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ABSTRACT

While the recognition of genomic islands can be
a powerful mechanism for identifying genes that
distinguish related bacteria, few methods have
been developed to identify them specifically.
Rather, identification of islands often begins with
cataloging individual genes likely to have been
recently introduced into the genome; regions with
many putative alien genes are then examined
for other features suggestive of recent acquisition
of a large genomic region. When few phylogenetic
relatives are available, the identification of alien
genes relies on their atypical features relative to
the bulk of the genes in the genome. The weakness
of these ‘bottom–up’ approaches lies in the difficulty
in identifying robustly those genes which are atypi-
cal, or phylogenetically restricted, due to recent
foreign ancestry. Herein, we apply an alternative
‘top–down’ approach where bacterial genomes are
recursively divided into progressively smaller
regions, each with uniform composition. In this
way, large chromosomal regions with atypical
features are identified with high confidence due to
the simultaneous analysis of multiple genes. This
approach is based on a generalized divergence
measure to quantify the compositional difference
between segments in a hypothesis-testing frame-
work. We tested the proposed genome island
prediction algorithm on both artificial chimeric gen-
omes and genuine bacterial genomes.

INTRODUCTION

Bacteria are arguably the most diverse and versatile
organisms on the planet, exploiting every imaginable hab-
itat and rapidly responding to physiological challenge and
to ecological change. Since the industrial revolution,

bacteria have increased their resistance to antibiotics,
developed tolerance to caustic solvents and materials,
gained the ability to degrade artificially synthesized
substances, learned to flourish when attached to novel
surfaces and have escaped our efforts to banish their
pathogenic varieties. Such remarkable abilities to adapt
belie the constraints of intra-genomic mutational pro-
cesses, which are limited in their capacity to effect
change because they alter existing genetic material in a
slow, step-wise fashion. However, bacteria also experience
frequent saltational evolution whereby genes for novel
metabolic processes are introduced from unrelated indi-
viduals via horizontal gene transfer (HGT). In contrast
to mutation, the expansion of a cell’s physiological cap-
abilities via gene acquisition provides potentially large
numbers of fully functional, evolutionarily vetted genes
which can then cooperate to confer complex metabolic
functions. As a result, bacteria may experience very
rapid and dramatic changes in ecological abilities after
gaining genes, which allow for the degradation of new
food sources, or the synthesis of new metabolites, or the
attachment to and invasion of host tissues.
Since the first genome sequence became available, it has

been clear that acquisition of novel DNA is a common
mechanism for bacterial evolution (1), and that the gen-
omes of all free-living bacteria are littered with large num-
bers of recently-acquired genes (2). A primary agent of
rapid genomic change is the genomic island, a group of
tens to hundreds of genes whose products may cooperate
to confer complex functions to the recipient cells (3).
Among the first classes of genomic islands to be described
were pathogenicity islands, so named because virulence
genes in many organisms were not only physically clus-
tered in the chromosome but also bore signs of recent
acquisition such as unusual nucleotide composition (4).
For example, the pathogenic Escherichia coli serovar
O157:H7 has hundreds of recently introduced genes organ-
ized into several large islands that are not found in non-
pathogenic strains of E. coli (5). When comparing related
taxa, it becomes clear that genomic islands encode
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functions associated with complex changes in ecological
niche (3). Because they mediate the simultaneous intro-
duction of tens or hundreds of genes, genomic islands
provide a pathway for the acquisition of very complex
traits, which require the action of many gene products,
potentially initiating large changes in physiological reper-
toire. Therefore, the identification of genomic islands
provides insight into the evolutionary events which distin-
guish closely related, but ecologically distinct, taxa.
Despite the central role of genomic islands in modulat-

ing bacterial evolution, methods for their identification
leave much room for improvement. Two approaches
are common. First, a phylogenetic approach relies on
the identification of a large region of DNA which is
absent from the genomes of close relatives. For example,
pathogenicity islands in Salmonella enterica serovar
Typhi are missing from the genomes of other strains of
Salmonella (6,7). Yet, this approach has the drawback of
requiring genome sequences from multiple relatives of the
bacterium of interest. Even with several genomes avail-
able, the polarity of changes in gene inventory may
not be clear: was a genomic island gained, or did a large
deletion occur? In addition, the presence of multiple para-
logs confounds the ability to identify genes lacking true
orthologs.
In contrast, parametric approaches may identify genes

in bacterial genomes that have unusual sequence charac-
teristics—such as atypical nucleotide composition, dinu-
cleotide frequencies or codon usage bias—relative to the
bulk of the genes in a genome. Often, such genes bear
atypical features because they were recently introduced
from genomes which have experienced different sets of
directional mutation pressures (8–10). Here, individual
genes are categorized as likely to be native or likely to
be alien. A region of the chromosome with large numbers
of potentially alien genes may then be labeled as a putative
genomic island. One can then look for features (such as
the presence of an integrase, a linked tRNA gene function-
ing as a phage attachment site, or the presence of direct
repeats flanking the genomic island), which are associated
with some genomic islands and also implicate recent gene
acquisition (3,4). While parametric approaches do not rely
on genome comparisons, they suffer from the limitations
of ‘bottom–up’’ methods, which must first identify
individual genes as being atypical. In addition, groups of
weakly atypical alien genes often escape detection as false
negatives. Moreover, there is no systematic way of deter-
mining if the putative groups of atypical genes are actually
similar to each other, as one would predict if their atypical
features reflect a common ancestry in a foreign genome.
To circumvent the problems of the ‘bottom–up’

approaches, we propose a ‘top–down’ method for the
robust identification of genomic islands which avoids the
identification of individual atypical genes. Rather than
identifying alien genes and grouping them into islands,
we divide the genome into successively smaller regions,
each with distinct composition, using a recursive segmen-
tation procedure (11,12). At the core of the segmentation
model is a newly developed, robust and highly sensitive
divergence measure to quantify the compositional differ-
ence between genome sequences: a generalized version of

the Jensen–Shannon divergence measure. This measure
has been shown to be highly accurate in detecting atypical
genes (13). Unlike ‘bottom-up’ measures which rely on
arbitrary comparison thresholds and are limited by the
information contained within individual coding regions,
our ‘top–down’ method is robust in the identification of
large, multi-gene chromosomal segments, and does so
within a statistical hypothesis testing framework. After
delineating the compositionally distinct segments, the
atypicality of a segment is measured with respect to the
average genome composition. Genomic islands can be
identified as one or more successive, atypical segments.
Thus, the genomic islands are detected with precision,
and their mosaic organizational structure is revealed.

MATERIALS AND METHODS

Genome sequences

The complete genome sequences of Archaeoglobus fulgi-
dus, Bacillus subtilis, Citrobacter koseri ATCC BAA-895,
Deinococcus radiodurans R1, E. coli CFT073, E. coli
W3110, E. coli MG1655, Escherichia fergusonii ATCC
35469, Haemophilus influenzae Rd, Klebsiella pneumoniae
342, Mesorhizobium loti, Methanocaldococcus jannaschii,
Neisseria gonorrhoeae, Ralstonia solanacearum, S. enterica
subsp. enterica serovar Choleraesuis str. SC-B67, S. enter-
ica subsp. enterica serovar Dublin str. CT_02021853,
Salmonella typhimurium LT2, S. enterica subsp. enterica
serovar Typhi str. CT18, S. enterica subsp. arizonae serovar
62:z4,z23, S. enterica subsp. enterica serovar Gallinarum
str. 287/91, Shigella flexneri, Sinorhizobium meliloti,
Synechocystis PCC6803, Thermotoga maritima and
Vibrio parahaemolyticus were obtained from GenBank.
Protein-coding, tRNA and tmRNA genes were extracted
using the coordinates provided in the annotation.

Artificial genomes

Artificial genomes for assessing the parametric methods
for atypical gene detection were constructed as described
previously (14). Briefly, the artificial genomes were
constructed using generalized hidden Markov models.
First, the core of a genome representing the mutational
bias of the ancestral (native) genes was extracted using a
gene clustering method based on the Akaike Information
Criterion. Genic variability in the core genome was parti-
tioned as distinct classes of similar genes using a k-means
clustering algorithm based on the Kullback–Leibler diver-
gence measure. Gene models trained on these gene classes
were incorporated in the framework of a generalized
hidden Markov model to generate an artificial counterpart
of a genuine genome. The artificial genome provides a
reservoir for initiating gene transfers.

We constructed artificial genomes of the prokaryotes
A. fulgidus DSM4304, B. subtilis 168, D. radiodurans R1
chromosome I, E. coli MG1655, H. influenzae Rd KW20,
M. jannaschii DSM2661, N. gonorrheae FA1090, R. sola-
nacearum GMI1000, S. enterica Typhi, S. meliloti 1021,
Synechocystis sp. PCC6803 and T. maritima MSB8.
Chimeric artificial genomes were constructed as the
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mosaic sets of genes sampled from different artificial gen-
omes placed in an artificial E. coli genomic backbone.

Unique S. enterica Typhi CT18 genes

Genes unique to the S. enterica serovar CT18 genome
were detected as those not found in the genomes of related
enteric bacteria (no significant homologues as revealed
by pariwise BLAST), including E. coli CFT073, E. coli
W3110, E. fergusonii ATCC 35469, C. koseri ATCC
BAA-895 and K. pneumoniae 342. Genes likely to be
ancestral to the CT18 genome are those that detected
homologues with >70% protein similarity more than
one of those taxa; ambiguous genes had homologs in
only one of those taxa. Genes smaller than 400 nt were
not included in this analysis.

Divergence measures

To assess the compositional difference between two or
more genes or sequence segments, we first obtained the
generalization of the standard Jensen–Shannon divergence
measure denoted D(p1,p2) between two probability
distributions p1 and p2,

Dðp1,p2Þ ¼ Hð�1p1 þ �2p2Þ � �1Hðp1Þ � �2Hðp2Þ, 1

where Hð:Þ ¼
P

x piðxÞ log2 piðxÞ is the Shannon entropy
function.

When applied to DNA sequences, the distributions
p1(x) and p2(x) generally represent relative frequencies of
occurrence of nucleotides in each sequence. Therefore,
they capture only the nucleotide composition of the
sequence but not the order of occurrence of nucleotides.
Thus, the above formulation assumes that the nucleotides
at each position are independently and identically distrib-
uted. To account for correlations in the occurrence
of nucleotides, we obtained a Markovian form of the
JSD that will be appropriate for sequences assumed to
be generated by Markov sources of arbitrary order
(Supplementary Data). The standard JSD then becomes
a special case of the Markov version when the model order
is zero. The Markovian Jensen–Shannon divergence
(MJSD) of order m is defined as (15),

Dmðp1,p2Þ ¼ Hmð�1p1 þ �2p2Þ � �1H
mðp1Þ � �2H

mðp2Þ, 2

where Hm(.) is the conditional entropy function:

HmðpjÞ ¼ �
X

x,z

pjðx,zÞ log2 pjðxjzÞ: 3

Here, z denotes the sequence of m nucleotides preceding
nucleotide x, pj(x,z) is the joint probability of x, z and
pj(x | z) is the conditional probability of x given z.

Weight factors �1= l1/L and �2= l2/L, L= l1+ l2 (11)
were assigned to the corresponding subsequences S1 and
S2 of length l1 and l2. Substituting in the above expression
for the MJSD leads to

Dm ¼ HmðSÞ �
l1
L
HmðS1Þ �

l2
L
HmðS2Þ, 4

where Hm(S1) and Hm(S2) are the Markov entropies
for the subsequences S1 and S2, and Hm(S) is the
Markov entropy for the sequence S obtained by concate-
nating S1 and S2.
Another way of correcting for short-range correlations

is to convert a sequence of nucleotides into a sequence
of ‘overlapping’ oligonucleotides and then compute the
Jensen–Shannon divergence; we term this measure
Jensen–Shannon divergence oligonucleotide (JSDO).

Statistical significance of Dm and Dm
max

For an observed value of Dm, the significance value is the
probability P(Dm

� x). For m=0, Grosse et al. (11)
obtained the analytic probability distribution of Dm,

P D0 � x
� �

� �2d 2Nðln 2Þxð Þ, 5

where �2d is the chi-square distribution function with
d= k-1 degrees of freedom, k is the alphabet size. We
show that for any m> 0 the probability distribution
P(Dm

� x) also follows a �2d distribution with d=km(k-1)
degrees of freedom (Supplementary Data). To assess the
statistical significance of Dm

max, the maximum divergence
value obtained at a sequence position, we obtained, simi-
lar to the m=0 case, a combined analytic-numerical
approximation of the probability distribution,

PðDm
max � xÞ ¼ f�2d½2Nðln 2Þx��g

Neff : 6

The values of the parameters � and Neff were found
by fitting empirical distributions to the above analytic
expression, obtained via Monte Carlo simulations
(Supplementary Data). As for m=0 case (11), we found
that Neff is linearly related to log N and � is effectively a
constant function independent of N for m=1 and m=2.

The recursive segmentation algorithm

There is a long history of the recursive segmentation
method that employs standard Jensen–Shannon (JS)
divergence as a measure of compositional difference
between two sequences (11,12,16–19). Here, we describe
briefly our modified recursive segmentation procedure,
where we replace JSD with MJSD as a measure of diver-
gence [see also ref. (15)]. To segment a single sequence
string S, we compute Dm for every position along a
sequence. If the maximum value, Dm

max, is large enough
to be considered statistically significant, then the position
where the maximum was found is considered a segmenta-
tion point (Figure 1A). The sequence is split at the seg-
mentation point and the two resulting subsequences are
candidates for further segmentation. If Dm

max is not statis-
tically significant, no segmentation is carried out. This
recursive procedure (Figure 1) is referred to as the top–
down MJSD segmentation method in the text below.

Determination of atypical character of a genome segment

After a genome is fragmented into homogeneous domains
by the recursive segmentation method, the atypicality of
each domain is measured with respect to the genome. We
define the atypicality score for a domain as the probability
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of getting the divergence value or less in random
sequences,

AS ¼ PðDm � xÞ: 7

Here, Dm denotes the MJSD between the domain in ques-
tion and the entire genome. If AS is greater than an estab-
lished threshold, the domain is deemed atypical.

The Wn Covariance measure for assessing atypicality

Covariance can also be used as a measure of atypicality
(20). The atypicality of a gene, g, with respect to the
genome, G, is assessed through the covariance measure,

covðg,GÞ ¼
1

t

Xt

k¼1

fkðgÞ � fkðGÞ, 8

where fk(s) is the normalized frequency of word or
oligomer k, and t is the number of all possible distinct
oligomers (Tsirigos,A., personal communication). If the
value of cov(g,G) is less than an established threshold,
gene g is deemed atypical. This method is referred to as
Wn, where n denotes the size of the words (or oligomers)
used; note that t= 4n.

Window methods

Previous methods typically use a windowing approach
whereby multiple genes are examined in a window of
fixed length. The position of this window is moved
over a genome, and consecutive windows with unusual
compositional character are labeled as genomic islands
(Figure 1B). For comparative purposes, we implemented
a moving-window method where the MJSD measure is

used to assess the atypicality of sequence within a sliding
window against the genome as a whole. We term this
approach the bottom up MJSD–window method. Our
proposed prediction algorithm was also compared to a
recently introduced window-based method IVOM (6).
Unlike the Wn method which uses n-mer frequencies
with n fixed, IVOM combines the frequencies of all size
n-mers, n=1 to 8, in the framework of an interpolated
Markov model. Here, the Kullback–Leibler divergence is
used to quantify the compositional difference between
a region within a window and the whole genome. If
this difference is larger than an established threshold, the
window is deemed atypical. The consecutive atypical win-
dows define the ‘raw’ genomic islands whose boundaries
are refined using a hidden Markov model in a post-
processing step to determine the change points.

Accuracy assessment of the parametric methods

The accuracy of the parametric methods was assessed
by obtaining the ROC curve, which is the plot of true
positive rate (fraction of the positives correctly identified
by a method) as a function of false-positive rate (fraction
of the negatives that are incorrectly identified as positives
by a method). Area under this curve (AUC) defines a
measure of accuracy: the higher the AUC, the higher the
accuracy.

RESULTS

Here, we present the method for identification of genomic
islands in five steps: (i) developing a metric for measuring
compositional differences between segments; (ii) assessing
the efficacy of this method in identifying segment bound-
aries; (iii) developing a method for recursive segmenta-
tion of genomes into compositionally distinct segments;
(iv) assessing the method for identifying genomic islands
in both artificial and genuine bacterial genomes; and
(v) comparing the ‘top–down’ approach to ‘bottom–up’
methods.

Identifying alien genes

As with all parametric methods, we must quantify the
difference between two regions or classes of DNA and
determine if those differences are significant. To accom-
plish this, we generalized the Jensen–Shannon divergence
to account for correlated evolution by incorporating
Markov models of sequences in place of an i.i.d. model
in the divergence measure (see ‘Materials and Methods’
section). We tested our measures by attempting to identify
atypical genes within artificial chimeric genomes, which
mimic the sequence properties of the genuine genomes
on which they are modeled (14). As the ‘evolutionary’
histories of genes in these genomes are known precisely,
they serve as valid test beds for parametric methods of
atypical gene detection. Artificial chimeric genomes were
first constructed with a core of genes modeled from the
E. coli genome; alien genes were incorporated randomly
from artificial genomes modeled on ten diverse donor gen-
omes (see ‘Materials and Methods’ section). We measured
the atypicality of a gene with respect to the genome using

Figure 1. Schematic representation of recursive segmentation and
moving-window methods for island detection. (A) The recursive seg-
mentation technique. The dashed line shows the value of MJSD, Dm,
across each possible split location. If Dm

max is statistically significant, the
sequence is segmented at that point, represented by a vertical bar. In
this example, four splits are made resulting in five segments; values of
Dm

max that are not significant are denoted as ns. Comparison of seg-
ments to the genome as a whole shows two segments are islands and
three represent the core genome. (B) The moving-window technique.
Values are calculated for windows of a specified size; windows with
values over a predetermined threshold are identified as atypical and
annotated as an island (gray region). Here, there is insufficient signal
for the 50 region to be marked as a putative island, resulting in a false
negative.
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JSDO and MJSD with model orders 1 and 2 (Figure 2);
the performance of Wn was also assessed for comparison.
Standard JSD and JSDO methods have earlier been
shown to outperform other parametric methods (13),
which are not shown for clarity. The MJSD method out-
performed the JSDO and Wn methods irrespective of the
amount of acquired genes (Figure 2). The first-order
MJSD measure examines the order of occurrence of
two nucleotides, and it outperformed the JSDO method
using dinucleotide composition as the discriminant criter-
ion. Similarly, second-order MJSD outperformed JSDO
using trinucleotide composition as the discriminant
criterion. All methods—including the zeroth order
MJSD (equivalently, standard JSD using the nucleotide
composition)—outperformed the octanucleotide-based
Wn method.

The performance of the methods was also evaluated
by examining the percentage of true alien genes occupying
the N% highest atypicality score values, where N% is the
percentage of total genes that the recipient genome
acquired from the donor organisms (Figure 2B and C).
To minimize the effects of pre-existing alien genes, we
took two approaches. First, we simulated transfer from
artificial donor genomes to an E. coli artificial core
genome as described above (Figure 2B). Second, we simu-
lated transfer from genuine donor genomes into a genuine
E. coli core genome (Figure 2C) that was created using
Akaike information criterion based gene clustering
(14,21). The relative performance of the parametric
methods on these test genomes (Figure 2C) was similar
to the trend observed with artificial chimeric genomes
(Figure 2B). All results suggest that the MJSD metric is

superior to other metrics in identifying atypical sequences.
Therefore, we implemented MJSD as the metric to dis-
criminate between typical and atypical regions of the
genome.

Identifying segment boundaries

Existing methods that identify genomic islands first iden-
tify atypical genes. However, improperly annotated genes
are often compositionally unusual, thereby confounding
parametric methods for the identification of alien genes.
Therefore, we propose to abandon gene annotations and
divide chromosomes into segments without regard to gene
boundaries. For this approach to be effective, the MJSD
metric must be able to identify the boundary between two
compositionally distinct regions of DNA without first
identifying gene boundaries or using coding frame infor-
mation to interpret compositional patterns. To evaluate
our metric, we joined two DNA sequences of the same
length from different bacterial genomes; the MJSD seg-
mentation procedure was then applied to find the join
point. If the segmentation algorithm were reliable, it
would consistently report optimal segmentation at the
midpoint of a sufficiently long chimeric sequence
construct.
The correct segmentation point is clearly identified

when the two sequences being concatenated are suffi-
ciently long and have originated from phylogenetically
distant species. For example, the boundary between
20-kb regions of S. enterica and M. loti are clearly identi-
fied to within �10 bases even without identifying the bor-
ders of the underlying genes (Figure 3A). Higher-order
MJSD algorithms perform better at placing the segmenta-
tion closer to the sequence midpoint. Segment boundaries
were poorly identified when the segments were small,
owing to lack of sufficient information. Boundaries
between segments smaller than 5–10 kb are not found reli-
ably (data not shown); therefore, this method is limited to
the identification of large segments encoding more than
�5–10 genes. This range encompasses the vast majority
of described genomic islands (22) and is confirmed by

Figure 2. ROC curves for MJSD, JSD and Wn methods for detecting
atypical genes. (A) Detecting atypical genes in an artificial E. coli
genome with 16% donor genes. (B) Detection of the N% highest
atypicality values in an artificial E. coli core. (C). Detection of the
N% highest atypicality values in a genuine E. coli core, where N
denotes the percent donor genes.

Figure 3. Assessing segment boundaries. Two 20-kb fragments are
joined and the MJSD algorithm is used to locate the segmentation
point. The frequency of finding the segmentation point (location of
Dm

max) among 10 000 replicates is plotted as a function of its position
on the catenated fragment. (A) Salmonella fragments concatenated with
Mesorhizobium fragments. (B) Salmonella fragments concatenated with
E. coli fragments. (C) Contiguous fragments of the Salmonella genome.
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the discovery of various-sized genomic islands in the arti-
ficial chimeric genomes (Tables 1 and 2; Supplementary
Table 4).
As expected, segmentation was less effective when

the two sequences arose from the same genome or from
the genomes of phylogenetically proximal organisms
(Figure 3B). The few boundaries faithfully detected repre-
sent sampling of disparate sections of the genome(s),
at least one of which may have been introduced by

horizontal gene transfer and thus bears atypical character.
In contrast, when contiguous segments are examined—
here, the two segments are adjacent in the S. enterica
genome—we saw no assignment of segment boundaries,
as evidenced by a near uniformity in the segmentation
distribution (Figure 3C). This shows that the segmenta-
tion method is not simply biased toward reporting the
central position as a segmentation point. For a quantita-
tive assessment, we obtained the upper and lower 90%

Table 2. Accuracy of the MJSD and IVOM methods (averaged over 50 artificial genomes)

Genes per
island

Cutoff

50 75 90 95

MJSD
AUC

IVOM
AUC

MJSD
percent�

MJSD
AUC

IVOM
AUC

MJSD
percent

MJSD
AUC

IVOM
AUC

MJSD
percent

MJSD
AUC

IVOM
AUC

MJSD
percent

Ten donor genomes
3 0.736 0.966 02 0.735 0.953 02 0.733 0.917 10 0.730 0.895 12
6 0.829 0.984 02 0.826 0.968 14 0.825 0.940 22 0.821 0.914 28
9 0.909 0.991 20 0.908 0.983 24 0.905 0.964 30 0.902 0.945 30
12 0.959 0.994 52 0.958 0.986 62 0.956 0.968 60 0.953 0.951 66
15 0.986 0.992 76 0.985 0.980 82 0.982 0.966 86 0.980 0.951 84
18 0.978 0.994 54 0.975 0.984 58 0.970 0.967 72 0.959 0.956 66
25 0.987 0.994 52 0.982 0.988 50 0.976 0.976 68 0.972 0.961 76
35 0.991 0.992 68 0.986 0.983 68 0.980 0.967 76 0.976 0.959 74
50 0.992 0.993 52 0.989 0.986 64 0.985 0.974 76 0.974 0.961 64

Salmonella donor genome
3 0.565 0.717 21 0.564 0.658 25 0.560 0.608 38 0.557 0.587 42
6 0.640 0.851 14 0.633 0.708 42 0.626 0.615 60 0.621 0.590 60
9 0.669 0.859 10 0.661 0.756 30 0.653 0.636 60 0.641 0.585 66
12 0.728 0.872 20 0.714 0.756 42 0.701 0.617 58 0.693 0.565 68
15 0.780 0.889 30 0.774 0.767 58 0.753 0.614 82 0.749 0.566 86
18 0.718 0.911 02 0.698 0.795 22 0.671 0.646 54 0.649 0.582 72
25 0.770 0.915 10 0.734 0.814 30 0.691 0.662 60 0.673 0.576 76
35 0.871 0.912 32 0.822 0.805 60 0.771 0.626 94 0.748 0.563 96
50 0.919 0.912 62 0.879 0.809 85 0.819 0.652 94 0.781 0.538 96

�Percentage of genomes where MJSD outperforms IVOM.

Table 1. Accuracy comparison of the top–down and bottom–up (1KB window) MJSD methods (averaged over 50 artificial genomes)

Genes per
island

Cutoff

50 75 90 95

Top–
down
AUC

Bottom–up
AUC

MJSD
percent�

Top–
down
AUC

Bottom–up
AUC

MJSD
percent

Top–
down
AUC

Bottom–up
AUC

MJSD
percent

Top–
down
AUC

Bottom–up
AUC

MJSD
percent

Ten donor genomes
3 0.736 0.966 0.00 0.735 0.927 0.06 0.733 0.823 0.26 0.730 0.724 0.52
6 0.829 0.977 0.08 0.826 0.947 0.18 0.825 0.891 0.38 0.821 0.820 0.60
9 0.909 0.979 0.24 0.908 0.950 0.40 0.905 0.906 0.54 0.902 0.857 0.76
12 0.959 0.981 0.66 0.958 0.955 0.72 0.956 0.929 0.88 0.953 0.891 0.88
15 0.986 0.976 0.88 0.985 0.950 0.90 0.982 0.912 0.90 0.980 0.869 0.98

Salmonella donor genome
3 0.572 0.678 0.20 0.571 0.486 0.74 0.567 0.377 1.00 0.564 0.350 1.00
6 0.640 0.709 0.40 0.633 0.496 0.78 0.626 0.328 0.94 0.621 0.288 0.98
9 0.669 0.698 0.40 0.661 0.475 0.92 0.653 0.301 1.00 0.641 0.237 1.00
12 0.728 0.681 0.60 0.714 0.463 0.92 0.701 0.305 0.98 0.693 0.221 1.00
15 0.780 0.691 0.78 0.774 0.469 0.98 0.753 0.302 0.98 0.749 0.227 1.00

�Percentage of genomes where MJSD top–down outperforms MJSD bottom–up.
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confidence boundaries for the true location corresponding
to Dm

max. As expected, the size of the confidence interval is
highly correlated with both the genome level differences
and the size of the segments (Supplementary Figure 3).
Therefore, we conclude that the MJSD metric is robust
in identifying segment boundaries within DNA sequences
without regard to gene boundaries.

Identifying island boundaries in artificial chimeric
genomes

The algorithm begins by dividing the chromosome into
two segments which have a statistically significant maxi-
mum difference in sequence properties (see ‘Materials
and Methods’ section, Supplementary Data for details
on significance testing); each segment is recursively
divided until all segments are deemed uniform. As the
ancestry of genes in genuine genomes is not known
with certainty, we evaluated the performance of the
recursive, binary segmentation method by using it to
find boundaries of islands in artificial chimeric genomes
(see ‘Materials and Methods’ section for details on their
construction). We compared recursive segmentation to a
moving-window approach; as a control, we also examined
the results of segmentation performed by randomly pla-
cing breakpoints in genomic sequences. Moving-window
methods are widely used because they are relatively easy
to implement and readily interpretable; this approach
has been implemented for genomic island detection by
the IVOM method (6). Their major drawback is their sen-
sitivity to the window size: islands are poorly detected
when they are smaller than the window size, yet smaller
windows render less predictive power to the method.
Furthermore, this approach is inherently unable to delin-
eate the boundaries between compositionally distinct
regions.

The distribution of closest segmentation distance from
the island boundary is plotted in Figure 4. We transferred

islands composed of 15 genes from 10 possible artifi-
cial genomes into the artificial E. coli core backbone
genome; we simulated six horizontal transfers in 50 chi-
meric genomes. For the moving-window method, there
is a uniform distribution of endpoints within the interval
(0, window_size/2) because an island boundary will be
located randomly within a window. In contrast, the recur-
sive segmentation method places breakpoints within
250 bp of the island boundaries more than 80% of the
time and outperforms a 5-kb window 92% of the time.
To obtain similar accuracy to the recursive method, we
would need to use a sliding window of size 80 bp; since
the power of moving-window methods diminish with
decreasing window size, this would undermine its capabil-
ities. Both recursive and window methods outperform the
control algorithm, where segment boundaries are placed
at random within the sequence. We conclude that the
recursive method is better suited to delineating genomic
island boundaries.

Detecting genomic islands in chimeric artificial genomes

We compared the top–down recursive segmentation to a
moving-window approach using the same atypicality scor-
ing metric (AS) and to the IVOM method. To estimate
accuracy, we constructed chimeric genomes with islands
transferred from 10 artificial genomes into an artificial
E. coli genomic backbone. Various numbers of genes
(3, 6, 9, 12, 15, 18, 25, 35 or 50) were contained within
each island and a total of six islands were inserted into
each artificial genome. This was repeated 50 times for each
island size, resulting in 450 in silico chimeric genomes
being constructed. In addition, we repeated this process
by inserting regions from an artificial S. enterica genome
into an artificial E. coli genome. As S. enterica is closely
related, and compositionally similar, to E. coli, the task
of identifying the genomic islands originated from
Salmonella should be more difficult.
The accuracy of the methods in identifying the genomic

islands was assessed by computing the area under
the ROC curve (AUC, see ‘Materials and Methods’ sec-
tion); AUC=1 denotes a perfect classification while
AUC=0.5 (area under the diagonal line) denotes a
random classification. A comparison of the MJSD and
IVOM methods is summarized in Table 1 and an example
is shown in Figure 5. Data are shown for different sizes of
genomic islands and for different fractions of the genomic
island required to be identified (termed ‘cutoff’). For
instance, the cutoff used in Figure 5 is 90%, meaning
that if an island of size 20 kb has <18 kb labeled as
alien, it is considered a false negative. In contrast, the
false-positive rate is still given in terms of nucleotides
incorrectly labeled as foreign. When gene-based methods
are used, 90% of an island region is defined as 90% of the
nucleotides in genes in the island region.
The top–down, recursive segmentation algorithm iden-

tifies genomic islands better than bottom–up method when
the size of the island was sufficiently large (Table 1;
Supplementary Table 4). As expected, this observation
becomes more pronounced for genomic islands originating
from an artificial Salmonella genome in an artificial E. coli

Figure 4. Distributions of island boundary distance to closest segment.
The ‘random segmentation’ randomly cuts the genome into the same
number of segments as the recursive segmentation algorithm. The
window algorithm divides the genome into 930 fragments, whereas
the recursive algorithm divides the genome into (on average) 101
fragments.
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genome due to the similarity of the genome nucleotide
distributions. Short, weakly atypical alien regions could
not be detected accurately by the recursive method and
thus windowing is better equipped for detecting very
small islands (three to nine genes); however, the simulta-
neous analysis of numerous, adjacent genes allowed the
top–down approach to better locate large genomic islands.
These results support our premise that analysis of large
genomic regions allows the robust detection of genomic
islands from compositionally similar donors.
Both the recursive MJSD and IVOM methods perform

well in identifying islands; however, MJSD outperforms
IVOM in identifying genomic islands with more than 12
genes at higher cutoffs (Table 2). That is, MJSD does
better when we require larger fraction of an island to be
predicted correctly. This performance was also seen when
an artificial Salmonella genome is the sole donor, though
both methods found fewer island-borne genes. Here
MJSD outperforms IVOM at higher cutoffs even when a
genomic island contains only six genes. For very large
genomic islands, MJSD outperforms IVOM at any
cutoff (Table 2). In addition, as the size of the island
increases, the superiority of the MJSD method outweighs
the advantages of the interpolated octamer frequencies of
IVOM. Therefore, we conclude that the MJSD metric
is effective in identifying large genomic islands, outper-
forming the most effective existing methods.

Identification of genomic islands in S. enterica
Typhi CT18

While artificial genomes provide a valuable test bed, the
genomic islands they contain are constructed according to
a limited set of rules. To examine the behavior of the

MJSD recursion method when applied to genuine gen-
omes, we analyzed the S. enterica Typhi CT18 genome,
which has been explored extensively for the presence of
genomic islands (6,7). This process has been facilitated by
the numerous genome sequences from different serovars of
Salmonella, which provide an unusually rich resource for
the phylogenetic identification of recently acquired genes.
There are currently 17 annotated pathogenicity islands in
Salmonella genomes, and 13 of these are thought to be
present and active in S. enterica Typhi CT18 (6). In addi-
tion, this strain has multiple bacteriophage insertions and
two other islands not previously noted (23–25), leading
to 21 large regions that are of reliably foreign origin
(Supplementary Table 3).

We applied the MJSD top–down algorithm and
two bottom–up MJSD algorithms (MJSD-window and
MJSD-gene, using genes in place of windows) to identify
genomic islands in the S. enterica Typhi CT18 genome
(Figure 6A). For comparison, we used the IVOM algo-
rithm, which was reported to be highly accurate on this
genome (6). We define an island to be found when a given
percentage of its nucleotides have been classified as hori-
zontally transferred. FPR results are shown in Table 3 for
various cutoffs. Of the three cutoffs shown, only 40%
and 60% give reasonable values for FPR (0.09–0.21);
the 80% cutoff is shown to illustrate the large jump
in FPR observed when higher cutoffs are used. While
these figures may seem low, detecting 40–60% of the
island in an initial analysis is useful in focusing further
efforts to refine its boundaries. This is particularly true
since the false-positive rate is fairly low.

When we require all islands to be found at a 40% cutoff,
we find that IVOM has an 11.4% FPR, while MJSD
(alpha=0.01, segmentation model order=1, atypicality
assessment model order=2) has a false-positive rate
(FPR) of 9.5%, a 14% improvement. (Whereas the pub-
lished IVOM method uses a change point optimization to
help determine the precise start and end of an island, we
use a modified implementation that allows a tradeoff
between sensitivity and FPR. When the original optimiza-
tions are used, we find that one insertion is missed at an
FPR of 13.1%.) Furthermore, out of the 605 kb of DNA
encoded by islands, IVOM detects only 446 kb (non-
optimized) or 451 kb (optimized), whereas top–down
MJSD detects 477 kb. Thus, even though the islands are
deemed ‘identified’ by IVOM, more of each the island is
found (on average) by top–down MJSD. The non-recur-
sive MJSD algorithms also underperformed the recursive
version. MJSD-window resulted in a FPR of 39% and
MJSD-gene false-positive rate was 40.5%, further validat-
ing our top–down approach.

‘False’ positives in identifying S. enterica Typhi islands

The false-positive rates discussed above are certainly
inflated, since many locations likely correspond to
horizontally transferred regions that are not formally
recognized as pathogenicity islands or bacteriophages.
As examples, six regions are encircled in Figure 6A and
noted with asterisks. Each region corresponds to an atyp-
ical segment identified by both the MJSD top–down and

Figure 5. An ROC curve comparing the IVOM and MJSD methods on
a single artificial chimeric genome. The cutoff for declaring an island as
found is 90% and the six genomic islands encompass 50 genes each.
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IVOM algorithms; each region also shows an excess of
individually atypical genes. From a phylogenetic stand-
point, each segment has few or no ‘core’ genes shared
with related taxa and each contains several genes unique
to that island. Therefore, these regions carry many of the
hallmarks of recently acquired regions.

Microarray data support the position that many ‘false
positives’ are actually pathogenicity islands. At least 630
CT18 genes are upregulated during at least one phase
of pathogenesis (26), and 103 of these reside in known
genomic islands (statistically significant association with
known genomic islands, P< 0.02, Fisher’s exact test). Of
the 103 known island harbored genes, 82 have significant
MJSD scores (AS� 0.999), giving an estimate of sensitiv-
ity to be 80%. Of the other differentially expressed genes

not yet associated with known pathogenicity islands,
we found 70 such genes in 30 putative island regions
(Supplementary Figure 4), which contain a total of
383 kb, or 7.8% of the total genome in addition to
known existing islands.

Detecting genomic islands in genuine genomes

The analysis of the Salmonella serovar Typhi genome sug-
gests that the MJSD segmentation approach accurately
detects genomic islands in genuine genomes. To assess
the performance of the method on other genomes, we
downloaded from IslandViewer (27) the locations of geno-
mic islands identified by SIGI-HMM (28), IslandPick
(29) and IslandPath-DIMOB (30) in publicly available

Figure 6. Predictions made by the top–down and gene-based MJSD, IVOM, and phylogenetic methods. Known and novel islands are shown as
vertical gray bars. Genes restricted to the Salmonella genome and those found in related genomes (‘core’ genes) were detected by BLAST similarities
(see ‘Materials and Methods’ section). Differentially expressed genes are those upregulated during pathogenesis (26). (A) The entire genome of
S. enterica Typhi CT18 showing previously described islands (Supplementary Table 3). (B) A region of the genome that demonstrates the ability
of top–down MJSD to accurately capture island boundaries and identify novel regions of varying sizes. The two known islands and a likely
non-functional islet (the small region near 965 kb) are accurately detected. (C) The CS54 island’s boundaries are best defined using top–down
MJSD. (D) An island composed of an integrase gene and known virulence genes is delineated by both the MJSD and IVOM methods; borders are
approximated.
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genomes. Genomes were chosen for analysis where (a) at
least 20 kb of DNA was classified as island by two of the
three methods, (b) at least 20 kb of DNA was classified as
island by all three methods and (c) this represented at least
40% of the total DNA classified as island by any of the
methods; a total of 20 genomes were selected
(Supplementary Table 6). Islands were then identified by
MJSD using conservative thresholds. MJSD robustly
identified as islands (97% of bases) regions that were pre-
viously classified as such by all three methods (red bar in
Figure 7). For regions identified by two of the three pre-
vious methods (that is, missed by SIGI, IslandPick or
IslandPath, but detected by the other two), between
54% and 83% (average of 74%) of bases were identified
as island by MJSD (blue bars in Figure 7). This lower
number reflects the weaker atypical character of these
regions and/or the misclassification of native DNA as
island. If the region was identified by only one method,
MJSD was even less likely to classify it as island (cyan
bars in Figure 7) and very little DNA was classified as
an island that was deemed native by the three previous
methods (gray bar in Figure 7). This shows the potential
of the MJSD method in consistently and robustly detect-
ing putative genomic islands in genuine genomes.

Algorithm efficiency

The top–down, MJSD recursive algorithm is computa-
tionally efficient on bench-top computers, being suitable
for routine analysis of large-sized genomes or automated
assessment of library sequences. On our machines, the
MJSD algorithm completes a single genome in a matter
of minutes whereas the IVOM algorithm requires 1 to 2 h.

DISCUSSION

Complementarity of parametric approaches

Previous approaches for delineating genomic islands in
bacterial genomes have focused either on individual
genes or on small regions within fixed-size windows. For
example, the Wn program assesses the atypicality of genes
individually or collectively within a moving window of
fixed number of genes (20,31). The IVOM method
attempts to enhance its discriminative power by using a
sophisticated variable-order (interpolated) model in place
of fixed-order model used in Wn (6). These moving-
window methods have shown promising results yet suffer

from the vagaries of bottom–up approaches. Our method
does not replace the bottom–up parametric methods;
rather, it addresses their inherent weakness in localizing
large laterally transferred genomic regions, and so should
be used in concert with existing methods. The top–down
approach intrinsic to the recursive segmentation proce-
dure assesses the compositional characteristics of large
transferred regions directly. As expected, the top–down
method excelled at identifying large islands and bottom–
up approaches performed better in identifying smaller
islands (Table 1). In addition, our top–down approach
performed better in identifying large islands at more strin-
gent cutoffs.

Complementarity of phylogenetic and parametric
approaches

Phylogenetic methods are often considered to be the most
reliable methods for detecting laterally acquired genes.
Genomic regions with limited phylogenetic distribu-
tions—that is, genes absent from the organism’s close
relatives—are considered to have been acquired horizon-
tally. The success of such methods clearly depends on the
breadth and depth of the sequence database, but even with
a rich set of genomes for comparison the phylogenetic
approach cannot identify genomic islands unambiguously.
First, phylogenetic discordance often results from gene
loss in multiple lineages, leading to false predictions of
islands. This problem is further exacerbated by rapidly
evolving genes, which confound ortholog identification.
Second, paralogs are often misidentified as orthologs, pre-
venting the identification of large genomic islands since it
appears that broadly shared genes appear in regions oth-
erwise bearing genome-specific genes. Therefore, genes
found frequently in genomic islands will often have homo-
logs in related genomes, obscuring the phylogenetic signal
and confounding the identification of the genomic island.
For example, well-established islands in the Salmonella
serovar Typhi genome were populated with false ‘core’

Figure 7. Performance of MJSD in predicting previously identified
genomic islands among 20 bacterial genomes. Islands were identified
by SIGI-HMM (28), IslandPick (29) and IslandPath-DIMOB (30).
The accuracy in identifying islands reported by one, two or all the
above three methods is assessed by obtaining the percentage islands’
nucleotides correctly labeled as island by the MJSD method. Dashed
lines represent mean values.

Table 3. The false-positive rates (FPRs) for the MJSD and IVOM

methods in detecting known islands in the Salmonella enterica

Typhi CT18 genome

Cutoffa

40 40 60 60 80 80

Method Allb All-1 All All-1 All All-1
MJSD 9.5 8.8 17.3 14.5 51.4 39.5
IVOM 11.4 10.3 21.3 15.7 80.3 37.1

aCutoff value to determine when an island is found.
bAll: all islands are found; All-1: all but one island are found.
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genes with homologs found in most or all related taxa
(Figure 6B). Thus, sets of core genes include clear
island-borne loci, such as those encoding bacteriophage
integrases. Parametric methods can complement the phy-
logenetic approaches in the identification of genomic
islands beyond those cases when closely related genomes
are lacking.

An integrated strategy for detecting genomic islands

The synergy of the phylogenetic, bottom–up parametric
and top–down parametric approaches provide for more
robust identification of genomic islands than afforded by
any single approach. For example, six strong candidates
are indicated with asterisks in Figure 6A. For many other
regions, phylogenetic data are compelling but not conclu-
sive. The islands are not uniformly populated with genes
unique to Salmonella, as many of the island-born genes
have homologues in related genomes. The bottom–up
methods detected only a few of the constituent genes as
sufficiently atypical to be deemed foreign. The top–down
MJSD method provides the complementary assessment
that the genes in each island are sufficiently different
from the flanking regions—and sufficiently similar to
each other—that they are placed into a putative island.
The predictions of the IVOM approach are more fragmen-
ted that the MJSD approach, and do not identify the end
points as accurately. However, the sum of all data—the
lack of core genes, presence of many unique genes, pres-
ence of strongly atypical genes and overall atypicality of
the genomic segment with defined boundaries—together
point to the presence of a large genomic island (Figure 6).

Other uses of the generalized Jensen–Shannon divergence

Generalization of the Jensen–Shannon divergence mea-
sure improved the performance of our method signifi-
cantly. The generalization consisted of capturing short-
range correlations within symbolic sequences by assuming
that a symbolic sequence is generated by a source of arbi-
trary Markov order m. Although we have focused here on
application of the generalized measure to the detection of
genomic islands, the use of the generalized measure in
place of the conventional JSD measure will likely improve
other algorithms used in genome annotation; these algo-
rithms include, but are not limited to, the delineation of
coding and noncoding regions (16), detection of isochores,
CpG islands and complex repeats (19), gene clustering (13)
and protein profile–profile comparison (32).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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