, Germany. 2Plant Breeding, Technische Universität München, 85354
Freising, Germany. 3State Plant Breeding Institute, Universität Hohenheim,
70593 Stuttgart, Germany. 4Institute for Evolution and Biodiversity,
Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany. 5KWS
Saat AG, Grimshelstr. 31, 37555 Einbeck, Germany.

Received: 18 July 2014 Accepted: 20 August 2014
Published: 11 September 2014

References
1. Zamir D: Improving plant breeding with exotic genetic libraries. Nat

Rev Genet 2001, 2(12):983–989.
2. Eshed Y, Zamir D: A genomic library of Lycopersicon pennellii in L.

esculentum: a tool for fine mapping of genes. Euphytica 1994,
79(3):175–179.

3. Pestsova EG, Börner A, Röder MS: Development and QTL assessment of
Triticum aestivum - Aegilops tauschii introgression lines. Theor Appl
Genet 2006, 112:634–647.

4. Szalma SJ, Hostert BM, LeDeaux JR, Stuber CW, Holland JB: QTL mapping
with near-isogenic lines in maize. Theor Appl Genet 2007,
114:1211–1228.
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12. Falke KC, Sušić Z, Wilde P, Wortmann H, Möhring J, Piepho H-P, Geiger
HH, Miedaner T: Testcross performance of rye introgression lines
developed by marker-assisted backcrossing using an iranian
accession as donor. Theor Appl Genet 2009, 118(7):1225–1238.

13. Falke KC, Wilde P, Wortmann H, Geiger HH, Miedaner T: Identification
of genomic regions carrying qtl for agronomic and quality traits
in rye Secale cereale introgression libraries. Plant Breed 2009,
128(6):615–623.

14. Dunnett C: A multiple comparison procedure for comparing several
treatments with a control. J Am Stat Assoc 1955, 50:1096–1121.

15. Liu S, Zhou R, Dong Y, Li P, Jia J: Development, utilization of
introgression lines using a synthetic 0wheat as donor. Theor Appl
Genet 2006, 112(7):1360–1373.

16. Mahone GS, Frisch M, Miedaner T, Wilde P, Wortmann H, Falke KC:
Identification of quantitative trait loci in rye introgression lines
carrying multiple donor chromosome segments. Theor Appl Genet
2012, 126:49–58.

17. Meuwissen THE, Hayes BJ, Goddard ME: Prediction of total genetic
value using genome-wide dense marker maps. Genetics 2001,
157:1819–1829.

18. Hofheinz N, Frisch M: Heteroscedastic ridge regression approaches
for genome-wide prediction with a focus on computational
efficiency and accurate effect estimation. G3 2014, 4:539–546.

19. Churchill GA, Doerge RW: Empirical threshold values for quantitative
trait mapping. Genetics 1994, 138:963–971.

20. Hochberg Y: A sharper bonferroni procedure for multiple tests of
significance. Biometrika 75 1988, 75:800–803.

21. Falke KC, Wilde P, Wortmann H, Müller BU, Möhring J, Piepho HP,
Miedaner T: Correlation between per se and testcross performance
in rye (Secale cereale L.) introgression lines estimated with a
bivariate mixed linear model. Crop Sci 2010, 50:1863–1873.

22. Haseneyer G, Schmutzer T, Seidel M, Zhou R, Mascher M, Schön CC,
Taudien S, Scholz U, Stein N, Mayer KFX, Bauer E: From RNA-seq to
large-scale genotyping - genomics resources for rye (Secale cereale
L.). BMC Plant Biol 2011, 11:131.

23. Eduardo I, Arus P, Monforte AJ: Development of a genomic library of
near isogenic lines (NILs) in melon (Cucumis melo l.) from the exotic
accession pi161375. Theor Appl Genet 2005, 112(1):139–148.

24. Szalma SJ, Hostert BM, LeDeaux JR, Stuber CW, Holland JB: QTL mapping
with near-isogenic lines in maize. Theor Appl Genet 2007,
114(7):1211–1228.

25. Shen X, Alam M, Fikse F, Rönnegård L: A novel generalized ridge
regression method for quantitative genetics. Genetics 2013,
193:1255–1268.

26. Hu X, Sullivan-Gilbert M, Gupta M, Thompson SA: Mapping of the loci
controlling oleic and linolenic acid contents and development of
fad2 and fad3 allele-specific markers in canola (Brassica napus l.).
Theor Appl Genet 2006, 113(3):497–507.

27. Miedaner T, Müller BU, Piepho H-P, Falke KC: Genetic architecture of
plant height in winter rye introgression libraries. Plant Breeding 2011,
130(2):209–216.

28. Miedaner T, Hübner M, Korzun V, Schmiedchen B, Bauer E, Haseneyer G,
Wilde P, Reif JC: Genetic architecture of complex agronomic traits
examined in two testcross populations of rye (Secale cereale l.).
BMC Genomics 2012, 13:706.

doi:10.1186/1471-2164-15-782
Cite this article as: Falke et al.: Genome-wide prediction methods for
detecting genetic effects of donor chromosome segments in
introgression populations. BMC Genomics 2014 15:782.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Estimating donor segment effects
	Testing donor segment effects
	Sample data sets
	Simulations for comparing power and false positive rate
	Experimental data sets

	Results
	Discussion
	Genome-wide prediction models for the analysis of introgression populations
	Power of detecting favorable donor segments and false positive rate
	Application to experimental data sets

	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgments
	Author details
	References

