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Abstract: What makes unmanned aerial vehicles (UAVs) intelligent is their capability of sensing and
understanding new unknown environments. Some studies utilize computer vision algorithms like
Visual Simultaneous Localization and Mapping (VSLAM) and Visual Odometry (VO) to sense the
environment for pose estimation, obstacles avoidance and visual servoing. However, understanding
the new environment (i.e., make the UAV recognize generic objects) is still an essential scientific
problem that lacks a solution. Therefore, this paper takes a step to understand the items in an unknown
environment. The aim of this research is to enable the UAV with basic understanding capability for a
high-level UAV flock application in the future. Specially, firstly, the proposed understanding method
combines machine learning and traditional algorithm to understand the unknown environment
through RGB images; secondly, the You Only Look Once (YOLO) object detection system is integrated
(based on TensorFlow) in a smartphone to perceive the position and category of 80 classes of objects
in the images; thirdly, the method makes the UAV more intelligent and liberates the operator from
labor; fourthly, detection accuracy and latency in working condition are quantitatively evaluated,
and properties of generality (can be used in various platforms), transportability (easily deployed
from one platform to another) and scalability (easily updated and maintained) for UAV flocks are
qualitatively discussed. The experiments suggest that the method has enough accuracy to recognize
various objects with high computational speed, and excellent properties of generality, transportability
and scalability.

Keywords: UAV; visual RGB; real-time; YOLOv3; color detection; object detection; machine
learning system

1. Introduction

As humans, we can explore a new unknown environment with our eyes before taking actions
and making decisions and so should UAVs (unmanned aerial vehicles). Backed up with the VSLAM,
VO and optic flow techniques, the UAV can estimate its self-position on a calculated map, the size
and position of obstacles based on disparity images, and its distance to the obstacles. However, this is
not intelligent enough for the UAV. How many items are there in the environment? Are there any
dangerous items in the environment? Is the security situation safe enough for the planned action?
These questions require understanding ability from an intelligent UAV. Recognizing the items in an
unknown environment is a basic ability when the UAV is executing a mission.

The purposes of this study are investigating a method to equip UAVs with recognition capacity
and evaluating the impact of the method on the real time performance and the detection accuracy
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under working conditions. For practicability purposes, the method is integrated in a UAV system
which has the potential of managing several UAVs. This paves the way to making the UAV or the UAV
flock intelligent and this UAV system could be used widely including in military applications, as shown
in Figure 1, indoors and outdoors search and rescue and transporting supplies in an urban scenario.
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of understanding unknown and complex environments would allow a UAV flock to complete more
powerful missions.

This research has practical value because the applications of UAVs have increased dramatically,
including infrastructure monitoring [1], providing bird’s-eye-view images and a communication
network for rescuers and transporting medical supplies [2]. Images from UAVs flying a few meters
above the ground fill a gap between the costly low-resolution images provided by satellites and narrow
view images provided by fixed monitors.

Liberating the labor force is another scientific contribution of the method proposed.
Kolling et al. [3] illustrate that the operator could not operate more than four UAVs at the same time,
due to the cognitive complexity of human-robot systems, while as shown in Figure 1, the man-UAV
system might contain far more than four UAVs in the future. As mentioned by Hocraffer et al. [4],
currently, most single UAVs use manual operations, which is the lowest Level of Automation (LOA);
the other three levels are the human-oriented semi-autonomy, the machine-oriented semi-autonomy, and
the fully autonomous [5]. Research has found that as automation increases, operators could effectively
guide or direct UAVs in more complicated tasks [5]. The purpose of the proposed method is to equip
UAVs with artificial intelligence to understand the environment and facilitate human convenience.

Supported by the camera-equipped UAV, humans could complete challenging tasks unimaginable
before. Militarily, solider could decrease the risk of wounds and injury by spying aerially on the enemy
remotely before acting [6]. Commercially, humans could record a video from various viewpoints,
quickly transport objects regardless of restrictions on traversable roads, and aerially track targets of
interest for a long time [2]. With the further development of UAVs, teams of UAVs (a UAV flock can
consist of hundreds of UAVs) could play important roles in future applications.

An application of a UAV system is shown in Figure 1, which also illustrates the necessary of
understanding unknown environments. The quantity of aircraft in a UAV system can vary. The man in
the UAV system has the highest priority, but does not operates certain UAVs directly. As shown in
Figure 1, the missions of UAVs vary from group to group, including protecting the pilot, drawing fire
from the enemy, piercing defense systems, and surveilling the enemy. The foundation of these high-level
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capabilities is the understanding of generic objects in real time. Therefore, this paper proposes a
real-time understanding method, which combines machine learning technology and traditional image
processing, to detect generic objects. Although the example here is related to military applications,
the scientific contribution of this example could be easily adopted to civilian use, like assisting rescuer
for search and rescue.

In this paper, the information of the environment is represented as the object category, location of
the object in the image, and the color blob of the object in the environment. The environment is unknown
since there is not information about the objects, marks, dynamics and scope. This environment could
be an indoor or outdoor environment, and the application of a UAV is not limited to the urban scenario.
The object is not always below the UAV. Thus, the images should not always be taken from a bird’s eye
view. This constraint is meaningful and makes the system easily extensible to practical applications.
This paper takes a rotorcraft, like a quadrotor, as an example for the convenience of experimentation.

The representation of the environment could be extracted based on computer vision technology [7],
including the semantic segments, depth perception, object classes, room layouts and scene class [8].
However, most of the high level representation methods mentioned above require costly and high
performance computational resources. Recently, to build small and low latency models that are
matched the requirements for mobile and embedded vision application is still a research hotspot [9–11].
In other words, equipping the UAV which has limited computational resources with the ability of
understanding an unknown environment through images remains a serious challenge.

We use cameras to understand the environment and detect generic objects in the environment,
considering the cost, computational efficiency, weight, power dissipation and the information extracted.
A video could be processed as a series of sequential images. Hence, RGB images in this paper represent
the frames of video captured by the UAV. The UAVs are always equipped with multiple integrated
sensors for understanding, mainly through radar and/or electro-optical/thermal (EO-IR) sensors and
less commonly through acoustic and radio frequency (RF) sensors [12]. Compared with other types
electro-optical sensors (like cameras) are cheap, sensitive to environmental settings, and can detect and
classify with the highest capability if the target is visible. Images do not require energy to interrogate
the environment and can gather richer information and span wider fields of view, compared with other
distance sensors such as sonar, infrared and laser range finders.

We utilize a machine learning method, YOLO, and a traditional method, color blob detection,
to understand the environment. Visual Simultaneous Localization and Mapping (VSLAM) algorithms
are also a vision-based approach for understanding the environment method but these were not studied
in this paper. VSLAM aims to construct a consistent map of the environment and simultaneously
estimate the global position of the robot within this map [13]. Visual odometry (VO) algorithms handle
the problem of estimating the 3D position and orientation of a vehicle [13]. Although VSLAM and
VO are precise pose estimation methods, their limitation is clearly that they are not the methods for
recognizing the category of objects in an unknown environment.

The method proposed in this paper makes full use of the development of computer vision
technology and hardware platforms to understanding. We analyzed the detection accuracy with
the mean Average precision (mAP) metric. Our experiments demonstrate that the UAV could be
armed with state-of-the-art computer vision algorithm, the detection accuracy in working condition is
sufficient and the real-time performance is still acceptable.

The real-time performance here is restricted to capturing and processing images and providing
mission feedback during the execution of the mission. The mission of an UAV, like searching for
a target, could respond to the processing result. We address the understanding method with this
property as onlined in this paper. In contrast, the understanding method to extract the information is
offline if the UAV has already finished the aerial mission and the processing result has no influence on
the mission (e.g., filming an area [14]). The online method to extract the information from real-time
images has wider application prospects than the offline one. Thus, abundant research, including ours,
focus on online methods run on an embedded system [7,15].
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The design of the UAV system should consider human-robot interactions and maintenance of
the system, when the quantity of UAVs increases. This paper takes the interaction between humans
and UAVs into consideration and implements a closed processing cycle of images from capturing and
processing images to displaying them and decision making. For a large-scale use of the method in an
UAV flock, generality (can be used on various platforms), transportability (easily deployed from one
platform to another) and scalability (easily updated and maintained) are essential for the maintenance
of the system. With this method, we have participated in MISSION 8 of the International Aerial Robotics
Competition (IARC), 2018. The system won the first prize and the Best Man-Machine Team award in
the competition, which also, to some extent, proves the practical value of the proposed method.

Furthermore, to evaluate the detection accuracy of the UAV system, we randomly sampled the
COCO dataset. We evaluated that by sending the results collected from the smartphone to the server
program (provided by COCO). That means our detection accuracy is determined by the performance
of the YOLO model on the smartphone under working conditions. Since the execution platform is a
smartphone with limited memory for datasets and computational resources for detection, the analysis
of evaluation results and the comparison with other computer vision algorithms are rough, however,
still valuable in practice.

To summarize, considering the above factors, the contributions of this paper are fourfold: (1) A
novel understanding method is presented. We propose an understanding method, which combines
machine learning and traditional image processing algorithms, for UAVs to sense 80 classes of objects
(listed in Appendix A) in an unknown environment through real-time RGB images; (2) Liberation of the
labor force. Detecting generic objects increases the intelligence of UAV and decreases the need of a labor
force for operating the UAV, searching for target in the video, and triggering the next mission. This also
serves as preparation for the large-scale use of UAVs in UAV swarms; (3) Prototype verification.
We implement a closed image cycle from capturing and processing to displaying and decision making,
utilizing semi-physical simulations and physical experiment to evaluate the properties of the approach.
(4) We quantitatively evaluate the impact on the real time performance and the detection accuracy
under working conditions, using frames per second (FPS) to evaluate the real time performance using
mAP metrics and the randomly sampled COCO dataset (10,000 images with 80 categories) to evaluate
the detection accuracy of the method.

2. Related Work

This section describes a comparison with other solutions of the problem of equipping the UAV
with the capability of understanding an unknown environment.

2.1. Methods for Understanding the Environment

Researchers have expended a great deal of effort in implementing visual ability in UAVs.
Some methods use sensors working in an active way [16], such as synthetic aperture radar (SAR) or
light detection and ranging (LIDAR). These methods can be easily used during cloud cover, night,
and rain conditions, which makes the method independent of the weather conditions. However,
these methods need more energy to interrogate the environment than RGB images, which limits the
cruising ability of the UAV.

Some methods use sensors in a passive way, such as event-based cameras [17], RGB-D cameras,
and RGB cameras. These sensors are light in weight and rich in information. Falanga et al. [17]
used event-based cameras to achieve outdoor dynamic obstacle avoidance capability but the cost of
the event-based camera is too high and it could not recognize generic items. Using RGB-D camera,
researchers could generate a global map and compute the location easily, but these visual SLAM and
VO methods require powerful computational capability, which is not suitable for UAVs with limited
resources. Using a RGB camera, Blösch et al. [18] localized and navigated an UAV in an unknown
environment with help of a parallel tracking and mapping (PTAM) algorithm. Although the real time
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performance was good, their method could not be used in our scenario because it needs a powerful
ground station to run the program and it cannot recognize generic items in the environment.

Optic flow technology is one of the methods for implementing the visual ability of UAVs by using
passive sensors [2]. This technology is inspired by the compound eyes of insects, which are dense
arrays of facets pointing in different directions and spanning large fields of view [19]. However, it is
difficult to maintain the hover mode for a long time due to the limitations of optic flow algorithms.
Besides, optic flow only uses part of the information contained in RGB images, and this technology is
sensitive to the light conditions.

Considering the cost, computational efficiency, weight, power dissipation and the information
extracted, the method proposed in this paper only utilizes RGB images from RGB cameras, which not
only provides abundant information, but also saves energy to enhance the UAVs cruising ability.

2.2. Detection Ability of UAVs

Recently, several studies have focused on the development of UAV imagery for engineering
applications using artificial intelligence techniques (UAV-AI). Some studies endows the UAV with
real-time visual ability to localize tree branch-like surfaces for perching [20]. This work focuses more
on special object detection for UAVs. Zhou et al. [14] used an updated YOLO v3 model to detect the
opium poppies in images captured by an UAV. Compared with original YOLO v3 model the model uses
the recently proposed Generalized Intersection Over Union (GIOU as the loss function, and a Spatial
Pyramid Pooling Unit is added [21], while, the method is run on a RTX2080Ti platform, which means
the detection process is offline and could not benefit the automatic control immediately for UAVs in an
unknown environment.

Gao et al. [22] built a system that can detect agricultural croplands and orchard areas by online and
offline methods, which is not the same task definition as ours. The online method in [22] represents that
learning and recognition are at the same time, and offline means the phases of learning and recognition
are separated. Their algorithm is conducted on the ground station with the help of MATLAB to process
the images which are collected from low (5 m) and high (15 m) altitude by the UAV. The UAV here is
just a sensor used to collect the images above the ground for the system.

Some studies detect cooperative UAVs using a vision-based approach with the help of navigation
data [7,23]. The system proposed by Opromolla et al. [7] finds out the search area in the picture, after getting
the relative position through inter-vehicle data links. Then, it uses a template matching method with the
help of a previously generated database to detect cooperative UAVs. Opromolla et al. [23] used YOLO
v2 to replace the template matching method to find the bounding box. Their method was implemented
on a Robot Operating System (ROS) and the frames per second are 1 Hz and 7 Hz. These methods
need extra signals, like navigation data of the target, to enable the method. They assume that the target
(target UAV) has a connection with the UAV (tracking UAV), but we do not. Mostly, navigation data of
the target does not need to be collected. Our method only uses RGB images and is implemented on an
Android system with a much higher frame rate of 18 Hz to 23 Hz.

An UAV system with online object detection capabilities that run on a smartphone is not a novel
concept. In the work of Hummel et al. [24], the video captured by an UAV is displayed and processed
on a smartphone for the operator, and commands could be sent from the operator to UAV. However,
the image recognition in their article needs several assumptions, including the size and height of
the recognized book in pixels, and the shape of the book should be pre-configured. In the work
of Martinez et al. [25], they implemented YOLO v3 based on OpenCV library to recognize generic
items, used the images transformed from YUV format (video compressed with H.264 protocol is
transferred from UAV to a smartphone, and then decoded into YUV format, but the YOLO needs RGB
format inputs), and analyzed the detection accuracy of the model on the computer not under working
conditions. This approach is outstanding, but the computational efficiency could be improved and the
detection accuracy could be analyzed more credibly.
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Compared with their work, firstly, our method uses the computational resources of the UAV
and could interact with the UAV to complete more complex tasks, which is far more than an image
processing program. Secondly, our approach utilizes a state-of-the-art recognition algorithm without
extra assumptions and could recognize 80 classes of objects. Thirdly, we use OpenCV and TensorFlow.
That means our method is more functional with the potential of object detection, image segmentation,
gesture classification, and pose inference. These functions are supported by TensorFlow and the
computational efficiency is guaranteed by the TensorFlow which focuses more on deep neural network
processing. Fourthly, we analyzed the detection accuracy by sending the results collected from the
smartphone to the server (provided by COCO). That means our detection accuracy is the performance
of the YOLO model on the smartphone under working conditions. Furthermore, we qualitatively
analyzed the scalability to update the system with a new recognition algorithm and maintain the
system with a custom recognition algorithm.

2.3. Machine Learning Algorithm for Detection

Object detection has attracted the interest of researchers for decades. Normally, in order to
increase the computational efficiency, an image would be resized and filtered as a preprocessing step.
Sometimes, transform algorithms are used to detect certain textures or color blobs. With the help of a
Fast Fourier Transform (FFT) algorithm, it is easy and fast to transform the information from the time
domain to the frequency domain to detect texture. With the help of transforming the value of color
image from red, green, and blue (RGB) space into hue, saturation, value (HSV) space, the algorithm
detects unique colors precisely.

Traditionally, template matching algorithms, which compare the similarity of the patch in the
image and a template in a pre-generated database, are widely used [23,26]. However, their poor
generalization ability limits the application of template matching algorithms. Template matching
algorithms are suitable for applications of finding an object in the template using various stored views
of the object. In our scenario, detecting 80 categories of objects needs a large number of templates
which costs too much of the computation time.

Recently, as computational capability has increased, deep learning algorithms perform better
and better. Especially after 2012, convolutional neural networks (CNN) have become the dominant
method to extract the features of images in computer vision tasks, including image classification [27–30],
object detection [31], and semantic segmentation [32]. Then the network goes deeper and deeper.
The deeper the network is, the more parameters the network has, so the representation ability increases,
and the network could discriminate subtle difference between different categories. However, the power
consumption and sheer size of such models inhibit their practical use. Thus, researchers have investigated
a lot of ways to break through this bottleneck.

One direction is quantizing and compressing the network [11]. The other direction is designing
a new network architecture [9,10]. Both these approaches are effective and tested by practice.
One example is the YOLO model, which is a novel architecture proposed by Redmon et al. [10,21].
There are three layers called YOLO layers, which represent three scales and contains three sets of
information: (1) the coordinates of the bounding box; (2) the probability of it containing an object;
(3) the probability of a certain category. The difference between each version is the network used for
performing feature extraction: the first version uses 24 convolutional layers followed by two fully
connected layers; the second version uses Darknet-19 and the third version uses Darknet-53 [21].

3. Materials and Methods

This section defines the goals of our research first, and then describes several basic terms to pave
the way for our research.



Sensors 2020, 20, 3245 7 of 26

3.1. Problem Formulation

In order to arm a man with an intelligent UAV for complex tasks, the primary challenge is to
devise a scheme that equips the UAV with enough accuracy to recognize various objects online through
RGB images, while not losing the performance features of generality, interactivity, transportability and
scalability. To this end, this paper introduces an approach that utilizes a machine learning method to
recognize 80 classes of objects through real-time video captured by an UAV. Furthermore, semi-physical
simulations and physical prototyping verify the effectiveness of the proposed method.

3.2. Architecture of the System

The purpose of this part is the briefly introduce the UAV system that was equipped with the
capacity of understanding an unknown environment. As shown in Figure 2, there are four levels and
this architecture is designed for a flock of UAVs. The physical level includes the payload interface
(like cameras and gimbals), the hardware (the UAVs) and the controlling programs. These are the basic
parts of the system.
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The communication is implemented at the communication level with the help of WiFi (connecting
several smartphones, and the smartphones are connected to the remote controller by a USB cable) and
radio (connecting the remote controller and the UAV). Here the video is transferred with the H.264
format from the UAV to the remote controller. The cooperation information is transferred based on
the TCP/IP protocol from one smartphone to another. This communication level wil be described in
detail in next section by the data flow. The mission part and the monitor part constitute the function
level. Missions include take off, move forward, detect a target and so on. The interaction between
the human operator and the UAV mission is discussed in a previous paper [33]. The solution and
the performance evaluation of the intelligent awareness are studied in this paper. The monitor part
takes care of the health of the UAV system. The strategic level is the highest level which generates
a mission, delivers the mission and makes decisions. The strategic level is described in detail in
Figure 3. Although it is verified by the practice, we so not analyze the performance and the efficiency
of the architecture in this paper, and focus rather on the intelligent awareness function. The software
framework is shown in Figure 3. For the convenience of organizing several functions and missions,
we break the program into three parts: (1) Strategy management. This part collects missions and basic
functions. In this research, there are two missions. The routine mission is an autonomous mission
with a time sequence. After enabling the mission, the UAV takes off, initializes the parameters of the
camera and gimble, adjusts the altitude to a certain flight channel [33] and then alternates between a
hovering mission and the mission of moving around. This represents the behavior from taking off to
searching autonomously. (2) Health management. This part checks the mission, which is proposed
by the strategy management, and confirms the final mission to be executed based on the current
system security and state. The health management monitors the system state every 0.05 s. (3) Mission
management. In this part, the confirmed mission would be conducted.
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3.3. Data Stream Pipeline

To enhance the generality, interactivity, transportability and scalability from the mechanism,
this paper introduces the framework of the method, and the data flow chart of the system is illustrated
in Figure 4. As shown, the UAV senses the environment and records a color video with the first-person
point of view (FPV). The video is encoded by the H.264 protocol (ITU-T Recommendation H.264.
Standard for highly compressed digital video codec) and is transmitted to the corresponding remote
controller through special electromagnetic waves.
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After obtaining the video and flight information, the remote controller interacts with the smart
phone through the Universal Serial Bus (USB) cable. The detected images in bitmap format are decoded
from H.264. The main program to detect the object and real-time display is developed and deployed on
a smartphone running the Android operating system. This program was developed in Android Java
language based on the TensorFlow for Android library and OpenCV for Android library. The detection
algorithm is packet as a “.tflite” file based on TensorFlow for Python rules.

As analyzed by the International Data Corporation (IDC), the Android operating system accounted
for 87% of the market share in the smartphone domain in 2019. This ensures the generality of the
proposed method and the prototype demonstrates the generality. Although the type and size of UAVs
vary from task to task, the approach to transport the recognition method from one UAV to another
just requires plugging the phone into another remote controller with subtle changes in the program.
The scalability benefits from the design of the software.

3.4. Understanding Part of the Method

With the development of computer vision, lots of the representations
{
r1, r2, · · · , rn

}
could

be extracted from the RGB images to sense an unknown environment. This paper takes three
representations as an example, including the object class, location of the object in the image and color
blob of the image.

For representing the object class and location, this method utilizes YOLO v3 to recognize objects.
The structure is illustrated in Figure 5. The resolution of the video is 1280 × 720 pixels. Thus, the size of
the input layer in this network is configured as 608 × 608 × 3 (other options are 416 × 416 × 3, 320 × 320
× 3, 256 × 256 × 3 and smaller) to save more information when resizing. Normally, due to the limited
computational resources, we resize the input images to 320 × 320 × 3. This would lead to narrowing
the input layers. The network is 75 layers deep when counting only convolutional layers (or 107 layers
if we count routes layer, shortcut layers, and YOLO layers). To determine the bounding box priors
(means the location and the size of the target in the image), this network uses k-means clustering and
chooses nine clusters with three scales. The nine clusters are: (10 × 13), (16 × 30), (33 × 23), (30 × 61),
(62 × 45), (59 × 119), (116 × 90), (156 × 198) and (373 × 326) [21,24]. To extract the features Darknet-53
is used. The parameters are pre-trained by YOLO. With this configuration this model could recognize
80 classes of objects.
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Next, to deploy the recognition algorithm on the smartphone, the model is optimized by using
the TensorFlow Lite Optimizing Converter (TOCO) [34]. This step converts the resulting frozen
graph into the TensorFlow Lite flatbuffer format. After the abovementioned process of the network,
the category and the location of an object in the image could be figured out, and the object is covered
by a bounding box.

In addition to the category of the object in an unknown environment, there is a lot of information
encoded in the RGB images. Here we take the color blob detection as an example. Algorithm 1
illustrates the detection process.

Algorithm 1 Color Blob Detection.

Require: Real time RGB image;
the hue value of the ROI (region of interest);
the hue section

1: While feed new frame do
2: if processing then continue
3: else
4: perform the down sampling step of the

Gaussian pyramid construction
5: convert the value of RGB into the HSV

color space
6: get binary image A(1 if the value is

included in the hue section and 0 otherwise)
7: dilate the binary image A (morphological

processing) into image B
8: retrieve contours from the binary image B

using the algorithm Border Following
9: if the area of the region defined by the

contour >50 pixels then
10: show the contour
11: end if
12: end if
13: process is finished
14: end while
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In order to blur an image and downsample it, the function performs the downsampling step of
Gaussian pyramid construction. Before downsampling the image by rejecting even rows and columns,
it convolves the source image with the kernel:

K =
1

256


1 4 6
4 16 24
6 24 36

4 1
16 4
24 6

4 16 24
1 4 6

16 4
4 1


(1)

The method to filter the noise is by dilating the image by using a specified structuring element
that determines the shape of a pixel neighborhood over which the maximum is taken:

imageB(x, y) = max(x′,y′):element(x′,y′),0
{
imageA(x + x′, y + y′ )

}
(2)

where imageB(x, y) represents the value of the imageB of x row and y column. And the element(x′, y′)
here is the value of the 3× 3 rectangular structuring element with (x′, y′) as the index of the row and
column. To obtain the contours of the imageB, the well-known border following algorithm [35] is used.
This algorithm is a topological structural analysis of digitized binary images.

3.5. Fusion at the Action Level

Understanding the environment is the preparation for the action. Therefore, this paper also
investigated the action decision to evaluate the practicability of the proposed method. As a prior work [8]
pointed out, fusion at the action level, which is predicting an action candidate from each representation
and adaptively consolidating these action candidates into the final action, reduces redundancies and
improves generalization.

Inspired by their approach, this paper proposes an alternative way of fusing the representations
at the action level. At any time step t, when the system receives the RGB image input ot, the proposed
method computes the n representations for the image

{
r1

t , r2
t , · · · , rn

t

}
. For each representation ri

t,

an action-prediction module πi(a
∣∣∣ri

t) produces an action candidate ai
t, such as moving forward,

avoiding the obstacle, and hovering. An n-dimensional vector ht = f (ot, M, C) is figured out by the
function f , where M represents the mission goal and C represents the command from the operator.
Then, ht is normalized with a softmax function to obtain the fusion weight gt = so f tmax(ht). The final
decision for the action at:

at =
∑

i=1···n

gi
tπi(a|ri

t) , gt = so f tmax( f (ot, M, C)) (3)

The proposed method to sense the environment works well in the experiments with this
fusion scheme.

4. Experiment Setup

4.1. Experimental Testbed

This paper conduct experiments using the DJI Mavic Pro and DJI Mavic Air UAVs (DJI, Shenzhen,
China), which are consumer products with the technical parameters listed in Table 1. These products
can avoid obstacles based on the distance calculated by the binocular camera and track objects based
on interactions with the operator. One tracking mode is that the operator touch and drags a region
of interest (ROI) on the screen and then the UAV could track an object in the ROI. Precisely, this is a
tracking algorithm not a detection algorithm. Another tracking mode of the DJI is detecting a person
(the only object) automatically and starting to track him. All in all, the built-in functions of the DJI
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UAVs cannot recognize various categories of objects. The more categories an UAV can detect, the more
useful the system is for reducing the workforce.

Table 1. Overview of the testbed.

Model Size, Weight Sensors MSED 1 Lifetime Video

Mavic Pro 83 × 83 × 198 mm,
734 g (with battery)

Gyroscope,
accelerometer,

binocular system,
camera with gimbals

FCC: 7000 m;
CE: 4000 m;

SRRC: 4000 m

27 min,
3830 mAh

720 p @ 30 fps
1080 p @ 30 fps

Mavic Air 168 × 184 × 64 mm,
430 g (with battery)

Gyroscope,
accelerometer,

binocular system,
camera with gimbals

FCC: 4000 m
CE: 2000 m

SRRC: 2000 m
MIC: 2000 m

21 min,
2375 mAh 720 p @ 30 fps

1 Maximum signal effective distance (no interference, no shielding).

As for the delay between when an object is visible to the camera and it is detected, this could be
separated into two parts. One is the delay between when an object becomes visible and it is transferred
to the smartphone. This delay is optimized by DJI, the UAV manufacturer, and is beyond the scope
of this research. The video max bit rate is 100 Mbps, which means the delay of streaming images is
so short that the operator should not feel it. The other is the delay of the model inference when the
program runs under working conditions. This has the impact on the real time performance and is
studied in this paper.

The appearance of the DJI Mavic Pro is shown in Figure 6a. With the help of the on-board
camera, the smartphone could obtain a video with a first-person point of view. The smartphone
used in this paper is a Mate 10 Pro (Huawei, Shenzhen, China, with an octa-core CPU, Kirin 970 and
6 GB RAM). The purpose of using two UAV platforms is to evaluate the generality (can be used on
various platforms), transportability (easily deployed from one platform to another) and scalability
(easily updated and maintained).
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the software.

As for the control algorithm and the algorithm for obstacle avoidance, we have published that
in [33]. These algorithms have already been evaluated statistically in relation to performance, so this
paper omits the performance of those algorithms. The machine learning method abovementioned and
all the algorithms are implemented by Java and deployed on the smartphone. After being connected
with the remote controller through a USB cable, the smartphone could control the motion of the UAV
and receive data from the UAV. The operator can interact with the program at any time with the
highest priority.

In the experiments, there are six states in the flight and four states in the test as shown in Table 2.
One thing that should be emphasized is that this experiment only evaluates the real-time performance
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and the impact of the detection function on the flight control program. We chose three essential and
vulnerable states to test the impact. The detection evaluation will be described later. This experiment
works on the real time property of the understanding method in a different state. The understanding
method includes two parts: color blob detection and object detection. IDLE state represents staying
still on the ground with the motor powered off. The flight state would be changed automatically
according to the time sequence as described in [33].

Table 2. States in the experiment.

State Number Flight State Test State

0 IDLE None
1 Take off Detect Color Blob
2 Initial Parameters Detect Object
3 Maintain Channel Detect Color Blob and Object
4 Hover -
5 Walk Around -

4.2. Semi-Physical Simulation Testbed

In addition to the prototype, a semi-physical simulation also is conducted for evaluating the
proposed method. During the simulation, all the sensors including the camera work normally and
that is the reason for the semi-physical simulation name. The purpose of the simulation is virtualizing
the flight behavior to speed up the development progress and the detection accuracy evaluation in a
safer way. After detecting the object through the camera in the real world, the mission command is
computed, and the virtual UAV would move following the flight data from an inertial measurement
unit (IMU).

This semi-physical simulation has two parts. First, the software on the computer is DJI Assistant
2 for Mavic, and Figure 6b shows a screenshot. Second, the physical part is the DJI Mavic Pro.
The simulation environment is from DJI. During the simulation, the motors would be off and the IMU
would keep working to send the computed flight information from the UAV to the computer through
the USB cable. The simulation software would plot the flight trajectory on the screen.

Initially, we connect the UAV with a computer through the USB cable and turn on the battery.
Then, open the software and run the simulation command. From now on, the commands from the
program on the smartphone only will enable the IMU with the motors disabled. Flight data from IMU
drives the virtual UAV in the simulation environment. This approach contributes to the development
of the program in a safe way.

4.3. Detection Evaluation Setup

To evaluate the detection accuracy, the famous COCO 2014 dataset (a publically available dataset)
is used. One thing should be noted is that the purpose of the evaluation described here is verifying the
detection ability of UAV system. We evaluate the accuracy based on the detection results computed on
the smartphone under working conditions. Because of the memory limit of the smartphone which
executes the program, we sampled randomly from the dataset and obtained 10,000 RGB images divided
into 80 categories. The procedure takes nearly two hours to get 1.5 GB data from the COCO dataset,
while transmitting the sampled dataset to a smartphone took more than six hours. An overview of the
detection evaluation setup is shown in Figure 7.
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The main program containing the detection algorithm is executed on the smartphone, and the
images in the sampled dataset are loaded and detected by the phone. The detection results are in.json
file format and are transmitted to the computer for analysis. The main purpose of this experiment
is evaluating the detection accuracy. Thus, the image capturing function is disabled and the UAV
is on the ground with the motor off but powered on. The application on the smartphone (the main
program) is modified by adding a button for detection evaluation. The release version of the application
does not have the button since the evaluation is not the main function of the proposed UAV system.
This detection evaluation setup is reasonable since the only difference between the evaluation and a
normal scenario is the image loading method. In a normal scenario, the images are captured by the
UAV camera with a size of 1280 × 720, which contains more information than the images with the
size of 320 × 320 employed in this evaluation scenario. That means the detection accuracy in the work
scenario would be theoretically better.

The number of images for each class is listed in Figure 8a. The number of images in the person
class is more than 10,000 since lots of images contain more than five persons. The detection results
of each class are shown in Figure 8b. There are 9717 images which are detected successfully, and the
reason is discussed in the Results section. To evaluate the precision and the recall of the detection
results, we used the standard COCO API tool provided by the COCO dataset.

4.4. Task Setups

For the convenience of investigating the generality, transportability and scalability of our proposed
method, we select the task of tracking the person with a red helmet in an unknown environment.
This task is an application test for the UAV system. This paper focuses on the evaluation of the
method proposed for understanding the unknown environment, although the tracking capability of the
Man-UAV system is also implemented. The real time performance is the main part of the investigation.
In this task, the UAV autonomously flies in a random trajectory with a necessary collision avoidance
algorithm. There are lots of persons in this unknown environment. The UAV should find the man with
a red helmet, alert the operator, and then track this person. The video captured by the UAV would be
processed and displayed on the screen for the operator and the operator could interact with the UAV
at any time, like enabling the understanding method, confirming the target, and stopping the mission.
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5. Results

5.1. Quantitative Evaluation

5.1.1. Detection Accuracy Analysis

Detection accuracy is analyzed and discussed in this part first, and then some interesting results
will be discussed. The analysis in this part is based on the sampled COCO dataset, and the detection
results of images captured by the UAV lie in system analysis part. It takes 821 s from loading and
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detecting 10,000 images to storing the results in the smartphone. That means nearly 0.08 s for processing
one image.

A comparison with other detection methods is shown in Table 3. On the one hand, due to the
limitations of using a portable device, our results were done based on the selected 10,000 images
which are less than the 20,000 images that others used for detection accuracy analysis. On the other
hand, due to the limited computational resources, we resized the input images into 320 × 320 × 3,
which results into information loss for a small object. Thus, the comparison analysis is rough. However,
for the large object (area > 962, where area is measured as the number of pixels in the segmentation
mask), the AP (averaged across all 10 Intersection over Union (IoU) thresholds and all 80 categories) is
46.8, which is competitive with other methods.

Table 3. COCO Dataset Detection Results.

Smart Phone AP 2 AP50
3 AP75

4 APS
5 APM

6 APL
7

YOLOv2 1 - 21.6 44.0 19.2 5.0 22.4 35.5
SSD513 1 - 31.2 50.4 33.3 10.2 34.5 49.8

DSSD513 1 - 33.2 53.3 35.2 13.0 35.4 51.1
RetinaNET 1 - 40.8 61.1 44.1 24.1 44.2 51.2

YOLOv3 (608 × 608)1 - 33.0 57.9 34.4 18.3 35.4 41.9

Ours (320 × 320) YES 18.6 30.5 19.9 0.07 14.6 46.8
1 The detection results are cited from Redmon et al. [21]. 2 AP: Average Precision at IoU = 0.50:0.05:0.95 primary
challenge metric); 3 AP50: AP at IoU = 0.50 (PASCAL VOC metric); 4 AP75: AP at IoU = 0.75 (strict metric); 5 APS: AP
for small objects: area < 322; 6 APM: AP for medium objects: 322 < area < 962; 7 APL: AP for large objects: area > 962.

The detailed breakdown of false positives is shown in Figure 9. Large objects are detected much
better than medium and small objects. Outdoor objects are detected more easily than indoors ones.
Persons, animals and airplanes are well detected. Thus, our method has practical significance, to some
extent, for an implementation of a sensing method for UAV systems.

There are two issues that need to be discussed. The first one is the flight height of the UAV system.
Due to the sensitivity to the object scale, the UAV height would be limited. Empirically, the height of
20 m is still acceptable. One solution to overcome this limitation is to adjust the focus of the camera,
which is also supported on DJI Mavic Pro, to get a larger image from a longer distance, but this
solution is not implemented in our recent system The second one is the influence of UAV vibration.
The vibration has little impact on detection because of the gimbals mounted between the UAV and the
camera. Several successfully detected results are shown in Figure 10. The green boxes are the detection
results and the blue boxes are the artificial annotations of the images. We could find that the detection
function works successfully.

We went deep into the detection results to find the reason for misdetections and show several
ground truths of the misdetected images in Figure 11. Honestly, it is also hard for humans to find the
labels of the images. Small objects are hardly detected in Figure 11, which is agrees with the conclusion
above. We also find some interesting results shown in Figure 12. First, some images are challenges for
humans to find out what the ground truths are. Second, some images are detected successfully by the
system, while the object is not labeled by the ground truth.



Sensors 2020, 20, 3245 17 of 26

Sensors 2020, 20, x FOR PEER REVIEW 16 of 26 

 

this solution is not implemented in our recent system The second one is the influence of UAV 
vibration. The vibration has little impact on detection because of the gimbals mounted between the 
UAV and the camera. Several successfully detected results are shown in Figure 10. The green boxes 
are the detection results and the blue boxes are the artificial annotations of the images. We could find 
that the detection function works successfully. 

We went deep into the detection results to find the reason for misdetections and show several 
ground truths of the misdetected images in Figure 11. Honestly, it is also hard for humans to find the 
labels of the images. Small objects are hardly detected in Figure 11, which is agrees with the 
conclusion above. We also find some interesting results shown in Figure 12. First, some images are 
challenges for humans to find out what the ground truths are. Second, some images are detected 
successfully by the system, while the object is not labeled by the ground truth. 

 
Figure 9. Detailed breakdown of false positives. Figure 9. Detailed breakdown of false positives.Sensors 2020, 20, x FOR PEER REVIEW 17 of 26 

 

Figure 10. Several images that are successfully detected. 

 

Figure 11. The ground truth of misdetections. 

Figure 10. Several images that are successfully detected.



Sensors 2020, 20, 3245 18 of 26

Sensors 2020, 20, x FOR PEER REVIEW 17 of 26 

 

Figure 10. Several images that are successfully detected. 

 

Figure 11. The ground truth of misdetections. Figure 11. The ground truth of misdetections.Sensors 2020, 20, x FOR PEER REVIEW 18 of 26 

 

 

Figure 12. Some interesting detection results. 

5.1.2. Real-Time Performance Analysis 

The real-time performance is influenced by the computational resources and the implementation 
method. Meanwhile, both the flight control and the environment understanding spend a lot of the 
computational resources of smartphones. Thus, it is meaningful to find a balance between controlling 
the flight and understanding the environment. Since the computational cost of flight control is 
various in different flight states, we analyzed the real-time performance across different flight states. 
The real time property that we focus on includes the video update rate and flight information update 
rate. The former represents the frequency of understanding the environment, and the latter 
represents the control frequency of the UAV. 

We utilize the frames per second (FPS) parameter to evaluate the video update. The frames (RGB 
images from the environment) are captured, processed (object detection and color blob detection), 
and displayed. Thus, this represents the frequency of understanding the environment. As shown in 
Figure 13, the average frame rate is around 30 Hz when none of the understanding method is carried 
out. As the UAV is moving in the air, the frame rate decreases a little due to the increasing 
computational cost of flight control. When the understanding method is fully running, the frame rate 
decreases to 18 Hz since the detection algorithm costs computational resources, although from the 
perspective of human feelings, the video is still smooth, and the real time property is enough. 

During a flight control loop, the smartphone sends the control command and the UAV returns 
the flight information. Thus, flight information update frequency represents the control frequency of 
the UAV. As shown in Figure 14, the flight information update rate is around 1 Hz when the UAV is 
on the ground with the motor powered off, and 12 Hz when the UAV is in the air. More frequent 
return of flight information makes the UAV safer in the air. From the figure, different test states have 
little influence on the flight information updates. That means the computational cost of the 
understanding method does not impede the updating of the flight information. Thus, the proposed 
understanding method runs with enough real time property in a safe way. 

Figure 12. Some interesting detection results.

5.1.2. Real-Time Performance Analysis

The real-time performance is influenced by the computational resources and the implementation
method. Meanwhile, both the flight control and the environment understanding spend a lot of the
computational resources of smartphones. Thus, it is meaningful to find a balance between controlling
the flight and understanding the environment. Since the computational cost of flight control is various
in different flight states, we analyzed the real-time performance across different flight states. The real
time property that we focus on includes the video update rate and flight information update rate.
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The former represents the frequency of understanding the environment, and the latter represents the
control frequency of the UAV.

We utilize the frames per second (FPS) parameter to evaluate the video update. The frames (RGB
images from the environment) are captured, processed (object detection and color blob detection),
and displayed. Thus, this represents the frequency of understanding the environment. As shown
in Figure 13, the average frame rate is around 30 Hz when none of the understanding method is
carried out. As the UAV is moving in the air, the frame rate decreases a little due to the increasing
computational cost of flight control. When the understanding method is fully running, the frame rate
decreases to 18 Hz since the detection algorithm costs computational resources, although from the
perspective of human feelings, the video is still smooth, and the real time property is enough.
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During a flight control loop, the smartphone sends the control command and the UAV returns the
flight information. Thus, flight information update frequency represents the control frequency of the
UAV. As shown in Figure 14, the flight information update rate is around 1 Hz when the UAV is on
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the ground with the motor powered off, and 12 Hz when the UAV is in the air. More frequent return
of flight information makes the UAV safer in the air. From the figure, different test states have little
influence on the flight information updates. That means the computational cost of the understanding
method does not impede the updating of the flight information. Thus, the proposed understanding
method runs with enough real time property in a safe way.
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5.2. System Analysis

With this method, we have participated in the MISSION 8 of the International Aerial Robotics
Competition (IARC), 2018. The system won the first prize and the Best Man-Machine Team award in
the competition, which also, to some extent, is proof of the practical value of the proposed method.
As shown in Figure 15, DJI 1 to DJI 4 and the operator are the Man-UAV system. In the competition,
the teams should design a Man-UAV system to find four target boxes, figure out the key of the
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lock to the target with the help of UAVs, and get out of the area with the items in the boxes within
8 min. During the competition, there are four aircraft that represent the enemy to trouble the system.
Basically, the understanding method works well, while the performance still should be promoted.
This competition relays on serval aspects of the system such as agile control to pierce through,
the strategy, and the communication link. The discussion would be showed in next section. The system
is tested outdoor as shown in Figure 16, and the detection method works. The large object could be
detected successfully.Sensors 2020, 20, x FOR PEER REVIEW 21 of 26 
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5.2.1. Generality

This method is implemented in Java and deployed on the Android operating system, which ensures
the generality. The method can run on all the embedded systems with compatible versions of the
Android operating system. As for the UAV, all of the UAVs from DJI are compatible with the DJI
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Software Development Kit (SDK, designed by DJI) utilized in our program, which also ensures
the generality.

5.2.2. Transportability

It is easy to deploy the method onto another Android platform by installing an “apk“ file.
When using a different size and type of UAV in different tasks, the operator could just connect the
smartphone with the corresponding remote controller of the UAV. In the experiment, the method was
transported successfully from a DJI Mavic Pro into a DJI Mavic Air, and from a Huawei Mate 10 pro
into a Huawei Honor 6.

5.2.3. Scalability

There are two update aspects. First, with the development of computer vision, the deep learning
methods of understanding the environment are promoted day by day. In order to update the machine
learning method proposed in this paper with newer methods, the approach is implementing the
state-of-the-art methods with the TensorFlow architecture, then converting the model into a light
version, and finally, replacing the light version model used in the program with the new one. This study
successfully updated the object detection model from YOLO v3 to SSD-MobileNet. Second, the method
proposed in this paper detects 80 common objects, while some scenarios requires the capability to
detect special objects. To do that, one must train the new model with a special database, convert the
model into a light version, and then replace the light version used in the program with the new one.

5.2.4. Interactivity

The screenshot of the experiment is illustrated in Figure 17. The Figure 17a,b are taken when
the UAV is connected to the computer for the semi-physical simulation, and Figure 17c,d are taken
when the UAV is in the air. Figure 17a demonstrates the object detection works well. Figure 17d
demonstrates the task, detecting and tracking the man with the red helmet, is completed successfully.
As discussed above, the video is smooth enough for the operator.
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6. Discussion

Compared with the proposal of Zhou et al. [10], our method is an online method and makes full use
of the extremely fast properties of YOLO v3. The detection result could enhance the performance of an
UAV, like alarming the operator after detecting the target, triggering the next mission, and participating
in the decision making. This makes the UAV more intelligent, compared with the method proposed by
Gao et al. [22]. The generic object detection capability enlarges the application scope of our method,
compared with the work presented by Hummel et al. [22]. Clearly, the computational performance of
hardware, especially smartphones, is increasing every year. Smartphones are more accessible than
an embedded system with ROS. Therefore, our method has better generality and scalability than the
method proposed by Gao et al. [22].

The experiments include two parts: semi-physical simulation and prototype experiments. Both are
for the evaluation of the machine learning method’s capability to sense an unknown environment.
The information from the environment could be represented by various aspects, including the object
category, location of the object in the image, and color blob. This paper takes a further step on fusion of
the representation at the action level for decision making and successful implementation. The task of
detecting and tracking the man with a red helmet demonstrates the contribution. The method strikes
a balance between high performance and the properties of generality, transportability, scalability,
and interactivity. The real-time performance is enough, as tested by the task. The implementation of
the method in this paper utilizes the multithreading mechanism to speed it up. It plays a major role in
embedded systems with limited computational resources.

In the competition, we have tried to collect four videos from four UAVs and display them on
one screen. However, this breaks down the system. There might be three reasons for this. Firstly,
the video resolution is 1080 p, which could be decreased for high throughput; secondly, a different
communication protocol could be tried like User Datagram Protocol (UDP) which has a higher refresh
rate than TCP/IP; thirdly, the images could be processed in a distributed way.

There are two limitations of our method. The mechanical limitation of is our method is that the
system works in the visible spectrum and depends on the weather conditions. The functional limitation
of our method lies in that we can only recognize 80 categories of objects in an unknown environment.
In the future, we plan to utilize multi-sensor data and more advanced computer vision algorithms to
sense more information of the unknown environment.

Intelligent UAVs could perform object detection and target tracking so that they can auto-drive.
There are several excellent methods, such as a model-free tracker [36] or a convolutional neural network
(CNN)-based tracker [37,38]. To evaluate the performance of the tracker, Yu et al. [39] present a
UAV dataset with 100 videos featuring approximately 2700 vehicles recorded under unconstrained
conditions and 840 k manually annotated bounding boxes.

7. Conclusions

UAV swarms will play more and more important roles for humans in the future and detecting and
identifying generic objects in unknown environments is the foundation for the high-level capability of
UAV swarms. Through the semi-physical simulation, physical experiments and detection evaluation
experiment, the designed system satisfies the need of generic object detection in real time, and strikes
the balance between the high performance and the excellent properties of generality (can be used
in various platform), transportability (easily deployed from one platform to another) and scalability
(easily updated and maintained).

The method can be transported easily from one UAV to another and updated with a new
state-of-the-art deep learning method in a convenient way. The computational speed and accuracy of
algorithmd, especially the machine learning algorithm in the computer vision domain, progress every
year, which reflect the importance of generality, transportability and scalability for the man-UAV
system. This paper implements a closed cycle of images from capturing and processing to displaying
and decision making. Semi-physical simulation and physical experiments evaluate the properties of the
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approach. The experiments demonstrate that the UAV could be armed with state-of-the-art computer
vision algorithmw for the intelligence, and the real-time performance only slightly decreasew.

In our future work, we will extend the representation of the environment which could be sensed by
the UAV. With these representations, the UAV would be more and more intelligent. More importantly,
the higher level of function (post-processing of the detection) should be investigated, like navigating
based on generic object detection capability.
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Appendix A

The 80 classes that could be detected successfully are listed as follows: person, bicycle, car,
motorcycle, airplane, bus, train, truck, boat, traffic light, fire hydrant, stop sign, parking meter, bench,
bird, cat, dog, horse, sheep, cow, elephant, bear, zebra, giraffe, backpack, umbrella, handbag, tie,
suitcase, frisbee, skis, snowboard, sports ball, kite, baseball bat, baseball glove, skateboard, surfboard,
tennis racket, bottle, wine glass, cup, fork, knife, spoon, bowl, banana, apple, sandwich, orange,
broccoli, carrot, hot dog, pizza, donut, cake, chair, couch, potted plant, bed, dining table, toilet, tv,
laptop, mouse, remote, keyboard, cell phone, microwave, oven, toaster, sink, refrigerator, book, clock,
vase, scissors, teddy bear, hair drier, toothbrush.
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