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Abstract

Human genetics provides unbiased insights into the causes of human disease, which can be used 

to create a foundation for effective ways to more accurately diagnose patients, stratify patients for 

more successful clinical trials, discover and develop new therapies, and ultimately help patients 

choose the safest and most promising therapeutic option based on their risk profile. But the 

process for translating basic observations from human genetics studies into pathogenic disease 

mechanisms and treatments is laborious and complex, and this challenge has particularly slowed 

the development of interventions for neurodegenerative disease. In this review, we discuss the 

many steps in the process, the important considerations at each stage, and some of the latest tools 

and technologies that are available to help investigators translate insights from human genetics into 

diagnostic and therapeutic strategies that will lead to the sort of advances in clinical care that make 

a difference for patients.

1. Introduction

A major goal of biomedical research is to understand the causes of and find treatments 

for human disease. This has been tremendously challenging for neurodegenerative diseases, 

with failure rates of late-stage clinical trials reaching well over 90% (Arrowsmith and Miller, 

2013). Combined with the fact that these trials are extremely expensive, the rational decision 

many pharmaceutical companies have reached has been to avoid investing in developing 

neurotherapeutics (Ringel et al., 2013).

To find clues about how to make the process more successful, several groups have performed 

retrospective analyses to discover the features of therapeutics programs that would have 

better predicted success or failure. One predictor of success is if the target has some genetic 

link to the disease for which a treatment is being developed (King et al., 2019; Plenge et al., 

2013; Prinz et al., 2011; Wang et al., 2012). Estimates from the different studies vary, but 
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there may be up to a several-fold enrichment of approved drugs whose targets are genetically 

linked to disease compared to targets without such links. As new therapeutic approaches and 

drugs are being developed to treat neurodegenerative diseases that target genes rather than 

proteins, the importance of understanding the genetic risk factors and modifiers of disease is 

likely to grow.

More broadly, understanding the genetic underpinnings of neurodegenerative disease can 

offer unbiased insights into the underlying mechanisms of disease. These insights can be 

hugely important for improving diagnosis, prognosis and patient stratification in clinical 

trials, even if some of the specific mechanisms prove to be poor therapeutic targets 

themselves. For example, a major question for some of the major neurodegenerative diseases

—Alzheimer disease (AD), Parkinson disease (PD), amyotrophic lateral sclerosis (ALS) and 

frontotemporal dementia (FTD)—is the extent to which each of these clinical syndromes is 

a single entity that could reasonably be treated with a single modality, or whether they are a 

collection of diseases that demand approaches tailored to each underlying cause.

The answer to this question has dire implications for clinical trial design. Because clinical 

trials in neurodegenerative disease already are very expensive, few if any studies can afford 

to enroll enough patients to provide adequate power to uncover effects in subgroups of 

patients. So, it is conceivable that drugs that “fail” in efficacy trials actually do work in 

a subgroup of patients, but this effect is never detected. This may lead to abandonment 

of an effective drug and the conclusion that the target is wrong, ending further research. 

Depending on their design, genetic studies have the potential to help stratify patient 

populations, based on their symptom profile, progression rates, and molecular pathogenesis. 

In the future, when more than one treatment for a neuro degenerative disease becomes 

available, it may become possible to use genetic information from a specific patient to tailor 

their treatment program to minimize side effects and maximize safety and efficacy.

2. Genetics of neurodegenerative disease

For these reasons, enormous efforts are being made to elucidate the genetic underpinnings 

of neurodegenerative disease. The reader is referred to excellent reviews of these efforts and 

the specific findings that have emerged in this issue as well as in many recent publications 

(Uricchio, 2020; Reynolds et al., 2019; Nalls et al., 2019; Kunkle et al., 2019; Visscher et 

al., 2017; Morgan et al., 2017).

This review is primarily focused on using insights from genetics studies as a starting 

point to better understand causes of neurodegenerative diseases and eventually to find 

treatments (Fig. 1). There are a few general observations that can be made from genetic 

studies of neurodegenerative diseases that are relevant. First, the incidence and heritability 

of neurodegenerative disease varies substantially (Nalls et al., 2019; Kunkle et al., 2019; 

Manolio et al., 2009; Keller et al., 2012; Wingo et al., 2011; Huang et al., 2017; Simpson 

and Al-Chalabi, 2006; Al-Chalabi and Hardiman, 2013). AD and PD are common, whereas 

ALS, FTD and Huntington’s disease (HD) are rare. All patients with HD have a mutation 

in a single gene, whereas the fraction of patients with AD, PD, ALS and FTD who have 

single gene mutations is much lower (~10% for AD, PD and ALS, and ~30% for FTD). 
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Indeed, the relatively small fraction of patients with familial neurodegenerative disease 

has played a critical role driving much of our current understanding of the genetics and 

mechanisms responsible for these diseases. Studies to discover autosomal dominant or 

recessive disease-causing mutations utilizing linkage with association and/or segregation 

analysis has provided unequivocal proof for the role of specific genes and gene mutations. 

For the most part, it has been the discovery of rare Mendelian causes of neurodegenerative 

disease that has enabled the development of genetic laboratory models of those diseases, 

which have led to most of the mechanistic insights into disease pathogenesis today 

(Pihlstrøm et al., 2017; Stamatakou et al., 2020).

Still, the precise relationship between rare Mendelian and common non-Mendelian forms of 

neurodegenerative disease is unknown. It is concerning that so many potential therapies that 

showed efficacy in laboratory models based on Mendelian forms of disease have failed in 

clinical trials in human populations with mostly sporadic forms of the disease. Fortunately, 

even though it is impossible to pinpoint a single responsible gene for sporadic forms of 

neurodegenerative disease, the heritable risk of these diseases is high (e.g., ~30% for PD, 

40–60% for ALS). Some of this so-called “missing heritability” (Uricchio, 2020; Manolio 

et al., 2009; Keller et al., 2012) has been uncovered through genome-wide association 

studies (GWAS), which have found numerous genetic loci and common single nucleotide 

variants (SNV) associated with increased or decreased risk of disease. However, with a few 

exceptions, the magnitude of effect of any one SNV is very small, and the majority of the 

“missing heritability” for all the diseases remains unexplained.

There are some important limitations of existing genetics studies. The first is that they 

are not exhaustive. For the most part, existing studies have been performed on genomes 

from people of European or North American ancestry (Rosenberg et al., 2010; Genetics for 

all, 2019; Sirugo et al., 2019). Since the variants present in a human genome vary across 

different ethnic populations, studies of genomes from patients with other ancestries are 

likely to uncover new risk variants and genes relevant to neurodegenerative disease. This 

may lead to the implication of new genes and pathways, and help identify the causal SNVs 

within known GWAS loci (Edwards et al., 2013). Yet, even if all the genetic variants that 

affect a disease are eventually discovered, our understanding of the genetic regulation of 

disease mechanisms is still limited by the relevant variants that exist in the human genome.

The second is that most of the studies have been conventional GWAS focused on discovering 

associations between disease risk and genomic loci. By design, these studies are unlikely 

to discover rare variants that may have much larger effects and, for that reason, could be 

especially attractive therapeutic targets. Moreover, because of linkage disequilibrium (LD) 

and the sparseness of the genomic probes, it is not always straightforward to understand 

which SNVs mediate the effects of the GWAS loci. Increasingly, whole genome sequence 

(WGS) data are being collected, which substantially increases the resolution of the analysis. 

But the large increase in variants identified means that there are associated challenges with 

having enough power to identify those that are significant.

A third limitation of existing genetic studies is that the majority have focused on the 

genetic risk of developing disease, whereas other important features of pathogenesis, such 
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as progression, have been less studied. That is because segregating people with a diagnosis 

of a particular neurodegenerative disease from a healthy control population is relatively easy 

and inexpensive. By contrast, the clinical presentation and progression of neurodegenerative 

disease can be quite heterogeneous, even amongst patients who have been diagnosed with 

the same clinical syndrome. For the most part, it is less understood to what extent clinical 

presentation and progression rate can be explained by genetics, and to what extent they 

mirror the genetics that govern the risk of developing disease. Understanding the genetics of 

disease progression might be of particular importance for therapeutics development because 

targets linked to progression might be more relevant during the symptomatic phase of 

disease when clinical trials would normally be performed.

Even if the heritable portion of neurodegenerative diseases is eventually understood, 

the majority of cases will remain unexplained. Often, these have been attributed 

to “environmental” factors. And although “environmental” factors are frequently 

conceptualized as non-genetic influences, that may not be entirely true. One of the most 

replicated findings from behavioral genetics is that most measures of “environment” show 

significant genetic influence, and most associations between environmental measures and 

psychological traits are genetically mediated (Plomin et al., 2016). That is a critical 

consideration for genetic risk profiling for neurodegenerative disease because behavioral 

measures and psychological traits often feature prominently in the disease phenotypes 

against which GWAS are performed, and the risk of disease has been associated with 

“environmental” factors, such as educational attainment (Sharp and Gatz, 2011), which have 

substantial heritable and non-heritable genetic underpinnings (Plomin et al., 2016). That 

said, with a few exceptions such as pesticide exposure and head trauma, in epidemiology 

studies it has proven difficult to identify robust and reproducible non-genetic factors 

that account for significant portions of non-heritable disease risk. It is likely that some 

environmental factors only confer disease risk in the context of certain genomic variants, 

making them particularly challenging to discover. Still, a complete understanding of 

the genetic risk underlying neurodegenerative disease could be a foundational starting 

point for exploring environmental factors that synergize with genetics. Lastly, it must be 

acknowledged that some non-heritable disease risk may be essentially random, and will 

remain undiscovered even after exhaustive genetic and environmental studies are performed. 

Perhaps a better understanding of generic risk factors for neurodegenerative disease, such 

as aging, could lead to new strategies that improve human resilience and reduce the 

contribution of stochastic factors to neurodegenerative disease.

3. Moving from GWAS to causal variants

As noted above, GWAS results help establish the scope and scale of genetic contributions 

to neurodegenerative disease. And although so far there are few examples of taking specific 

GWAS loci from patients with neurodegenerative disease to validated mechanisms, the 

wealth of available genetic data has poised the field to do the difficult work to perform 

functional genomics and translate these discoveries into potential biomarkers and therapeutic 

targets (Ramanan and Saykin, 2013). With this in mind, it is important to note that GWAS 

methodology suffers two important limitations that typically prevent it from uncovering the 

causal variants, genes and pathways that are responsible for the GWA signals. First, the 
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majority of GWAS loci are in non-coding or intergenic regions, leaving unclear the precise 

gene(s) and mechanisms through which they act. Second, GWAS loci often encompass 

multiple variants in linkage disequilibrium, leaving unclear which variant or combination of 

variants is responsible.

Several strategies have been developed to address these limitations. The SNVs tested in 

GWAS typically act as a tag for a haplotype block that can span thousands of DNA bases 

(> 100 kB) and contain > 1,000 variants, hundreds of which might exhibit statistically 

significant associations with the phenotype of interest (Edwards et al., 2013). As such, a 

logical first step is to look for genes in the neighborhood of the SNV and contained within 

the haplotype block that might mediate its effect. A variety of computational approaches 

have been developed to help investigators look for co-localization of candidate genes 

with GWAS loci (Wu et al., 2019; Giambartolomei et al., 2014; Simovski et al., 2018; 

Hormozdiari et al., 2016).

However, because of the size of haplotype blocks and the number of variants they contain, 

it can be difficult based on GWAS data alone to link an SNV to the gene(s) that mediate its 

effect. In that case, a common next step can be fine mapping. One way to fine map is to use 

genotyping arrays with greater probe density for SNVs within a haplotype. With a sufficient 

sample size, often between 10,000 and 100,000, there can be enough examples in which 

individual SNVs within a haplotype are inherited independently that the risk conferred by 

the haplotype can be pinpointed to a specific SNV (Udler et al., 2010). However, it is 

common after fine mapping to still have 10–50 SNVs that are strong candidates, highly 

correlated with the best hit (Edwards et al., 2013). So, additional methods are often needed 

to elucidate causal SNVs and prioritize genes and pathways.

Another strategy has been to use bioinformatic tools to integrate GWAS and additional 

publicly-available data, based on the concept that causal variants from GWAS presumably 

confer risk by affecting gene expression, which perturbs the function of biological pathways. 

One web-based platform to do this is called FUMA, which broadly breaks the task into two 

parts: 1) mapping the SNV to gene(s), and then 2) relating the implicated gene to its normal 

function and pathogenic mechanism (Watanabe et al., 2017). With FUMA, genomic loci 

are first characterized to identify independent SNVs and candidate SNVs in LD to define 

lead SNVs and genomic risk loci. FUMA then predicts the functional impact of SNVs and 

annotates them by integrating information related to each SNV position and any known 

expression quantitative trait loci (eQTL) or chromatin interaction. Functionally annotated 

SNVs are then mapped to genes with positional, eQTL and chromatin interaction mapping 

data (Hormozdiari et al., 2016). Whereas eQTL data tend to have distance boundaries, with 

90% of SNPs affecting eQTLs within 15 kB of the 5´ and 3´ gene boundaries (Pickrell et 

al., 2010), chromatin interaction mapping data can better account for long-range interactions 

between the disease-associated regions and nearby or distant genes. The goal of these efforts 

is to predict effects of an SNV, ranging from its local effects on gene function up to cell- and 

tissue-specific effects. In general, these various approaches each have scoring mechanisms, 

and the user can adjust the stringency and weighting of each score to reflect different 

models. Once a list of genes has been prioritized based on functional SNV annotation, 

FUMA annotates the genes by drawing on information about the gene, its implication 
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in human disease, its tissue-specific expression, and its role in biological pathways and 

functions.

In genetic risk profiling, one must consider “missing heritability,” and the concept of 

polygenic disease, and the implications it could have for finding causal variants. The 

disease-associated variants discovered by GWAS are common in the general population, the 

total number of risk variants can be large, and most can be inherited independently of each 

other. As such, there will be some distribution of disease-associated variants within human 

populations, leading to some individuals having a greater and some a lesser number of risk 

variants for a disease. The prevailing view is that the higher the burden of risk variants an 

individual has, the higher their risk of developing disease.

One way to quantify the overall risk for an individual is to simply add the risk of each 

SNV, as determined by GWAS, in their genome. Regression models can be tested and SNV 

weighting can be adjusted to maximize the predictive value of these so-called polygenic 

risk scores. For some disorders, this approach has led to models with high predictive value 

(Escott-Price et al., 2015), and in some cases, the predictive power can be improved if 

additional variants from GWAS data are included in the model even if they did not achieve 

genome-wide significance on their own. The argument for including these variants in the 

analysis is that the statistical threshold for declaring certain variants as having achieved 

genome-wide significance is set high because of multiple testing and type I errors. However, 

this approach is controversial. Critics argue that at the lower limit of effect size, the entire 

genome may make contributions to complex phenotypes by generic mechanisms that may 

not be biologically meaningful and are not amenable to therapeutic intervention (Boyle et 

al., 2017).

The development of polygenic risk scores with regression methods is primarily aimed at 

maximizing the predictive accuracy of phenotype from genotype by deriving the optimal 

weights to assign various SNVs. However, the method per se does not address whether 

biological cause-and-effect relationships might exist amongst the variants. Conventional 

experimental approaches to address such questions in model systems are described below, 

but because of important limitations in the predictive value of laboratory models of disease, 

investigators have sought to develop bioinformatic approaches to investigate the presence 

of causal relationships amongst GWAS hits relying solely on human genetic data. A major 

approach for doing this is causal modeling (Ewald et al., 2020; Mattis and Gloyn, 2020), 

in which variation in gene co-expression is analyzed across patients and samples to infer 

potentially causal relationships between genomic variants and expression of specific genes, 

and amongst genes within networks (Uricchio, 2020; Barbeira et al., 2018).

One approach to more firmly root the investigation of polygenic effects in biology is 

pathway analysis (White et al., 2019; Wang et al., 2010). This is distinct from methods 

to map an SNV to a gene, such as FUMA, which rely on pathway analysis to place 

individual SNVs into a biological context. Rather, the focus here is on analyzing collections 

of SNVs across the genome to find pathways that are relatively over represented by the 

hits. In fact, pathways represented or largely driven by a single SNV should probably be 

disregarded for this type of analysis. Likewise, pathway analysis is distinct from polygenic 

Finkbeiner Page 6

Neurobiol Dis. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



risk score calculation in that an effort is made to incorporate a priori information about the 

genes through which the SNVs are presumably acting to discover meaningful biological 

connections amongst the SNVs. For example, an enrichment in disease-associated SNVs in 

genes already known to encode proteins in a defined biological pathway could suggest that 

disease risk is being conferred through perturbation of that pathway, offering a potential 

pathogenic mechanism and providing greater confidence that the identified SNVs play a 

causal role. By the same token, common variants in the same individual that happen to 

act through the same biological pathway might be more impactful on disease risk than the 

same number of variants acting in different pathways because of the potential for non-linear 

synergistic interaction between SNVs on biological function. It is conceivable that some 

biological functions are so highly conserved that only SNVs with very small effects are 

tolerated. If so, they may not be detected on their own as risk variants in GWAS, but might 

still confer substantial risk in synergistic combination with other SNVs in the same pathway. 

In this case, the additive model underlying most polygenic risk scores may fail to accurately 

predict the overall risk of certain patterns of variants.

Looking for interactions between SNVs has been challenging because the number 

of possible combinations is enormous and increases exponentially as the number of 

simultaneously acting SNVs increases. More recently, machine learning (ML) approaches 

have been applied to GWAS data to investigate polygenic models of disease, and have 

shown promise (Behravan et al., 2018). One advantage of ML approaches is that they are 

well suited to looking for patterns in data, including non-linear relationships. In addition, 

it is possible to estimate the robustness and reproducibility of an algorithm by repeatedly 

training on different subsets of the data and validating the algorithm on subsets that have 

been withheld. This avoids limitations of conventional statistical tests, which would be 

underpowered, even for investigating most pairwise SNV interactions.

4. Experimental evaluation of prioritized genes and causal variants

If the aforementioned approaches are doing their job, they should enable an investigator 

to take GWAS hits and begin to develop a list of presumed causal variants and the genes, 

combinations of genes, and biological pathways through which those variants act to confer 

risk of whatever phenotype was used to do the GWAS. Still, all these approaches are 

imperfect. Knowledge about normal gene functions, 3D interactions within the genome, 

cell type-specific expression, and functional pathways is still very much being developed. 

Moreover, some of these relationships presumably change in the context of disease, and it is 

unclear if accurate predictions in a disease context can be made based on data from a healthy 

context.

For all these reasons, it is critical to develop a prioritized list of causal variants that 

are further evaluated experimentally. Causal variants presumably confer disease risk by 

impacting the transcriptome and proteome, either by changing the function of the gene in 

which the SNV is found or, more commonly, by affecting the expression of one or more 

genes (eQTLs) (Nica and Dermitzakis, 2013). To elucidate this, several core techniques 

such as bulk and single cell RNA sequencing (scRNAseq), assays for transposase-accessible 

chromatin using sequencing (ATAC seq), and proteomics are frequently applied (Edwards 
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et al., 2013). Bulk transcriptomics is very sensitive, making it possible to develop a 

comprehensive list of differentially expressed genes in the presence or absence of a causal 

variant or a perturbation of the gene through which it presumably acts. However, if the 

causal variant only affects a gene that is expressed in a cell type-specific fashion, it may 

be difficult to detect the signal by bulk analysis of a heterogenous population. Indeed, 

it is estimated that 50–90% of eQTLs are tissue dependent, implying the presence and 

importance of cell type-specific expression (Nica et al., 2011; Dimas et al., 2009). Also, 

the target genes of eQTLs can be coding or non-coding RNAs, and genotype can also 

influence splicing and alternate isoform production, so detection methods need to be chosen 

with this in mind (Kumar et al., 2013; Lalonde et al., 2011). Weighted gene expression 

coregulatory network analysis (WGCNA) is one method that has been used successfully to 

tease out transcriptional networks from bulk transcriptomic data, which often correspond to 

cell type-specific gene expression profiles (Pei et al., 2017; Langfelder and Horvath, 2008). 

ScRNAseq (or single nuclei RNAseq) can be extremely useful, especially if the relevant cell 

type is a minor subset of the cells in the general population. However, the read depth of 

scRNAseq is significantly less than for bulk RNA seq, which limits the analysis to genes that 

are relatively highly expressed.

Elucidating the relationship between eQTLs and the genes they regulate is an important goal 

for understanding how SNVs affect disease risk. If an SNV affects promoter, enhancer or 

silencer elements and transcription factor accessibility, ATAC seq may reveal corresponding 

changes in chromatin accessibility (Lowe et al., 2019; Oulhen et al., 2019; Shashikant and 

Ettensohn, 2019). On the other hand, enhancers and silencers can reside more than 1 kb 

from their target genes and exert their regulatory influence through long-range interactions 

mediated by the formation of chromatin loops (Sexton et al., 2009). That is one reason 

that the gene closest to an SNV may not in fact be the principle target. Fortunately, a 

number of approaches including established proximity-ligation based methods, such as 

Hi-C, and newer ligation-free techniques, can elucidate 3D genome topology (Kempfer and 

Pombo, 2019; Kaul et al., 2020). These can lead to a better understanding of the physical 

relationship between a domain containing an SNV and other domains in the genome it may 

be influencing.

Although the data from RNA seq, ATAC seq, proteomics and other analytical measures from 

the same sample should clearly be related, it is important to keep in mind that these are 

independent snap shots of different levels of biology. Using statistical methods to analyze 

data from a single method can be prone to uncovering spurious correlations that are not 

causal. For example, > 90% of randomly selected gene signatures are correlated with cancer 

outcomes (Venet et al., 2011). These random signatures occur because expression of a large 

fraction of the genome is highly correlated with a marker of proliferation. However, simply 

looking for overlap in the subset of differentially expressed genes identified by different 

methods is not an effective strategy either, since multi-Omic studies often find that the 

overlap between each pair of assays can be less than expected by chance (Yeger-Lotem et 

al., 2009). That likely happens because some macromolecules may be principally regulated 

by changes in their levels (e.g., transcripts), whereas others may be regulated primarily by 

other mechanisms (e.g., post-translational modifications) and because of the presence of 

complex feedback loops. One strategy to overcome some of these limitations and tease out 
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true biological signals and signatures is to integrate data from multiple approaches, such 

as through the OMICs integrator, which uses Prize-collecting Steiner forest algorithms to 

identify networks that span the available transcriptomic, epigenomic, proteomic and other 

data (Tuncbag et al., 2016). In addition to avoiding the pitfalls of looking simply at statistical 

correlations within a data type or overlap between data types, it has the added advantage of 

being able to uncover novel networks and pathways, which may be especially important in 

the context of disease, where pathways may be deranged and existing knowledge about them 

based on studies of normal cells may not be fully applicable.

5. Systems cell biology, functional genomics, and genetic risk profiling

The approaches described above can, in principle, be applied to human tissue. The 

tremendous advantage of doing so is the obvious relevance of using human tissue to study 

neurodegenerative diseases, which primarily if not exclusively affect humans, as well as the 

opportunities to integrate a variety of measurements from genomics to clinical phenotype 

in the same individual. But there are also some practical challenges with this strategy in 

relation to neurodegenerative disease. The main obstacle is that gaining access to brain 

tissue is not trivial; it usually occurs post-mortem, and the availability of high quality 

post-mortem tissue is limited. The interval between death and tissue harvest (so-called 

post-mortem interval, PMI) is often used to estimate tissue quality. Yet, the circumstances 

immediately surrounding the death of the individual may be more important than PMI. Other 

measures, such as the RNA integrity number (RIN), may be better markers of tissue quality 

(Stan et al., 2006).

The other nagging concern about using post-mortem human brain to study 

neurodegenerative disease is that most patients who come to autopsy are rather end stage. 

This can mean that most of the cells with the greatest susceptibility for disease have 

already been lost, taking with them the signals one might hope to detect with multi-Omics 

approaches. Often in their place, a reactive gliosis can develop whose relevance to disease­

specific pathogenic mechanisms can be unclear. Lastly, studies on human tissue, for the 

most part, are limited to observational measurements. Observational studies are critical 

for establishing foundational knowledge and generating hypotheses, but it is important 

to validate or invalidate the models that emerge with perturbation experiments to further 

establish which apparent correlations are due to causal relationships.

For all these reasons, there is avid interest in developing model systems in which to 

interrogate the effect of SNVs on genes and pathways and their relevance to disease 

mechanisms. Historically, these efforts have focused on non-human models, especially 

mouse models of disease (Pankevich et al., 2014). In general with non-human model 

systems, there can be a tradeoff between ease-of-use, cost and perceived relevance to human 

biology, and the “best” model may depend on what question the model is being used to 

address (Xi et al., 2011; Roberson, 2012; Shulman et al., 2014; Lee et al., 2012; Fernagut 

and Tison, 2012). That said, critics of the use of non-human model systems point out that 

their predictive value for human clinical trials has a poor track record (Pankevich et al., 

2014; Mullane et al., 2014; Mullane and Williams, 2013; McGonigle and Ruggeri, 2014; 

Crook and Housman, 2011; Mullane and Williams, 2019; Ransohoff, 2018). In turn, some 

Finkbeiner Page 9

Neurobiol Dis. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



have rebutted this criticism by blaming the failures on poor scientific practices, highlighting 

the fact that many studies done in academic labs use small cohorts of mice and are 

underpowered, fail to implement critical quality control measures to avoid genetic drift, 

and fail to hew to the highest standards of animal husbandry (Perrin, 2014).

On the other hand, there has been no shortage of studies showing substantial differences 

between the physiology of humans and non-human model organisms, including in the 

sequence of homologous genes that affect drug responses (Mattson et al., 1991; Mertens 

et al., 2013), transcriptional regulation and profiles (Lin et al., 2014; Church et al., 2009), 

cell types (Hodge et al., 2019), and tissue composition and responses (e.g., inflammation 

(Seok et al., 2013)). Each species is a highly evolved, complex system, and it may be 

unreasonable to expect that simply placing a disease-associated human gene or mutation into 

a non-human organism will faithfully and sufficiently mimic the patho-physiology of human 

disease. Rather than judging the quality of non-human disease models based on their ability 

to recapitulate human disease pathology, a better approach may be to acknowledge that 

evolution may make that unrealistic, and instead search for and utilize species-appropriate 

orthologous phenotypes (McGary et al., 2010; Perlman, 2016). Within those constraints, 

non-human systems could be powerful models with great predictive power for functional 

genomics. Indeed, numerous examples exist in which yeast, fly, and mouse models have 

been used successfully to discover cross-species convergent pathogenic mechanisms of 

disease including roles for specific genetic modifiers, RNA metabolism, and stress granule 

formation (Martinez et al., 2016; Campioni and Finkbeiner, 2015; Barmada et al., 2015; Kim 

et al., 2014; Armakola et al., 2012; Aron et al., 2018).

The discovery of a series of technologies to generate human brain cells from peripheral 

cells from patients has opened up a number of exciting avenues for creating fully human 

preclinical models to investigate genetic risk profiles and functional genomics. One of 

the most important has been the development of induced pluripotent stem cell (iPSC) 

technology (Okita et al., 2011). iPSC lines can be differentiated into a variety of cell types 

found in the brain or periphery which maintain the genetics of the person from whom they 

were derived (Abud et al., 2017). Moreover, the advent of genome editing provides a way 

to introduce or revert specific genetic variants in iPSC lines with defined genomes. This 

approach can be used to isolate the effects of specific genetic variants as well as investigate 

the interaction between defined variants.

As such, iPSCs offer an opportunity to study the effects of one or more variant in the 

context of a defined genome on the transcriptome, epigenome, proteome, and phenome 

in stem cells or different differentiated cell types (Cobb et al., 2018; Kaus and Sareen, 

2015; Haston and Finkbeiner, 2016; Kaye and Finkbeiner, 2013). For example, this has 

been an effective approach to demonstrate that certain genomic variants that confer risk of 

PD act as eQTLs for α-synuclein (Soldner et al., 2016). iPSC lines from PD patients with 

mutations in leucine-rich repeat kinase 2 (LRRK2) exhibit survival deficits (Skibinski et 

al., 2014), increased sensitivity to oxidative stress (Nguyen et al., 2011), and mitochondrial 

DNA damage that can be reversed with gene correction of the LRRK2 mutation (Sanders 

et al., 2014). Others have used patient-derived neurons to demonstrate that Miro1, a 

protein on the surface of mitochondria important for mitochondrial mobility, is abnormal 
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in a broad spectrum of PD patients (Hsieh et al., 2019). The fact that iPSC models 

have uncovered convergent mechanisms of disease, including roles for aging, epigenetics, 

autophagy/mitophagy, excitability, and mitochondrial dysfunction, which also appear in 

mice and humans, is encouraging (Aron et al., 2018; Haston and Finkbeiner, 2016; Barmada 

et al., 2014; Ocampo et al., 2016; Fang et al., 2019a; Osellame et al., 2013; Ekstrand 

and Galter, 2009; Martín-Maestro et al., 2019; Penney et al., 2020; Schaeffer et al., 2012; 

Wainger and Cudkowicz, 2015; Devlin et al., 2015; Selvaraj et al., 2018; Zanette et al., 

2002; Kim et al., 2017).

Furthermore, in neurons differentiated from HD patients who carry a disease-associated 

triplet repeat expansion, transcriptomic analysis revealed deficits in gene regulation by the 

transcription factor NeuroD1 that were associated with impaired neurite outgrowth and 

survival (HD iPSC Consortium, 2017; HD iPSC Consortium, 2012). These abnormalities 

were reversed in iPSC-derived neurons and a mouse model of HD with a pharmacological 

tool, ISX-9, known to boost NeuroD1 activation. Neurons differentiated from HD iPSCs also 

exhibited bioenergetic deficits that could be reversed with glycolytic metabolites (Kedaigle 

et al., 2019), and changes in proteostasis that could be mitigated by UBR5, a ubiquitin ligase 

(Koyuncu et al., 2018).

This approach can also be used to illuminate the differing molecular mechanisms that drive 

heterogenous diseases. For example, iPSC lines from an ALS patient with a disease-causing 

hexanucleotide mutation in C9ORF72 were used to investigate the role of methylation 

at the C9ORF72 locus (Esanov et al., 2016). Motor neurons differentiated from an ALS 

patient with a mutation in Tar DNA Binding Protein 43 (TDP-43) showed abnormal 

aggregation of TDP43 and survival deficits (Bilican et al., 2012). Motor neurons from ALS 

patient iPSC lines with a disease-causing mutation in an RNA binding protein RNABP1 

showed abnormalities in stress granule (SG) formation and survival that could be reversed 

pharmacologically (Fang et al., 2019b). Similarly, iPSC lines with an ALS-associated 

mutation in Fused in Sarcoma (FUS) also showed abnormal SG formation, which could 

be reversed by inducing the protein clearance pathway autophagy (Marrone et al., 2018).

iPSC models have also been used to study different dementias. The genetic variant encoding 

the apolipoprotein E4 (APOE4) isoform significantly elevates an individual’s risk for 

developing AD. Interestingly, human γ-amino butyric acid (GABA)-ergic neurons harboring 

APOE4 exhibit elevated tau phosphorylation and increased degeneration (Wang et al., 2018). 

These phenotypes could be reversed with a compound that changes the conformation of 

APOE4 to mimic the structure of APOE3, which does not increase the risk of AD. Other AD 

iPSC models manifest intracellular stress associated with intracellular Aβ peptides (Kondo 

et al., 2013). Several groups have engineered iPSC lines to model tauopathies (Iovino 

et al., 2015), neurofibrillary tangle formation and transcellular propagation (Reilly et al., 

2017). And forebrain neurons made from iPSC lines derived from patients with tau (MAPT) 

mutations and frontotemporal lobar degeneration (FTLD / FTD) show abnormalities in 

subcellular vesicle trafficking, stress pathways (Wren et al., 2015) and Ca2+ signaling that 

could be reversed with genome engineering and genetic correction of the MAPT mutation 

(Imamura et al., 2016).
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In the preceding examples, the iPSC lines were derived from patients with defined 

Mendelian genetic mutations, or engineered based on known, highly penetrant mutations. 

However, as noted above, they leave open the question of whether the more common forms 

of disease are caused by dysfunction of the same pathways, and highlight the potential 

value of establishing cellular models of idiopathic disease. There have been some reports 

of the use of iPSC lines from patients without a known mutation or family history of 

neurodegenerative disorders, who presumably have idiopathic forms of disease. This would 

be a particularly exciting development because these patients make up the majority of 

cases of AD, PD, FTD and ALS, and without faithful models of idiopathic disease, it is 

difficult to elucidate the underlying causes experimentally. In an early study of forebrain­

like neurons differentiated from ALS patient iPSCs, a subset showed abnormalities in 

immunolabeling for TDP-43 (Burkhardt et al., 2013). That is potentially significant because 

accumulation of TDP-43 is a pathological hallmark found in brain and spinal cord tissue 

of ~98% of ALS patients. In another study, motor neurons differentiated from iPSC lines 

derived from patients with mostly sporadic / idiopathic ALS were monitored with time lapse 

imaging and then immunolabeled, and were found to have abnormalities in survival, neurite 

arborization, and TDP-43 (Fujimori et al., 2018). iPSC models have also been developed 

from AD patients with both sporadic and familial forms of disease to investigate pathogenic 

mechanisms (Israel et al., 2012).

6. Challenges of cell models for functional genomics

As exciting as iPSC technology is, there are a host of important considerations and some 

inherent limitations that need to be approached thoughtfully. Some of the initial methods 

of reprogramming involved the use of integrating viruses to express the reprogramming 

factors. Unfortunately, expression of integrated reprogramming factors sometimes persisted 

despite the application of directed differentiation protocols, and this could cause substantial 

variability in the extent of differentiation and heterogeneity in the composition of the 

differentiated cultures. Indeed, the extent of epigenetic variation between iPSC lines may 

account for a significant proportion of the variability in the different lineages that a given 

iPSC line can produce (Nishizawa et al., 2016). Fortunately, more recently developed 

footprint-free reprogramming methods have largely eliminated this issue (Churko et al., 

2013). Still, investigators should be aware of the reprogramming methods used to generate 

their lines, and may want to independently assess the pluripotency and genome quality of 

each line before investing significant effort to use it as an experimental platform.

Another issue concerns iPSC differentiation. Patient-derived iPSC lines may not exhibit 

significant phenotypes until they are differentiated (HD iPSC Consortium, 2012; Fernandes 

et al., 2016). This may reflect important changes in disease-relevant tissue-specific eQTLs 

(Reynolds et al., 2019; Barbeira et al., 2018; Nica et al., 2011; Dimas et al., 2009) as cells 

progress down a specific lineage, or more general changes in biological pathways, such 

as proteostasis, that may be a feature of the stem cell state (Vilchez et al., 2012). Some 

protocols, such as those utilizing forced expression or activation of neurogenin 2, may have 

the benefit of generating a more homogeneous cell culture comprising uniform cell types. 

This can be helpful if variability associated with culture heterogeneity or batch is interfering 

with the detection of relatively small signals generated by genetic variants. On the other 
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hand, it also may be the case that certain phenotypes are only manifest as cell type or 

maturity is sufficiently specified or achieved. In our experience, determining the optimal 

differentiation protocol for phenotypic effect size can require some empirical head-to-head 

comparisons. Regardless, attention to batch variability is key, and any steps that can be taken 

to scale up differentiations and bank cells, ideally as late as possible in the differentiation, 

and to simplify protocols without sacrificing the quality of the differentiation, will likely 

reduce variability and increase the sensitivity of the functional genomic work.

One specific limitation of iPSCs for investigating genetic risk profiling and functional 

genomics of neurodegenerative disease is related to the role of aging. Aging is the number 

one risk factor for a variety of neurodegenerative diseases (Kennedy et al., 2014) including 

AD, PD, ALS and FTD. The mechanistic link between aging and neurodegenerative disease 

is a focus of much research (McCormick et al., 2015). The prevailing view is that aging may 

be associated with DNA and protein damage (Lodato et al., 2017; Xie et al., 2015; Li et al., 

2013) which impairs cell function, directly affecting viability (Tsakiri et al., 2013), as well 

as epigenetic changes (Zhang et al., 2015; Hannum et al., 2013) that affect the transcriptome 

and proteome and constrict the homeostatic capacity of cells to manage stresses. In fact, by 

measuring a handful of epigenetic marks from a tissue, including tissue used as the starting 

material to make iPSCs, it is possible to generate a surprisingly accurate estimate of the 

chronological age of the individual from whom the tissue came (Horvath, 2013). On the 

other hand, if those epigenetic marks are measured again after cells from the tissue sample 

have been reprogrammed to pluripotency, the epigenetic “age” of the cells appears to be 

essentially zero. Indeed, the reprogramming process involves removal of a wide variety of 

epigenetic marks that are critical for governing cell-specific gene expression that defines cell 

types. The extent to which these marks cause aging, and the extent to which the removal of 

them truly reverses the physiological changes that occur with aging, is unclear. Nevertheless, 

it has been shown that some aging-associated declines in biological pathways (Streit et 

al., 2004; Bergamini et al., 2007) directly related to neurodegenerative disease, such as 

proteostasis (Keller et al., 2004; Cuervo et al., 2005; Massey et al., 2006; Rubinsztein et 

al., 2011), are improved in stem cells (Vilchez et al., 2012). If some of the genetic loci 

that confer risk of neurodegenerative disease do so by interacting with pathways that are 

important for aging, and if “aging” is required to reveal their effects, it may be difficult 

to use differentiated iPSCs or non-human models that do not age similarly to humans to 

investigate them.

Several groups have tried to develop methods to address this potential limitation. One 

approach has simply been to allow differentiated cells to remain in culture for extended 

periods of time. This may help cells achieve a level of maturity that more closely resembles 

analogous cells found in adult humans, but it is unclear whether meaningful aging occurs, 

since aging appears to progress in real time (Lam et al., 2017). Another approach has been 

to try to accelerate or inhibit aging by manipulating molecules such as telomerase or lamin 

A, which have been implicated in normal aging or in diseases of apparent accelerated aging, 

such as Hutchinson-Gilford progeria syndrome (HGPS) (Miller et al., 2013; Brunauer and 

Kennedy, 2015; Shah et al., 2013; Theodoris et al., 2017). However, some have expressed 

concern about the relevance of these approaches for studying neurodegenerative diseases, 

since lamin A is not expressed in the central nervous system, patients with HGPS exhibit 
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aging of some but not all tissues, and children with HGPS do not exhibit cognitive 

deterioration (Ullrich and Gordon, 2015). As an alternative, new methods have been 

developed to directly reprogram adult cells to neurons without first making them pluripotent. 

This strategy retains many of the epigenetic marks of aging in the reprogrammed neurons 

that are seen in the tissue from the donor, raising hopes that they may be able to provide 

a better system in which to study disease-associated risk variants in the context of aging 

(Mertens et al., 2015; Huh et al., 2016).

Another key limitation is that most iPSC differentiation protocols are optimized to produce 

a two-dimensional (2D) culture dominated by a single cell type, whereas the brain is 

made of many cell types that exist in particular three-dimensional (3D) spatial and 

stoichiometric relationships. That means that, in some cases, it is impossible to form key 

anatomical structures (e.g., neuromuscular junction), and critical disease-relevant processes 

(e.g., neuroinflammation) may be absent (Marttinen et al., 2018). Even though the diseases 

under consideration are often dominated by neuron-specific degeneration, new data are 

increasingly pointing to the importance of cell non-autonomous processes that are more 

complex to model (Brandscheid et al., 2017; Lim et al., 2018; Rudnick et al., 2017; Ilieva 

et al., 2009; McCauley and Baloh, 2018). Especially pertinent to the focus of this review, 

major GWAS for AD and PD revealed variants and pathways that have strongly implicated 

both innate and adaptive immune biology (Nalls et al., 2019; Kunkle et al., 2019; Huang et 

al., 2017; Lambert et al., 2013). Protocols have been developed to make and study a variety 

of neuronal and non-neuronal cell types from iPSCs that are relevant to neurodegenerative 

disease (Abud et al., 2017; Thonhoff et al., 2018; Muffat et al., 2016; Paşca et al., 2015; 

Marchetto et al., 2008; Emdad et al., 2012; Park et al., 2017). However, protocols to make 

neurons and glia are typically quite different from each other, so it can be difficult to 

generate co-cultures from a single protocol with the desired stoichiometry. One solution 

has been to generate monocultures of two or more cell types and then combine them to 

create co-cultures (Serio et al., 2013). Others have leveraged the self-organizing properties 

of differentiating iPSCs to generate 3D structures, frequently referred to as spheroids or 

organoids, that resemble brain tissue in some respects (Di Lullo and Kriegstein, 2017). 

Another option has been to use microphysiological or organ-on-a-chip systems, which create 

interfaces or microfluidic connections between cultures of different cell types (Park et al., 

2020; Kratz et al., 2019; Raimondi et al., 2019). These systems enable certain factors and 

metabolites produced by one cell type to contact other cell types in the system, which 

may be uniquely useful for studying drug metabolism, and may facilitate levels of iPSC 

differentiation and maturation that are not possible with simpler systems. Yet, with all the 

potential benefits of using more complex systems, there are drawbacks. Frequently, the time 

and resources required to use these approaches can be substantially greater than simpler 

systems. In addition, as system complexity increases, the batch-to-batch variability often 

increases and throughput decreases, so the investigator needs to weigh carefully the tradeoff 

between cost, sensitivity, throughput and physiological relevance of each model system. A 

tiered approach that initially uses simpler systems for larger scale screens and more complex 

ones for secondary evaluation and validation may be an appealing option.
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7. Applications of imaging to functional genomics and genetic risk 

profiling

Many of the genes implicated by GWAS are differentially expressed amongst 

subpopulations of cells within the nervous system. Some techniques, such as scRNA seq, 

can define critical disease-related variation in the transcriptome at single cell resolution. 

But most single cell OMICs techniques require that tissue be dissociated into single 

cell suspensions prior to analysis, largely destroying important information about the 

spatial relationships among different cell types in the tissue from which they came. That 

could be important if some variation in cell-specific gene expression results from cell 

non-autonomous effects of other cell types in situ. All OMICs assays are terminal, and it 

can be difficult to accurately infer from snap shots the underlying dynamic biology. Finally, 

and despite increasingly sophisticated data integration techniques, it remains difficult to 

“reconstruct” the biology of cells and tissues using only molecular biology measurements.

Fortunately, an array of powerful imaging techniques are available to visualize biology 

in cells and tissues, including dynamic measurements in live cells over indefinite time 

periods. An approach our group has pioneered is high throughput automated longitudinal 

single cell imaging (Arrasate and Finkbeiner, 2005; Linsley et al., 2019). A fully automated 

robotic microscope is enclosed in an environmental chamber coupled to a robotic incubator. 

Multi-well plates of cells are stored in the incubator and automatically transferred to and 

from the microscope stage through a computer-controlled robotic arm. Importantly, the 

system is designed to map the location of each cell in the culture so that the instrument 

can return and re-image the same cell as often and for as long as the investigator wants. 

Cells can be transduced with biosensors such as fluorescent dyes or proteins engineered to 

identify cell types or measure specific cell structures or functions to discover the impact 

of genomic variants on cell biology (Finkbeiner et al., 2015). At the end of the live cell 

imaging portion of an experiment, cells can be fixed, labeled (e.g., with dyes, fluorescently 

conjugated antibodies, etc.), and reimaged, enabling investigators to expand the number of 

single cell measurements that can be made.

To facilitate dynamic deep phenotyping, we have assembled an array of nearly 300 

biosensors that we named the “Physical Exam of the Cell,” specially tailored to visualize 

diverse biologies relevant to neurodegenerative disease (Finkbeiner et al., 2015). These 

biosensors can be used in two main ways. One way is to do conventional hypothesis-driven 

experiments. For example, an investigator may hypothesize that a particular genomic variant 

or gene implicated in neurodegenerative disease confers risk via certain biological pathways 

or structures. To test these hypotheses, biosensors can be chosen to visualize those biologies 

in live cells containing or lacking the SNV, or with or without perturbation of the implicated 

genes.

A second, potentially more novel and exciting application, is to use arrays of biosensors to 

explore genetic risk profiling and the role of polygenic mechanisms in conferring risk of 

disease. If “missing” heritability is conferred by combinations of variants that conspire to act 

on critical pathways relevant to specific neurodegenerative disease, it may be the case that 

the effect size of any one variant alone is insufficient to detect using OMICs and imaging 
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studies. In addition, given limitations in knowledge of biological pathways and how they are 

altered in the context of disease, it may be difficult to accurately predict which biologies 

should be investigated based only on knowledge of the substituent SNVs. If “disease” is an 

emergent property of an abnormal system of disease-associated SNVs, it may be necessary 

to study them as a system, in the context of single cells, in order to discover the pathways 

they alter and understand how they confer risk of disease (Fig. 2). Our strategy is to select 

tiered sets of biosensors to first broadly uncover key cytopathologies, and then follow those 

up with more specialized sets of biosensors designed to explore specific pathways and 

systems. This approach is patterned after the way the physical exam and sets of laboratory 

tests are used in medicine to arrive at a specific diagnosis from more general symptoms and 

complaints.

Another exciting potential application of this approach is investigating patient stratification. 

For the most part, the diagnosis of neurodegenerative diseases such as AD, PD and ALS 

is made based on clinical manifestations, and it remains an open question whether patients 

with sporadic or idiopathic forms of the disease all share the same underlying mechanism 

for their clinical syndrome or whether distinct substrata exist. As described above, the 

answer to this question is critical because most clinical trials in neurodegenerative disease 

are not powered to detect effects in patient subpopulations. That could mean that even if 

a trial agent works for a subset of patients, its effect may not be demonstrable statistically 

across the whole population because of the large group of non-responders and the inherent 

variability in many clinical endpoints. However, deep cellular phenotyping with OMICs 

or cell-based imaging may reveal molecular or cellular signatures that suggest biologically 

meaningful and mechanism-related patient clusters. Knowledge of such clusters can be used 

to design clinical trials that enroll patients who could be reasonably expected to benefit from 

a specific trial agent, increasing the overall chance of detecting an efficacy signal.

8. Image analysis

Images can be a particularly rich data source. Imaging can be used to measure some of 

the same readouts as OMICs technologies, including RNA, epigenetic changes, proteins 

and post-translational modifications. But imaging has the enormous advantage of being 

able to measure different types of macromolecules simultaneously, across space and time, 

and at different levels of resolution—from atomic resolution with cryoelectron tomography 

(Frangakis and Förster, 2004; Jiang and Ludtke, 2005) to measurements within defined cell 

types in complex tissues in vivo (Linsley et al., 2019; Keller and Ahrens, 2015). Methods are 

being developed to retain some spatial information in OMICs studies without using imaging, 

but the detection and spatial resolution of these techniques is currently limited (Weinstein et 

al., 2019).

A number of open-source and commercially available software tools have been developed 

to help investigators quantify cellular phenotypes from imaging data (Carpenter et al., 2006; 

Chiang et al., 2015; Schindelin et al., 2012). In general, these approaches process the images 

in a stepwise fashion, first segmenting pixels within the image that correspond to objects of 

interest in the foreground from those that make up the background. Contiguous pixels in the 

foreground are grouped as objects, and these are evaluated further by convolutional software 
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filters to identify the subset of objects that meet a set of criteria to define them as objects of 

particular interest and worthy of further analysis. For example, the dimensions of cell bodies 

typically fall within a certain range, so software filters can be used to identify the subset 

of segmented objects that fit those criteria and are likely cells, and exclude objects that are 

much bigger or smaller and that may correspond to artifacts or debris. Objects of particular 

interest can then be further analyzed to quantify features of them that form phenotypes, 

which may be differentially affected by genomic variants and genes associated with disease. 

These methods can be applied to images of the same cell over time to understand the 

cascade of phenotypic changes that flow from an SNV or genetic perturbation. In turn, 

statistical methods including survival analysis or Cox proportional hazards analysis and 

Bayesian hierarchical approaches can be applied to longitudinal single cell phenotypic data 

to unravel cause-and-effect relationships amongst different time-dependent phenotypes and 

to understand which, if any, early phenotypic changes predict future ones with particular 

relevance to neurodegenerative disease (Skibinski et al., 2014; Barmada et al., 2014; 

Finkbeiner et al., 2015; Miller et al., 2010; Miller et al., 2011; Tsvetkov et al., 2013; 

Skibinski et al., 2016; Shaby et al., 2016).

The fact that imaging is a relatively fast and inexpensive type of data to create makes 

it possible to generate very large amounts of data, which enables additional levels of 

analysis. In particular, machine learning and especially deep learning approaches are 

powerful methods for developing algorithms to measure features in images, often with better 

accuracy than human observers can achieve, and, in some cases, identifying features that 

humans can’t reliably see unaided (Webb, 2018; Grys et al., 2017; Waller and Tian, 2015; 

Armañanzas and Ascoli, 2015; Sommer and Gerlich, 2013; Christiansen et al., 2018; Yang 

et al., 2018). In a recent study, deep learning convolutional neural networks were trained to 

accurately perform pixel-wise predictions of a range of fluorescent labels of cell structure, 

state and type from images of unlabeled cells (Christiansen et al., 2018)—a feat that would 

be difficult or impossible for humans. Remarkably, in that study, the deep learning networks 

were able to extract useful information for making predictions from images that were not 

in the focal plane and likely would have been disregarded as useless out-of-focus images 

by a human observer. This example underscores the potential of machine learning-based 

computer vision methods to find valuable information in images that is currently ignored, 

and to discover important patterns in imaging datasets that are simply too large and complex 

for humans to comprehend. With this in mind, there is a lot of excitement about using 

biosensors in live cells or labeling schemes in fixed cells (Bray et al., 2016) in a somewhat 

disease-agnostic way that could be harnessed by machine learning to discover completely 

new phenotypes or phenotypic classification schemes. Perhaps someday, approaches like 

these will enable more multidimensional and integrated analyses of cellular phenotypes 

in response to genetic and small molecular perturbations that bear a clear connection to 

phenotypes in patients, and that will predict better which interventions are likely to work in 

clinical trials.
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9. Investigating functional genomics and genetic risk profiling with 

perturbation analysis

The preceding sections describe a logical information flow from studying genotype­

phenotype associations in humans, to the discovery of specific genetic loci that demonstrate 

a significant phenotypic association, to a list of genomic variants and genes through 

which those loci act to lead to phenotypes of interest. Still, these approaches all rely on 

observations and associations, and the evidence that a specific genomic variant or gene plays 

a causal role in disease pathogenesis and warrants consideration as a therapeutic target can 

be substantially strengthened with perturbation analysis.

Typically, the simplest, fastest and cheapest way to evaluate potential therapeutic targets 

is to perform gene level perturbations and measure whether the phenotype of interest is 

modulated in the expected way. In most cases, a gene level perturbation will have a larger 

effect than the SNV that implicated the gene, so it also can be a sensitive way to screen for 

mechanisms to investigate further. The methods to do this have evolved rapidly. Antisense 

oligonucleotides (ASOs), which are designed to bind a specific target mRNA and trigger 

host responses to lower its levels, have been available for years. They remain relevant 

because ASOs have been designed that modulate the levels of genes that cause specific 

neurodegenerative diseases, and they have been shown to have beneficial effects in animal 

models and in clinical trials (Evers et al., 2015; Mercuri et al., 2018; Finkel et al., 2017; 

Finkel et al., 2016). In the laboratory, libraries of small-interfering RNAs (siRNA) have been 

developed to do forward genetic studies in model systems to discover genotype-phenotype 

relationships and to perturb genes implicated by human studies (Elia et al., 2019). However, 

because siRNAs are prone to bind to genes other than their intended target, a variety of 

strategies have been developed to avoid confusing “off-target” effects (Elia and Finkbeiner, 

2012). Often, multiple siRNAs are designed against different regions of the same gene 

target, based on the idea that it would be statistically unlikely for siRNAs with different 

sequences to have the same phenotypic effect unless that effect was through the common 

target gene. To further reduce the likelihood of off-target effects, it is not uncommon to 

test newly-designed siRNAs that were not included in an original screen, or to use siRNA­

resistant alleles of the target gene to demonstrate that the phenotypic effects of the siRNA 

can be rescued by the target gene. A major appeal of siRNAs is that they are relatively 

inexpensive and, in many cases, can be transduced into cells efficiently without special 

transfection agents. In addition, pools of siRNA against specific combinations of genes can 

be designed and delivered alone or in combination with plasmids overexpressing other genes 

to investigate polygenic hypotheses.

More recently, clustered regular interspaced short palindromic repeat (CRISPR)-based 

methods of gene modulation have gained wide use because they offer improvements in 

the specificity of gene targeting and the ability to perform a range of elegant genomic 

engineering feats (Wang et al., 2015; Zhang et al., 2014; Wang et al., 2014; Shalem et al., 

2014). So-called guide RNAs (gRNAs) are designed to recruit Cas 9 proteins to specific 

genomic loci, and depending on the Cas 9 and peptide domains to which it is fused, 

recruitment may lead to gene mutation, correction, activation or suppression. Improving 
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gRNA design is an ongoing effort, and specificity continues to grow (Doench et al., 2016). 

The ability to use these systems to introduce specific genomic variants into the genome or 

to revert a potential causal SNV to a non-pathogenic variant is particularly powerful because 

it ostensibly provides a way to generate and characterize cells that are largely identical 

except for the SNV under investigation. In the same vein, multiple SNVs can be introduced 

in various combinations to explore polygenic mechanisms of disease pathogenesis. In 

2020, it still remains relatively expensive and laborious to perform genome editing, but 

improvements in the quality, speed and cost of the technology are rapidly being made.

CRISPR-based approaches have also been combined with single cell transcriptomics in 

a method called CROPseq to do rapid functional genomics (Datlinger et al., 2017). In 

one version, pools of gRNAs are designed against an array of gene targets with built-in 

sequence “bar codes”. Cells harboring Cas 9 and transduced with these libraries are given 

time to achieve modulation of the target genes and then are subjected to scRNAseq. Along 

with information on each cell’s transcriptome, the RNAseq data contains the bar code 

information of the gRNA that triggered the response. These data can then be used to rapidly 

define the gene networks that the perturbation of specific genes affect, and begin to develop 

a substantial understanding of the likely functional consequences of genomic variants.

10. Conclusions

The importance of unbiased human genetics for establishing the role of genetics in disease, 

and laying the foundation for identifying pathogenic mechanisms and opportunities for 

effective therapeutic intervention has only grown over time. The methods to collect and 

analyze human genetic data are very well established, and the depth of insights that can be 

gleaned are remarkable. But much work must usually be done to take these insights and 

develop them into an understanding of the pathogenic mechanisms of disease. Investigators 

first need to understand the genetic mechanisms through which disease associated loci work. 

Fine mapping, co-localization, causal modeling, pathway analysis and machine learning are 

all important bioinformatic approaches to analyze disease-associated loci and nominate a 

prioritized list of variants and genes that may mediate the observed effects.

With a more manageable list to investigate, multi-Omics approaches and imaging can 

be effective lines of study to generate deep and comprehensive understanding of human 

and non-human models with putative disease-associated variants and gene mutations. 

Statistical and deep learning methods can be used to integrate the data from these studies 

and discover molecular and cellular signatures of specific genomic variants. Perturbation 

analysis, including modulating the levels of candidate genes or introducing or reverting 

putative causal SNVs with genome engineering, can provide additional evidence for or 

against a pathogenic role for a candidate gene or variant. These techniques can be used to 

understand the functional genomics of a specific variant as well as investigate the collective 

effect of multiple variants, thereby providing an approach to test hypotheses of polygenic 

mechanisms of disease and elucidate the molecular underpinnings of specific genetic risk 

profiles.
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In conclusion, we suggest that application of the types of methods and pipelines outlined 

in this review to human genetic data will lead to improved prioritization of therapeutic 

targets in the coming decade. The overarching goal is to base the prioritization on firm 

genetic foundations and convincing computational and experimental evidence demonstrating 

causal relationships to disease. Still, it is important to keep in mind that a therapeutic target 

based on a genomic variant is not truly validated until modulation in humans is shown to 

effectively mitigate disease. Hopefully, rooting discovery in genetics and implementing a 

rigorous approach to prioritize genetic variants to find druggable targets will eventually lead 

to greater rates of clinical validation and successful therapies.
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Fig. 1. 
A Work Flow for Functional Genomics for Neurodegenerative Disease. The schematic 

delineates a series of steps and approaches available to investigators to use findings 

from human genetics studies, such as genome-wide association studies, and to elucidate 

the underlying mechanisms that explain the observed genetic associations. Abbreviations: 

CRISPR, clustered regularly interspaced short palindromic repeats.
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Fig. 2. 
Neurodegenerative Disease as an Emergent Property of a Complex System. The heritable 

risk of developing amyotrophic lateral sclerosis, Alzheimer and Parkinson disease is much 

larger than what can be explained by single disease-causing mutations. This suggests that 

multiple genetic variants may act in combination to confer significant risk of disease. 

Conventional approaches that rely on measuring effects of individual variants one-at-a-time, 

such as genome-wide association studies, may be too insensitive to detect their effects. 

Standard OMICs methodologies can provide a more comprehensive view of the state of 

a biological system, but are still typically limited in the range of macromolecules they 

can detect and to the measurement of one type of macromolecule at one point in time. 

If different variants act at different levels (e.g., transcription, chromatin conformation, 

translation, post-translational, metabolism, etc.), and are subject to complex dynamic 

feedforward and feedback relationships, it may be difficult to detect combinatorial effects 

with a single or even a series of OMICs techniques. In that scenario, pathogenesis may be 

better understood as an emergent property of a complex system that might be best detected 

with methods, such as imaging, that are suited to the dynamic study of intact live cells.
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