
Frontiers in Immunology | www.frontiersin.

Edited by:
Jinquan Cai,

Harbin Medical University, China

Reviewed by:
Rui-Chao Chai,

Capital Medical University, China
Qun Chen,

Zhejiang University, China

*Correspondence:
Qianxue Chen

chenqx666@whu.edu.cn
Baohui Liu

bliu666@whu.edu.cn

†These authors share first authorship

Specialty section:
This article was submitted to

Cancer Immunity
and Immunotherapy,

a section of the journal
Frontiers in Immunology

Received: 26 June 2021
Accepted: 20 September 2021

Published: 01 October 2021

Citation:
Xu Y, Zhang H, Sun Q, Geng R,

Yuan F, Liu B and Chen Q (2021)
Immunomodulatory Effects of

Tryptophan Metabolism in the Glioma
Tumor Microenvironment.

Front. Immunol. 12:730289.
doi: 10.3389/fimmu.2021.730289

REVIEW
published: 01 October 2021

doi: 10.3389/fimmu.2021.730289
Immunomodulatory Effects of
Tryptophan Metabolism in the
Glioma Tumor Microenvironment
Yang Xu†, Huikai Zhang†, Qian Sun, Rongxin Geng, Fanen Yuan, Baohui Liu*
and Qianxue Chen*

Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China

Gliomas are the most common primary malignant tumor in adults’ central nervous system.
While current research on glioma treatment is advancing rapidly, there is still no
breakthrough in long-term treatment. Abnormalities in the immune regulatory
mechanism in the tumor microenvironment are essential to tumor cell survival. The
alteration of amino acid metabolism is considered a sign of tumor cells, significantly
impacting tumor cel ls and immune regulat ion mechanisms in the tumor
microenvironment. Despite the fact that the metabolism of tryptophan in tumors is
currently discussed in the literature, we herein focused on reviewing the immune
regulation of tryptophan metabolism in the tumor microenvironment of gliomas and
analyzed possible immune targets. The objective is to identify potential targets for the
treatment of glioma and improve the efficiency of immunotherapy.
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INTRODUCTION

Gliomas are the most common primary malignant tumor among brain and other CNS tumors
(24.1% of all tumors). Additionally, glioblastoma accounts for 60% of gliomas. Although standard
treatment, including surgical resection, targeted radiation therapy, chemotherapy treatment, has
significantly progressed (1), the median survival for glioblastoma for all patients (regardless of
treatment) remained 14-15 months (2). Immunotherapy and tumor-treating fields (TTFields) (3, 4)
have swiftly developed in recent years, but there is yet to be any breakthrough. Meanwhile, more and
more investigations have revealed novel biomolecular insights that focus on the metabolism of cells
to explore the malignant phenotype of gliomas (5, 6). Indeed, the tumor microenvironment of
glioma is emerging as a critical regulator of cancer progression in the immune-suppressive aspect
(7). These highly and complex netting metabolic pathways, which exist in both the tumor cell and
the microenvironment, are surfacing throughout onco-metabolomics in gliomas.

Amino acid metabolism emerges as an essential role in the metabolic reprogramming of cancer
cells. A previous study has constructed an amino acid-related risk signature for gliomas, which
could predict patients’ survival and clinical features (8). Amino acids and their derivatives can not
only regulate cancer cells but also modulate the surrounding microenvironment, which enhances
malignancy and immunosuppression (9). For instance, Kynurenine, the catabolic product of
tryptophan, induces the invasion of cancer cells and immunosuppression of the tumor
microenvironment (10, 11) by binding to transcription factor aryl hydrocarbon receptor (12–14).
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Moreover, the activation of AHR hampers the performance of
macrophages and T cells, which play an antitumoral role (10, 14).
Thus, the metabolism of amino acids is diverse in tumors and has
a crucial role not only in the biological process of tumor cells but
also in the tumor microenvironment, particularly in the
modulation of the immune system. These indicate that a better
comprehension of amino acid metabolism will provide
potentially efficient targets for glioma treatment (15, 16).

Herein, we focused on reviewing how the immune
mechanism in the glioma tumor microenvironment is affected
by tryptophan metabolism. The aim is to provide potential
targets for the treatment of glioma and improve the efficacy
of immunotherapy.
THE IMMUNE MICROENVIRONMENT
OF GLIOMA

The brain tumor microenvironment is composed of tumor
populations, interstitial cells and immune cells. The majority of
immune cells in gliomas, including GBM, comprises a vast
diversity of myeloid cells, which include bone marrow-derived
macrophages (BMDMs), microglia, myeloid-derived suppressor
cells (MDSCs), dendritic cells and neutrophils (17). Glioma-
associated macrophages (GAMs) are the primary immune
component of brain gliomas, which consisting of a mixture of
bone marrow-derived macrophages (BMDMs) and resident
macrophages called microglia (MG) (18). These cells are
recruited into the glioma environment and can release a large
number of growth factors and cytokines to influence tumor
proliferation, migration and so on.

Recruitment of GAMs into the microenvironment is driven
by multiple chemokines secreted by gliomas, including monocyte
chemotactic protein (MCP)-1 (19), MCP-3 (20), TME motif
chemokine 12(CXCL12) (21), colony-stimulating factor (CSF-1)
(22), glial cell-derived neurotrophic factor (GDNF) and
granulocyte-macrophage colony-stimulating factors (23). These
factors are expressed differently in different glioma types and
may guide the variations in immune infiltration. Studies have
found that the degree of GAMs invasion is correlated with tumor
grade (24, 25), and differences in GAMs were found in the
microenvironment of gliomas with different isocitrate
dehydrogenase 1/2 (IDH1/2) somatic mutation types (26).
IDH1/2 mutation-induced methylation suppresses the
recruitment of TAM and induces an immune response in
gliomas. Compared to IDH wild type, patients with IDH
mutations have lower immune infiltration and better
prognosis. Glioblastoma can be classified into classical (CL),
Abbreviation: AADC, amino acid decarboxylase; DC, dendritic cell; IDO-1,
Indoleamine 2,3-dioxygenase 1; IDO2, indoleamine 2,3-dioxygenase 2; TDO,
tryptophan 2,3-dioxygenase; Trp, L-tryptophan; Kyn, L-kynurenine; QA,
quinolinic acid; AHR, aryl hydrocarbon receptor; 5-HT, 5-hydroxytryptamine;
GCN2, general control nonderepressible 2; GAM, Glioma-associated macrophage;
GSCs, Glioma stem cells; LAT, large amino acid transport; GSH, glutathione; GS,
glutamine synthetase; APC, antigen-presenting cell; MDSC, myeloid-derived
suppressor cell.
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mesenchymal (MES), neural (N), and neurogenic (PN) tumors
based on unique transcriptome characteristics (27). Compared
with non-MES tumors, several cell types were increased in MES-
GBM, including CD4+T cells, type 2 polarized macrophages, and
neutrophils (28). MES-GBM was associated with vascular
remodeling and immune cell aggregation, while CL/PN-GBM
was linked to reduced immune cell infiltration and better
prognosis (29).

Besides GAMs, several other immune cells have been identified
in the glioma parenchyma, although the proportion is very low. In
fact, T cells account for the majority of lymphocytes in glioma.
CD8+ cytotoxic T cells are cellular immune effectors that are
essential for killing tumor cells, but they are only sparsely
distributed in the GBM parenchyma (30). These cells may not
exert significant effector responses, and their function is impaired
by immunosuppressive factors derived frommyeloid cells (such as
GAMs) (31). We speculate that a higher level of GAMs may
hinder the infiltration of effector T cells. Moreover, regulatory T
cells (Tregs) are also present in the glioma parenchyma. These
cells actually possess immunosuppressive functions and are
thought to inhibit anti-tumor immunity in various solid tumors
such as ovarian, breast, and pancreatic cancers (32).

Glioma cells escape the immune system by inhibiting
immune mechanisms in the microenvironment. Furthermore,
glioma releases immunosuppressive and tumor-support factors
to the microenvironment, resulting in proliferation, invasion,
and immune escape (33).
TRYPTOPHAN METABOLISM

Tryptophan (Trp) is an essential amino acid for animals and
humans, obtained mainly from the diet. Protein in food is
digested in the small intestine to release Trp, which is
subsequently absorbed into the bloodstream through the
intestine (34, 35). The most significant function of free Trp is
its contribution to host protein synthesis (36). Besides, Trp and
its metabolites perform a crucial roles in different physiological
processes, as a protein- building molecule to maintain cell
growth and, simultaneously coordinating the body’s response
to the environment, as a neurotransmitter and signal
molecule (37).

The activity of Trp metabolic pathways determines the level
of free Trp. There are three pathways of tryptophan catabolism
including (1): tryptamine is formed after decarboxylation by
aromatic l-amino acid decarboxylase (AADC) (2); formation of
5-hydroxytryptamine (5-HT) by tryptophan hydroxylase (TPH)
(3); kynurenine (Kyn) pathway (KP) is the most critical way of
Trp degradation; more than 95% of free Trp is a substrate of the
KP for Trp degradation (36, 38, 39). Interestingly, indoleamine-
2,3-dioxygenase 1/2 (IDO1/IDO2) and tryptophan-2,3-
dioxygenase (TDO) are major rate-limiting enzymes, which
catalyze the oxidative cleavage of the indole ring of Trp in the
KP (40). At the same time, kynurenase (KYNU), kynurenine
aminotransferase (KATI KATIII), Kynurenine monooxygenase
(KMO), and other enzymes participate in the KP and produce a
variety of metabolites, including neuroactive and neurotoxic
October 2021 | Volume 12 | Article 730289
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substances (anthranilic acid (AA) and quinolinic acid (QA)),
which affects the growth and function of human cells (41) (42)
(43) (Figure 1).
THE REPROGRAMMING OF
TRYPTOPHAN METABOLISM IN GLIOMA

Generally, the expression level of KP enzyme and metabolites in
different cells and tissues is strictly regulated, but the abnormality
of Trp metabolism and the accumulation of metabolites to varying
degrees are involved in a wide range of disease processes, including
tumors, neurodegenerative diseases, and self-immunity and
mental illness, etc. Moreover, dysfunction of KP enzymes can
trigger or facilitate diseases of CNS (41). For example, tryptophan
tryptophan metabolites were found to accumulate in large
amounts in the cerebrospinal fluid of glioma patients (44).
Conversely, the enhanced activity of enzymes such as IDO,
which are highly expressed in glioma cells, leads to the decrease
of tryptophan and the accumulation of metabolites in the cells and
microenvironment. Finally, these two promote the growth and
invasion of gliomas, and meanwhile inhibit the anti-tumor
immune response in the microenvironment (45).

Studies have revealed that changes in tryptophan
metabolism can promote tumor development by enhancing
the malignant characteristics of tumor cells and the immune
suppression in the tumor microenvironment (46, 47). IDO1 is
widely expressed in gliomas and is predictive of a poor
prognosis in glioma patients. Likewise, it has also been
established that TDO can promote tumor progression (47,
48). IDO1 and TDO, which are both positively related with
the glioma grade, could promote the migration and invasion of
Frontiers in Immunology | www.frontiersin.org 3
glioma cells via the Kyn/AHR/APQ4 signaling pathway
(49).The IDO1 expression level is elevated in glioma stem
cells compared to GBM cells, and IDO1 leads to therapeutic
resistance through the promotion of immunosuppression (50).
More recently, interleukin-4-induced-1 (IL4I1) has been
demonstrated to be more closely associated with AHR activity
than IDO1 or TDO2 and is defined as the main Trp-catabolic
enzymes in GBM (51). Furthermore, IL4I1 catabolizes
tryptophan into indole-3-pyruvate (I3P) to inhibit ferroptosis
by expressing an anti-oxidative gene expression program (52).
Accumulation of the neurotoxic substance QA has also been
found in gliomas. However, some studies revealed that in the
glioma tumor microenvironment, QA is mainly produced in
microglia rather than tumor cells (6, 53). The relationship
between QA and the pathophysiological process of glioma
warrants further studies. More importantly, the role of tryptophan
and its metabolites in the immune microenvironment of glioma
cannot be overlooked, and new immunotherapy targets may be
discovered regarding its regulatory mechanisms (Figure 2).
THE EFFECT OF TRYPTOPHAN
METABOLISM ON THE IMMUNE
MICROENVIRONMENT OF GLIOMA

The Distribution of GAMs
Present-day research has found that GAMs control the onset,
progression, metastasis, and response to treatment of glioma (54,
55). Enhancing the immunosuppression of the tumor
microenvironment is considered a potential mechanism
of GAMs to promote cancer. The phenotype M2-like
macrophages of GAMs is associated with progression and
FIGURE 1 | The tryptophan catabolic pathway in glioma. AFMID, kynurenine formamidase; AHR, aryl hydrocarbon receptor; HAAO, 3-hydroxyanthranilate 3,4-
dioxygenase; IDO, indoleamine-2,3-dioxygenase; KATs, kynurenine amino transferases I–III; KMO, kynurenine 3-monooxygenase; KYNU, kynureninase; TDO,
tryptophan-2,3-dioxygenase.
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immunosuppression in glioma (56). M1-type macrophages
mainly utilize aerobic glycolysis during activation, which is
associated with increased glucose uptake and the conversion of
pyruvate to lactic acid. Nevertheless, the energy of M2-type
macrophages is derived from fatty acid oxidative metabolism
(57). The blockage of lipid metabolism may not only block M2
polarization, but also drive macrophages to return to the M1
state (58). The tryptophan metabolite Kyn produced by glioma
cells participates in its function by activating the AHR in GAMs
(59). The AHR-dependent transcription program regulates the
recruitment and activation of GAMs in GBM. AHR can
upregulate the expression of chemokine (C-C motif) receptor 2
(CCR2) of GAMs, and further drive GAM recruitment and
aggregation (28). A study has found, in gliomas, AHR
participates in the key pathways that regulate the polarization
of macrophages in glioma by inhibiting NF-kB signaling and
promotes the anti-inflammatory response driven by KLF4 (60).

At the same time, there may be multiple mechanisms regulating
GAMs activation and infiltration in GBM. It was found that CSF1R
signaling can alter the phenotype of GAMs (61). Moreover, the
inactivation of NF1 in MES-GBM promotes the infiltration of
GAMs. MES-GBM showed higher infiltration of GAMs than
other subtypes, consistent with the high expression of CCL2 and
CCR2 (62). Since the expression of AHR inMES-GBM is not higher
than that in other subtypes, these findings indicate that AHR is one
of several mechanisms in GBM that control GAMs recruitment and
functions through mediators such as CCL2 and CCR2.

In conclusion, AHR activated during tryptophan metabolism
participates in the mechanism of GBM controlling GAMs.
Frontiers in Immunology | www.frontiersin.org 4
THE DIFFERENTIATION OF REGULATORY
T CELLS (TREG)

Treg is defined as a functional subset of suppressor T cells,
mainly produced by the differentiation of CD4+ T cells induced
by cytokines in vivo. Immunosuppression and immune
incompetence are two crucial functional characteristics of Treg
cells. The Trp-Kyn-AHR pathway is known to play a significant
role in the differentiation process of Treg cells. The
increased activity of rate-limiting enzymes such as IDO leads
to the continuous consumption of tryptophan in the
microenvironment. This relatively hungry environment causes
the surrounding T cell cycle to stagnate, facilitating Treg
production (63). Some studies also believe that the activation
of the KP leads to the accumulation of Kyn in the
microenvironment. Kyn activates AHR on CD4+ T cells
through classic response genes such as Cyp1a1 and Cyp1b1,
thereby inducing CD4+ T cells to differentiate into Tregs (44).
Thus, Treg cells inhibit the function of effector T cells and
regulate the body’s immunity by secreting inhibitory cytokines
or interacting with antigen-presenting cells. The differentiation
of IL-10 producing Tr1 cells can be promoted by AHR (64, 65)
contribute to tumor-associated immunosuppression together
with Foxp3+ Tregs (32).

A previous study noted that M2-type polarized microglia
could induce Tregs production in vitro, highlighting the
regulatory role of microglia in adaptive immune response
and demonstrating the indirect regulatory role of AHR on
Tregs (66).
A

B

FIGURE 2 | The effects of tryptophan metabolism in cancer cell and its microenvironment. (A) Tryptophan metabolism mediated by IDO1 and TDO could promote
the migration and invasion of glioma cells via Kyn/AHR signaling pathway. IL4I1 catabolizes tryptophan into indole-3-pyruvate (I3P) to inhibit ferroptosis by expressing
anti-oxidative gene expression program in Hela cells. IDO1 is induced as an undesired effect of chemotherapy in non-small-cell lung cancer and breast cancer.
(B) Tryptophan metabolism suppresses T cell proliferation and function by inducing the differentiation of regulatory T cells (Tregs), the expression of programmed cell
death protein 1 (PD1) on CD8+ T cells, cell death of CD8+ T cells and the recruitment of immunosuppressive tumor-associated macrophages. EMT, epithelial-
mesenchymal transition.
October 2021 | Volume 12 | Article 730289
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T CELL ANERGY OR DEATH

Due to the increased expression and activity of rate-limiting
enzymes such as IDO and TDO, and the activation of KP, the
loss of tryptophan in the tumor microenvironment increases,
which activates the amino acid starvation stress response, such
as the expression of protein kinase GCN2 in surrounding cells
(67). Protein kinase GCN2 is a vital regulator of the integrated
stress response (ISR), regulating protein synthesis when amino
acids are scarce. Studies have found that T cells with high
GCN2 expression appear anergic and induce cell death (68).
After the knockout of the GCN2 gene by antigen-presenting
cells (APCs), autophagy decreases and amount of reactive
oxygen species increase, which in turn activates the
production of inflammasomes and IL-1b, leading to increased
inflammation and helper T lymphocytes 17 (Th17) response.
Therefore, local depletion of tryptophan is considered to
be the principal “starvation and death” mechanism of
immunosuppression. Other than the depletion of tryptophan,
the activation of KP leads to the accumulation of tryptophan
metabolites in the tumor microenvironment. These metabolites
may individually or synergistically cause T cell anergy or death
(14). The Trp-Kyn-AHR pathway executes an essential role in
the regulation of T cell immunity in cancer. After a high level of
Kyn is released into the tumor microenvironment, it is
transferred to adjacent CD8+ T cells through transporters
such as SLC7A8 and PAT4 (69). Besides, AHR is activated
and increased by Kyn in T cells, thereby upregulating the
expression level of PD-1, inhibiting T cell activity, and
promoting immune tolerance. The expression of CD39 is
promoted by AHR in GAMs, which promotes CD8+ T cell
dysfunction by cooperating with CD73 to produce adenosine in
the immune microenvironment of glioma (70). Apart from
IDO and TDO, IL4I1, a secreted L-phenylalanine oxidase, has
recently been defined as a novel immune checkpoint, playing a
paramount role in Trp catabolism (71). IL4I1 promotes glioma
cell migration via the Kyn/AHR pathway, and suppresses T cell
proliferation in glioblastoma, which is associated with poor
survival of glioma patients (51). Kyn can induce selective
apoptosis of mouse thymocytes and Th1-cells, but cannot
induce apoptosis of Th2-cells (72). GBM cells overexpress
TDO2 to suppress T cell proliferation under standard oxygen
conditions, however, the proliferation of the T cells could
recover because of the reduction in kynurenine levels
produced by the GBM cells (73). The immunomodulatory
effect of Kyn on different lymphocyte subsets may be
necessary for maintaining the homeostasis of peripheral
lymphocytes and the accumulation of autologous lymphocytes.

GBM produces an angiogenic and inflammatory microenvironment
that results in increased expression of adhesion molecules on
endothelial cells and decreased tight junctions, leading to the
formation of a highly permeable blood-brain barrier
(BBB).These changes will enable more peripheral lymphocytes
to participate in the immune microenvironment of the tumor.
Nevertheless, GAMs remain the most essential part of the
immune regulation of glioma.
Frontiers in Immunology | www.frontiersin.org 5
THE REGULATION OF ANTIGEN-
PRESENTING CELLS (APCs) AND
MYELOID-DERIVED SUPPRESSOR
CELLS (MDSCs)

Studies have found that after activation of kyn, AHR can
participate in regulating the function of dendritic cells (DC)
and promote the differentiation of effector T cells and regulatory
T cells (74). Moreover, AHR can induce DCs to produce kyn and
retinoic acid (RA), and promote the differentiation of Tregs (75).
Furthermore, AHR also inhibits the activation of NF-kB in DCs
through a mechanism mediated by SOCS2 (76), thereby
interfering with the production of cytokines that promote the
differentiation of effector T cells.

The loss of the BBB integrity allows MDSCs to infiltration
in GBM, and these ce l l s ac t ive ly inhib i t immune
responses through PDL1 and CTLA4 (77). MDSCs have
been considered as a prime mediator in the tumor
microenvironment, delivering a powerful immunosuppressive
effect on T cells (78). IDO overexpressed in tumors recruits and
activates MDSCs through a Treg-dependent mechanism to
exert its immunosuppressive effect. At the same time, studies
have found that IDO is highly induced in tumor-invasive
MDSCs (78, 79). These results indicate that IDO has
functional diversity in immune evasion related to MDSCs.

In addition, AHR can participate in the regulation of the
activities of astrocytes and microglia, which play a substantial role
in the immune activities of the tumor microenvironment (80).
Therefore, the signaling pathways induced by KYN-AHR
participate in the regulation of GAMs and other immune cells.
Identifying of common cell-specific mechanisms, including tumor
metabolites and other molecules in the tumor microenvironment,
can guide therapies for GAMs and other immune cells.
THERAPEUTIC STRATEGIES FOR
IMMUNE CHECKPOINTS

Recent researches demonstrate a series of therapy which set
aberrant tryptophan metabolism as a target to improve the effects
of glioma therapy. The Kyn/AHR pathway is considered as a
significant factor in radiotherapy-induced immune checkpoint
reactivation. Radiotherapy response can be enhanced by GDC-
0919, known as IDO1 inhibitor, with the ability to pass through
BBB and reduces radiotherapy-induced immunosuppression
(81). 1-MT, an IDO1 inhibitor, added with two-fraction
radiotherapy significantly reduced tumor size and increased
survival in bears with GBM compared to untreated controls
(82). These findings provide novel insights to enhance the effect
of radiotherapy in glioblastoma. In chemotherapy, PCC0208009,
a highly effective IDO inhibitor, combined with TMZ, enhanced
the chemotherapy by promoting the immune response in vivo,
including the percentages of CD3+, CD4+ and CD8+ up-
regulated T cells. This result indicates that the combination of
IDO inhibitor-based immunotherapy with chemotherapy is a
October 2021 | Volume 12 | Article 730289
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potential strategy for brain tumor treatment (83). Lately,
inhibitors that specifically target tryptophan metabolism have
been involved in the clinical study of glioma. PF-06840003 is a
highly effective IDO1 inhibitor with antitumor effects. Up to
500mg BID was generally well tolerated. Long-term clinical
benefits can be gained by a subset of patients with recurrent
malignant glioma (84). All these findings support the hypothesis
that targeting Trp metabolism can consolidate immune therapy
and provide a novel insight for antitumor treatment. At present,
Frontiers in Immunology | www.frontiersin.org 6
there are various researches on targeted drugs in the metabolism
of tryptophan in gliomas, as shown in Table 1.

In the existing immune cell therapy, activating CD4+ and
CD8+ T cells would increase the risk of autoimmune diseases
if all Tregs are eliminated. Therefore, only part of Treg cells
can be eliminated before the T cells are returned to the
patient. The use of Treg cell-specific antibodies to eliminate
the effect of Treg on immunosuppression is worthy
of consideration.
TABLE 1 | Drug research aimed at key targets in the tryptophan metabolic pathway in glioma.

Drug Indication Comments Clinical phase

IDO pathway inhibitors
Indoximod (D-1-MT) GBM, glioma, gliosarcoma Does not inhibit IDO1 in vitro

Combined with temozolomide, bevacizumab and radiation
Phase I/II

PCC0208009 Solid tumors Combined with temozolomide Experimental
PF-06840003 Oligodendroglioma, astrocytoma, malignant Noncompetitive kinetics with Trp

Central nervous system penetration
As single agent

Phase I

BMS-986205 Glioblastoma Irreversible inhibitor
Binds to heme-free apo IDO1
Combined with Nivolumab,
Radiation Therapy, Temozolomide

Phase I

INCBO24360 Glioblastoma Trp-competitive inhibitor
Combined with Nivolumab

Phase III

GDC-0919 Solid tumors Based on 4-phenylimidazole scaffold
As single agent

Phase I

NLG802 Solid tumor Prodrug of indoximod
As single agent

Phase I

SHR9146+SHR- 1210 Solid tumor Combined with apatinib Phase I

MK-7162 Solid tumor Combined with pembrolizumab Phase I

1-Methyl-l-tryptophan (L-1-MT) Solid Tumors Trp-competitive inhibitor Experimental

KHK2455 Solid Tumors Binds to heme-free apo IDO1
As single agent

Phase I

LY3381916 Solid Tumors Binds to newly synthesized
apo-IDO1 but does not inhibit
mature heme-bound IDO1
As single agent

Phase I

TDO inhibitors

680C91 Solid Tumors Nanomolar activity in vitro
Low aqueous solubility
Poor oral bioavailability

Experimental

LM10 Solid Tumors Investigated in mouse cancer
model

Experimental

4-(4-fluoropyrazol-1-yl)-1,2-oxazol-5-amine Solid Tumors Nanomolar cellular activity
Sixfold selectivity over IDO1

Experimental

Fused imidazo-indoles Solid Tumors TDO selective Experimental

Indazoles Solid Tumors TDO selective Experimental

Dual IDO1–TDO inhibitors

DN1406131 Advanced Solid Tumors As single agent Phase I

HTI-1090 Solid Tumors Potent, orally bioavailable dual
IDO1/TDO inhibitor

Phase I

RG70099 Solid Tumors Significantly reduces Kyn levels in
preclinical tumor models

Experimental

EPL-1410 Solid Tumors Reduces tumor volume and
Kyn : Trp ratio in cancer models

Experimental

AHR antagonists

CB7993113 Solid Tumors Identified by ligand-shape-based virtual screening Experimental
October 2021 | Volume 12
 | Article 73028
IDO, indoleamine 2,3 dioxygenase; TDO, tryptophan-2,3- dioxygenase; Trp, l-tryptophan; AHR, aryl hydrocarbon receptor.
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CONCLUSIONS

The changes in tryptophan metabolism in glioma lead to a series
of alterations in tumor cells and the surrounding tumor
microenvironment. These metabolic variations may enable
glioma to evade the immune system by affecting tumor cells
and immune microenvironment and further promote tumor
progression. Consequently, research on new metabolic,
immune checkpoints can strengthen the effec t of
immunotherapy in the future. This will open up a new era of
comprehensive treatment of glioma.
Frontiers in Immunology | www.frontiersin.org 7
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