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Abstract. A highly purified membrane preparation 
from rat parotid secretion granules has been used as a 
comparative probe to examine the extent of composi- 
tional overlap in granule membranes of three other ex- 
ocrine secretory tissues-pancreatic, lacrimal, and sub- 
mandibular-from several standpoints. First, indirect 
immunofluorescent studies using a polyclonal poly- 
specific anti-parotid granule membrane antiserum has 
indicated a selective staining of granule membrane 
profiles in all acinar cells of all tissues. Second, 
highly purified granule membrane subfractions have 
been isolated from each exocrine tissue; comparative 
two-dimensional (isoelectric focusing; SDS) PAGE of 
radioiodinated granule membranes has identified 10-15 
polypeptides of identical pI and apparent molecular 

mass. These species are likely to be integral mem- 
brane components since they are not extracted by ei- 
ther saponin-sodium sulfate or sodium carbonate (pH 
11.5) treatments, and they do not have counterparts in 
the granule content. Finally, the identity among 
selected parotid and pancreatic radioiodinated granule 
membrane polypeptides has been documented using 
two-dimensional peptide mapping of chymotryptic and 
tryptic digests. 

These findings clearly indicate that exocrine secre- 
tory granules, irrespective of the nature of stored 
secretion, comprise a type of vesicular carder with a 
common (and probably refined) membrane composi- 
tion. Conceivably, the polypeptides identified carry out 
general functions related to exocrine secretion. 

I 
r~ all eukaryotic cells vesicular carriers serve as shuttles 
between the Golgi complex and the cell surface to bring 
about the export of secretory products and the delivery 

of plasmalemmal components. The presence of secretion 
granules reflects the capacity of certain cells to devote at least 
a part of this shuttle system to concentration and intracellular 
storage of secretory products for intermittent mobilization 
and discharge in response to external stimuli. The processes 
of granule formation, exocytosis, and compensatory mem- 
brane reinternalization and recycling that define this kind of 
shuttling pathway have been described in some detail for both 
exocrine and endocrine systems (14, 32). At present, how- 
ever, very little information exists concerning the function of 
specific components of the carrier membranes. Further, it is 
not clear whether carrier membranes involved in exocrine 
and endocrine secretion, either with or without an interven- 
ing storage phase, contain identical or analogous polypep- 
tides that might have a general role in the shuttle process. 

This study seeks to evaluate the extent of compositional 
overlap between the secretion granule membranes of four 
different exocrine glands-the parotid, submandibular, lacri- 
mal, and pancreatic. An extensively characterized and highly 
purified membrane fraction from rat parotid granules, for 
which a maximum of 5 % of the total protein can be ascribed 
to residual secretory polypeptides or contaminating mem- 
brane sources (7), has been used as a compositional standard 
for comparative investigations at three levels of increasing 
refinement. First, polyclonal polyspecific (rabbit) antibodies 

were developed against the entire membrane fraction. In- 
direct immunofluorescence studies using these antibodies 
have shown prominent granule membrane labeling in all four 
tissues. Second, highly purified granule membrane fractions 
were isolated from lacrimal, pancreatic, and submandibular 
tissues and freed of adsorbed soluble polypeptides by sapo- 
nin-sulfate treatment. Comparative examination to parotid 
granule membranes by subsequent radioiodination, two- 
dimensional (isoelectric focusing; SDS) PAGE, and autora- 
diography has identified an apparent compositional overlap 
involving 10-15 polypeptides of identical (or nearly identi- 
cal) pI and molecular mass. Finally, the identity of selected 
parotid and pancreatic radioiodinated polypeptides has been 
documented using two-dimensional cellulose peptide map- 
ping of chymotryptic and tryptic digests. As a result of these 
findings, our future studies relating to the basic mechanisms 
of exocrine secretion, and possibly even the general opera- 
tion of vesicular carriers between the Golgi region and the 
cell surface, are now focused on a subset of granule mem- 
brane proteins. 

Materials and Methods 

Preparation and Immunochemical Characterization 
of Anti-Membrane Antiserum 
New Zealand white rabbits (female, 2-2.5 kg) were bled 1 wk before immu- 
nization to obtain preimmune serum. Purified parotid secretion granule 
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membranes (100-150 ~tg protein; isolated as described previously [7]) solu- 
bilized in 0.5% Triton X-100, were emulsified with complete (and then in- 
complete) Freund's adjuvant. The schedule of immunization and bleeding, 
as well as sites of injection (intradermal, intramuscular, along mammary 
lines) were carded out essentially according to the protocol of Papermaster 
et al. (33). 

To identify the antigenic determinants recognized by the antiserum, im- 
munoprecipitations were conducted using radioiodinated parotid granule 
membrane samples by procedures already described in detail (10). Anti- 
gen-antibody complexes were desorbed from S. aureus (Cowan I) and sub- 
jected to one-dimensional SDS PAGE. Labeled antigens were identified by 
autoradiography. 

Immunocytochemical Procedures 
Rats (100-125 g) were perfused transcardially with tissue culture medium 
followed by ice-cold 3 % formaldehyde (depolymerized from paraformalde- 
hyde) in 0.12 M sodium phosphate, pH 7.4. Tissues of interest were excised, 
and fixation in the same solution was continued for 3 h at 0°C. Tissue blocks 
were then washed in several changes of phosphate buffer, infiltrated with a 
series of buffered sucrose solutions, and used for cutting frozen sections (ei- 
ther 4-6-1~m thick [12] or 0.5-1-~tm thick [17]). Indirect immunofluores- 
cence on frozen sections was performed as described (12), using rhodamine- 
conjugated goat IgG directed against rabbit IgG, for detecting the binding 
of primary antibody. 

Isolation of Secretion Granule Fractions 
from Rat Exocrine Tissues 
From Lacrimal Gland. Exorbital lacrimal tissue (1.5-2.5 g from ten 
100-125 g animals) was minced with razor blades and homogenized in 
0.3 M sucrose, 0.5 mM igC12 and 0.2 I.tg/ml N,N'-diphenyl-p-phenylene- 
diamine (DPPD) 1 at 15% (wt/vol) using a Tissuemizer (Tekmar Co., Cin- 
cirmati, OH) for 5 s at 1,900 rpm followed by three passes at 1,300 rpm 
in a Brendler Teflon-glass homogenizer. Centrifugation (13 rain at 600 g,-,) 
yielded supernatants, which were decanted and saved, and pellets contain- 
ing nuclei and larger particulates. The latter were resuspended in the origi- 
nal volume of the same medium, and homogenization (Teflon-glass only) 
and centrifugation were repeated. The first and second supernatant fractions 
were combined and designated NSL; the remaining pellet, used only for 
assays, was designated NPL. The NSL was adjusted to 0.5 mM EDTA, 
filtered through 20-[tm nylon mesh, and dispersed by four strokes with a 
tight-fitting Dounce homogenizer. This suspension was then loaded in 
amounts of 7-8 ml above continuous gradients formed from 16 ml, 0.4 M 
sucrose (containing 4% [wt/vot] Ficoil 400, 0.2 mM EDTA, 0.2 ~tg/ml 
DPPD, and 2.0 mM morpholinopropanesulfonic acid, pH 7.0) and 15 nil, 
1.75 M sucrose (containing the same supplements). Centrifugation (120 rain 
at 87,000 g~, in a Beckman SW 28 rotor, Beckman Instruments, Inc., Palo 
Alto, CA) resulted in the separation of distinct organelle-enriched bands. 
For further granule purification the organelle band sedimenting at the 
highest density (GIL) was collected, adjusted by refractive index to a den- 
sity corresponding to 1.48 M sucrose, given three passes in a tight-fitting 
Dounce homogenizer, and loaded (3 ml/tube) in a sucrose step gradient hav- 
ing underlayers of 6 ml, 1.40 M and 3 ml, 1.80 M sucrose (containing the 
supplements specified in the previous centrifugation) and an overlayer to 
tube capacity of 0.8 M sucrose (containing all supplements except Ficoll). 
Centrifugation (90 rain at 150,000 g~, in a Beckman SW 41 rotor) produced 
a purified granule fraction (G2L) at the 1.40/1.80 M sucrose interface. 

From Pancreas. Pancreatic zymogen granules have been purified using 
a modification of a procedure described by Brockmeyer (5). Pancreatic tis- 
sue of four to five animals (100-125 g, starved overnight) was excised and 
dissected free of associated connective tissue, fat, and lymph nodes to yield 
2.5-3.5 g of tissue. The tissue was minced with razor blades, suspended at 
15% (wt/vol) in 0.3 M sucrose (containing 0.5 mM MgCI2, 0.5% [vol/vol] 
Trasylol, and 0.2 I.tg/ml DPPD), and homogenized (Tissuemizer, 10 s at 
1,900 rpm; Teflon-glass, four passes at 1,300 rpm). Centrifugation 
(600 gay for 15 min) gave a supernatant that was saved and a pellet that was 
resuspended in homogenization medium (same original volume), rehomog- 
enized (Teflon-glass only), and centrifuged again (same conditions). The 
combined supernatants (NS0 were made 1.0 mM in EDTA, filtered 
through 20-p.m nylon mesh, and dispersed by four strokes with a tight-fitting 
Dounce homogenizer. This suspension was loaded (7 ml/tube) over continu- 

1. Abbreviations used in this paper: DPPD, N,N'-diphenyl-p-phenylenedi- 
amine; y-GT, ~,-glutamyl transferase; PMSF, phenylmethylsulfonyl fluoride. 

ous sucrose gradients (0.4 M [16 ml] to 1.7 M [15 ml]); each gradient solu- 
tion also contained 5% (wt/vol) Ficoll 400, 1 mM EDTA, and 0.2 lxg/ml 
DPPD. Centrifugation for 120 min at 87,000 g,v in a Beckman SW28 rotor 
produced a crude granule fraction (G1p) at a density of 1.20 g/cm 3. G1p 
was adjusted to a density corresponding to that of 1.42 M sucrose, given 
five passes in a Dounce homogenizer, and purified granules (G20 were 
obtained exactly as described for lacrimal granules (G2L) above. 

From Subraandibular Gland. In this case granules were obtained by a 
modified procedure originally used for the purification of parotid secretion 
granules (7). Submandibular tissue (4-4.5 g from 10-12 animals starved 
overnight) was homogenized (15% wt/vol) in 0.35 M sucrose, 0.5 mM 
MgCI:, 0.2 I.tg/ml DPPD, 0.4 mM phenylmethylsulfonyi fluoride (PMSF) 
using a Tissuemizer (5 s at 1,900 rpm) followed by a Teflon-glass homog- 
enizer (three passes at 1,300 rpm). Centrifugation (700 g,~ for 20 min) 
produced a supernatam (removed and saved) and a pellet that was 
resuspended in the original volume of fresh homogenization medium and 
processed as described for both of the above tissues. The second centrifuga- 
tion (700 g~v for 20 rain) yielded a supernatant that was pooled with the 
first to give NSs, which was adjusted to 0.5 mM EDTA, filtered through 
204tm nylon mesh, and dispersed by Dounce homogenization. Adjusted 
NSs was loaded (8 ml/tube) above discontinuous sucrose gradients having 
underlayers (10, 12, and 9 ml, respectively) of 1.42, 1.50, and 1.80 M sucrose 
(each layer supplemented with 4% [wt/vol] Ficoll 400, 0.2 mM EDTA, 
0.4 mM PMSF, 0.2 Ixg/ml DPPD, and 2 mM Hepes, pH 6.8). Centrifugation 
(120 rain at 87,000 g,~ in a Beckman SW28 rotor) gave a crude granule 
fraction (Gls) at the 1.50/1.80 M sucrose interface. Gls was collected, ad- 
justed to a density equivalent to 1.55 M sucrose using 0.20 M sucrose solu- 
tion, dispersed by Dounce homogenization, and loaded (8 ml/tube) in a sec- 
ond sucrose step gradient (nnderlayers of 1.50 M and 1.80 M sucrose [15 
and 8 ml, respectively]) containing the supplements above and an overlayer 
to tube capacity of 0.8 M sucrose containing everything except Ficoll. Can- 
trifugation (150 min at 87,000 gay in a Beckman SW28 rotor) provided the 
purified granule fraction (G2s) at the 1.50/1.80 M sucrose interface. 

For all three granule fractionatious, NS and NP together constitute the 
total homogenate that is used as a basis for calculating the recoveries of all 
enzyme activities. All biochemical data presented represent the averages of 
values obtained from at least three independent preparations. 

Granule Lysis and Isolation of Membrane Subfractions 
After sedimentation, purified secretory granule fractions were resuspended 
to a 30 ml vol with lysis medium containing: (a) lacrimal: 140 mM KCI, 
50 mM KSCN, 5 mM EDTA, 1.0 ~g/ml DPPD, 0.4 mM PMSE 2 mM mor- 
pholinopropanesulfonic acid, pH 7.0; (b) pancreas: 150 mM NaI-ICO3, 
50 mM KC1, 5 mM EDTA, 1.0 Ixg/ml DPPD, 1.0 mid benzamidine, 0.4 mM 
PMSE pH 8.5; and (c) submandibular: 190 mM KCI, 5 mM EDTA, 
1.0 ~tg/ml DPPD, 1.0 mM benzamidine, 0.4 mM PMSE 2 mM Hepes, pH 
6.8. The diluted granule suspensions were maintained at 0°C until cleating 
indicated total or nearly complete lysis (12-15 h). To separate low density 
granule membranes from soluble and particulate contaminants, the granule 
lysates were mixed with an equal volume of 1.8 M sucrose in lysis medium 
(KSCN was not included during further purification of lacrimal secretion 
granule membranes), loaded into three centrifuge tubes, and overlaid with 
0.75 M sucrose in lysis medium (15 ml/tube) and finally with lysis medium 
alone to tube capacity. During centrifugation 080 rain at 87,000 g~ in a 
Beckman SW28 rotor) secretion granule membranes float to the lysis 
medium/0.75 M sucrose interface while residual mitochondria and unlysed 
secretion granules pellet: soluble secretory proteins remain in the 0.9 M su- 
crose load. After collection, the granule membrane suspension was diluted 
in lysis medium supplemented with saponin and Na2SO4 (at final concen- 
trations of 10 I~g/mi and 0.3 M, respectively) and maintained at 0°C for 
60 min. Alternatively, sodium carbonate treatment (0.1 M Na2CO3-0.1 M 
KC1-5 mM EDTA [pH 11.5], 30 min, 4°C) was used in place of saponin- 
sulfate with no perceptible alteration in polypeptide composition of the 
membrane subfraction. Purified granule membranes were obtained by sub- 
sequent dilution with lysis medium (until the refractive index was below that 
of 0.15 M sucrose) and sedimentation (120 min at 150,000 gay in a Beckman 
SW41 rotor). 

Chemical and Enzyme Assay of CeU Fractions 
a-Amylase, y-glntamyl transferase (y-GT), cytochrome c oxidase, rotenone 
insensitive NADH-cytochrome c reductase, [I-N-acetyl glucosanlinidase, 
amine oxidase (type A), and protein were determined as described previ- 
ously (7). Peroxidase activity was determined with the colorimetric di- 
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aminobenzidine oxidase assay according to Herzog et al. (19) with the inclu- 
sion of 1% Triton X-100. 

Processing of SubceUular Fractions 
for Electron Microscopy 
Secretion granules were fixed in suspension by the addition of 50% 
glutaraldehyde, 10% formaldehyde, 0.5 M sodium phosphate (pH 7.4) to 
final concentrations of 3% (vol/vol), 1% (vol/vol), and 0.1 M, respectively. 
After several buffer rinses sedimented granule fractions were postfixed in 
2% OsO4, stained with uranyl acetate (0.5% [wt/vol] in 50 mM maleate 
buffer, pH 5.8), dehydrated in ethanol and propylene oxide, and embedded 
in Epon. All micrographs were taken on a Siemens electron microscope 101. 

Radioiodination Procedures 
Isolated membrane fractions (50 Ixg protein resuspended in 200 ttl of 
50mM Tris-HC1, pH 7.5) were radioiodinated using either iactoperoxi- 
dase-glucose oxidase (8 mU lactoperoxidase, 6 mU glucose oxidase, 
10 mM glucose [21]) or chloramine T (20 Ixi, 2.5 mg/ml) as catalysts and 
1.0 mCi Nat25I for 30 and 3 rain, respectively, at 4"C. With chloramine T, 
reactions were terminated by the addition of sodium metabisulfite (40 ttl, 
2.5 mg/ml); for lactoperoxidase-glucose oxidase, termination of reaction 
was by addition of sodium azide (0.1%). Parotid secretory proteins (purified 
from granule lysates [7]) were radiniodinated using chloramine T as de- 
scribed for membrane polypepfides. Labeled membranes as well as content 
were separated from unincorporated iodine by gel filtration on a 6-ml 
column of Agarose A-0.5 M or Biogel-P4, respectively, both previously 
equilibrated in 50 mM ammonium bicarbonate. 

PAGE and Peptide Mapping 
One-dimensional SDS PAGE, used to identify antigens recognized by the 
anti-membrane antiserum and to resolve membrane and content polypep- 
tides for radiolabeling and peptide mapping, was performed on linear 
acrylamide gradients prepared in the Laemmli buffer system (24). Two- 
dimensional PAGE (isoelectric focusing; SDS) was carried out by a 
modification (1) of the O'Farrell procedure (30). Iodinated membrane or 
content samples were solubilized (3 min at 80°C) in 1.0% SDS, 10% 
(vol/vol) 2-mercaptoethanol, 10 mM Tris-HC1 (pH 8.0) before addition of 
Nonidet P-40 (8% [wt/vol]), urea (9 M), ampholine (pH range 3-10, 2%), 
2-mercaptoethanol (10% [vol/vol]), and Tris-HC1 (pH 8.0, 10 in_M), all final 
concentrations. First dimension isoelectric focusing was carried out in 
acrylamide tube gels (0.3 x 10.5 cm), and electrode buffers (degassed) were 
10 m.M H3PO4 and 20 mM NaOH. Electrophoresis was conducted for 18 h 
at 400 V followed by 30--45 min at 800 V. Gels were removed and either 
cut in 0.5-em segments to measure the pH (in l-ml water extracts) or 
equilibrated in 2.3% SDS, 10% glycerol, 5% 2-mercaptoethanol, 62.5 mM 
Tris-HC1 (pH 6.9), 0.01% bromophenol blue before second dimension SDS 
gel electrophoresis. Resolving gels (16 x 16 x 0.1 cm) were 7-14% linear 
acrylamide gradients prepared in the Laemmli buffer system (24). 

The procedures of Elder et al. (13) as modified by Speicher et al. (37) 
were used to prepare and analyze chymotryptic and tryptie digests of in- 
dividual polypeptides by two-dimansional mapping on cellulose (20 x 
20 era) thin-layer plates (Eastman Kodak Co., Rochester, NY). Individual 
polypeptides from sodium carbonate-treated membranes were originaUy 
separated on one-dimensional SDS gels as indicated above. By increasing 
the length of the resolving gel to 23 cm and loading 150 ttg protein, it was 
possible to resolve most of the granule membrane polypeptides (shown in 
two-dimensional patterns in Fig. 4) as individual bands and to detect them 
by Coomassie Blue staining. Bands were excised and processed for analysis 
from fixed, stained gels. A 15-cm electrophoretic migration and a 17-cm 
chromatographic migration of the basic fuchsin tracking dye were used in 
the two-dimensional analysis of the proteolytic digests. Autoradiograms 
were exposed at -70°C in the presence of image intensifying screens. 

Materials 
Male Sprague-Dawley rats were obtained from Charles River Breeding 
Laboratories, Inc. (Wilmington, MA) and female New Zealand rabbits from 
Pineaeres (West Brattleboro, VT). Complete and incomplete Freund's adju- 
vant, lactoperoxidase, and Nonidet P-40 were obtained from Calbiochem- 
Behring Corp. (La Jolla, CA). Glucose oxidase was from Sigma Chemical 
Co. (St. Louis, MO). Rhodamine-conjngated IgG (heavy and light chain 
specific), trypsin, and chymotrypsin were obtained from Cooper Biomedi- 

Figure 1. Characterization of 
heterologous antiserum raised 
against purified parotid se- 
cretory granule membranes. 
Purified parotid secretory 
granule membranes were ra- 
dioiodinated, solubilized, and 
processed for one-dimension- 
al SDS PAGE (7-14% linear 
polyacrylamide gradient) and 
subsequent autoradiography 
without (lane A) and with 
(lane B)  prior immunopreci- 
pitation. (molecular mass × 
10-3). Polypeptides of 80-120, 
60-66, 40-55,  and ",,30 kD 
are emphasized as antigens. 
The two sets of  higher mo- 
lecular mass have been shown 
previously to be heavily gly- 
cosylated (7). 

cal, Inc. (Malvern, PA). Ultrapure urea was obtained from Schwarz-Mann 
(Spring Valley, NY); NaUSI from Amersham Corp. (Arlington Heights, 
IL); carrier ampholines from LKB Instruments, Inc. (Gaithersburg, MD) 
or Bio-Rad Laboratories (Richmond, CA); other electrophoresis reagents 
from Bio-Rad Laboratories. All other supplies were from general distrib- 
utors. 

Results 

An Antiserum to Rat Parotid Granule Membranes: 
Immunofluorescent Labeling of Other Exocrine 
Secretory 1Issues 
The parotid granule membrane antiserum used in the present 
study came from a bleed taken from the rabbit 5 wk into the 
antigen injection program. As judged by the results of an 
immunoprecipitation experiment (Fig. I), many membrane 
polypeptides can be identified as antigens. Although the anti- 
genicity of different species clearly varies and tends to favor 
the glycoproteins of higher apparent molecular mass, the an- 
tiserum was considered to be useful as an easily applied, low 
resolution probe to test for compositional overlap (and the 
extent of localization of total antigens to granule membranes) 
in other secretory tissues. The appearance by indirect im- 
munofluorescence of sections of parotid, lacrimal, pancreat- 
ic, and submandibular glands reacted with granule mem- 
brane antiserum is shown in Fig. 2. For all four exocrine 
secretory tissues, immunostaining is concentrated over 
secretion granule membrane profiles identified on the basis 
of their apical cytoplasmic location, size, and frequency. In- 
terestingly, staining extends to a varying extent to both the 
apical (especially prominent in lacrimal and pancreas) and 
basolateral (generally limited staining) domains of the plas- 
ma membrane but does not appear to be significant over 
basal or perinuclear cytoplasmic regions known to contain 
membranes of the endoplasmic reticulum, mitochondria, 
and Golgi complex, respectively. In the case of lacrimal and 
submandibular glands (Fig. 2, E and F), the staining in- 
cludes the granule membranes of distinct cell types compris- 
ing these tissues. The image observed for all acinar cells can 
be contrasted with that obtained in parotid after staining with 
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Figure 2. Comparative indirect immunofluorescent staining of rat exocrine tissues using heterologous antiserum to parotid secretory granule 
membranes (A and C-F) and heterologous antiserum to parotid proline-rich secretory proteins (B). 2 (A) Parotid, 4-6-1xm thick frozen 
section. (B) Parotid, 1-1xm etched Epon section. (C) Parotid, 0.5-~tm thick frozen section. (D) Pancreas, 0.5-tam thick frozen section. (E) 
Lacrimal, 0.5-~m thick frozen section. (F) Submandibular, 0.5-1xm thick frozen section. Note in all cases that staining is concentrated 
over the stored granule population and is not detected in the basal cytoplasm containing abundant rough endoplasmic reticulum and 
mitochondria. Primary antiserum dilution for all immunolocalizations was 1-50. Bars, 10 I~m. 
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Figure 3. Low magnification electron micrographs of purified exocrine secretory granule fractions. Representative micrographs of" (A) 
top half of submandibular granule fraction pellet; (B) bottom half of a submandibular granule fraction pellet; (C) lacrimal secretion granule 
fraction; and (D) pancreas zymogen granule fraction. Bars, 1 ~rn. 

antibodies to the proline-rich secretory proteins 2 where im- 
munofluorescence extends throughout the content matrix 
rather than showing peripheral concentration at the border- 
ing granule membrane. Finally, the granule membrane anti- 
body does not exhibit detectable binding to duct cell profiles 
or within the luminal, secretory space. As well, preimmune 
serum used in place of primary immune serum (or sole use 
of secondary rhodaminated goat anti-rabbit IgG) gave, at 
most, weak fluorescence with no obvious localization. Evi- 
dently, this screening study suggests that the composition of 
granule membranes is distinct from most major cellular 
membranes and that a more detailed evaluation of the extent 
of compositional overlap between the granule membranes of 
different exocrine tissues is warranted. 

2. Proline-rich secretory polypeptides were purified from rat parotid as out- 
lined by Muenzer et al. (27) and heterologous antiserum developed accord- 
ing to Papermaster et al. (33). Immunochemical analyses show that the an- 
tiserum is selective for the entire family of proline-rich polypeptides. 

Secretion Granule Fractions from Exocrine Tissues: 
Morphological and Biochemical Characterization 

As an essential step to a comparison of the composition of 
different types of secretion granule membranes at much 
higher resolution, we sought highly purified, representative 
granule fractions from lacrimal, pancreatic, and subman- 
dibular tissue. By introducing minor modifications of pre- 
existing fractionation procedures (5, 7), it has been possible 
in each case to obtain secretion granules with a very favor- 
able yield and a low level of contamination. The results of 
these efforts are documented morphologically and biochemi- 
cally in Fig. 3 and Tables I-III. 

Representative low magnification electron micrographs of 
the secretion granule fractions obtained from each tissue are 
shown in Fig. 3. The majority of components are electron 
dense secretion granules which, at higher magnifications, 
are observed to be bounded by continuous unit membranes. 
Organelle contamination is minimal; only rare mitochon- 
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Table L Distribution of Marker Enzymes in Cell Fractionation of Rat Exorbital Lacrimal 

I~-N-Acetyl Cytochrome c NADH-cytochrome 
Protein glucosaminidase oxidase c reductase Peroxidase y-GT 

Fraction nag %H %H RSA* %H RSA %H RSA %H RSA %H RSA 

Homogenate  (H) 167.4 100 100 1 100 1 100 1 100 1 100 1 
(9.16) (30.6) (412.0) (454.0) (0.88) 

NS 122.6 73.2 93.8 1.27 79.9 1.09 80.0 1.11 80.1 1.08 56.2 0.76 
NP 44.8 26.8 6.2 0.23 20.1 0.75 20.0 0.76 19.9 0.75 43.8 1.63 

G1 15.3 9.4 6.0 0.63 2.2 0.23 3.25 0.35 22.5 2.38 8.9 0.95 

Gradient recovery % 99.0 99.8 91.6 99.6 99.9 92.1 

G2 6.6 4.1 1.8 0.45 0.4  0.09 0.6 0.15 14.6 3.53 5.6 1.38 

Gradient recovery % 99.6 98.7 98.9 100.1 94.2 96.5 

Abbreviations for isolated fractions are as in Materials and Methods. 
Numbers in parentheses represent total homogenate activities. 
* RSA, sp act (per mg protein) relative to that of the homogenate (H). 

Table 1I. Distribution of Marker Enzymes in Cell Fractionation of Rat Pancreas 

l~-N-Acetyl Cytochrome c NADH-cytochrome 
Protein glucosaminidase oxidase c reductase a-Amylase "/-GT 

Fraction mg %H %H RSA* %H RSA %H RSA %H RSA %H RSA 

Homogenate  (H) 223.9 100 100 1 100 1 100 1 100 1 100 1 
(36.49) (52.83) (3,020.0) ( 19,814) (107.6) 

NS 181.5 81.1 89.0 1.08 77.3 0.95 87.6 1.08 83.9 1.03 68.7 0.84 
NP 42.4 18.9 11.0 0.58 22.7 1.20 12.4 0.66 16.1 0.85 31.3 1.65 

G1 21.0 9.6 Not detected 5.3 0.35 2.2 0.23 30.5 3.17 5.6 0.58 

Gradient recovery % 101.7 98.4 100.4 99.6 96.3 97.8 

G2 10.0 4.6 Not detected 0.4 0.08 0.06 0.01 18.5 4.01 3.0 0.67 

Gradient recovery % 100.6 - 97.3 100.7 96.8 94.5 

Abbreviations for isolated fractions are as in Materials and Methods. 
Numbers in parentheses represent total homogenate activities. 
* RSA, sp act (per mg protein) relative to that of the homogenate (H). 

drial profiles are observed throughout the granule pellet. 
Pancreatic granules appear uniform and spherical, whereas 
lacrimal and submandibular granules are heterogeneous in 
size, shape, and especially in the case of submandibular 
granules, appearance of packaged content. The images are 
consistent with those observed in situ and, in part, reflect an 
origin from distinct cell types within the respective glands 
(4, 18, 22, 29). 

In assessing the biochemical purity of the granule prepara- 
tions, enzyme and chemical assays for markers of granules 
as well as of contaminating organelles were conducted on all 
fractions generated during purification. The results obtained 
are presented in Tables I-III; for clarity, only data for NS and 
NP (together comprising the original homogenate) and for 
G1 and G2 (the granule-enriched fractions) are shown. How- 
ever, at each step it is possible to account for nearly all 
(>90%) of the activity associated with the immediately 
preceding (parent) fraction. In all cases contamination of 
fractions G2-L,P,S. by mitochondria (cytochrome c oxi- 
dase), endoplasmic reticulum (rotenone insensitive NADH- 
cytochrome c reductase), and lysosomes (13-N-acetyl glucos- 
aminidase) is minimal. The contaminant markers are re- 

duced to <1% of the original homogenate activity (with the 
exception of l~-N-acetylglucosamidase in the lacrimal gran- 
ule fraction) and exhibit large decreases in specific activity 
(signifying depurification) in comparison to homogenate 
values. Further, all results compare favorably with those ob- 
tained for parotid secretion granules (7). 

a-Amylase and peroxidase, which have been used as gran- 
ule content marker activities for pancreas and lacrimal, re- 
spectively, are obtained in G2p and G2L in favorable yields 
(>15% of homogenate activity). As discussed before (7), 
these yields represent minimum estimates because they are 
based on the assumption that the activities selected mark 
granules exclusively, yet other organelles comprising the 
transport pathway are known to contain active enzyme (5, 
18). So far, neither amylase nor peroxidase activities have 
been detected in homogenates or purified granule fractions 
from submandibular tissue. Although the activities were ex- 
pected, based on the results of others (4, 29), their absence 
here may reflect decreased expression due to developmental 
regulation (4) or to the presence of inactive forms (29). Fi- 
nally, as in the case of the parotid gland, "y-GT activity is as- 
sociated with secretion granules in all three tissues, and 

The Journal of Cell Biology, Volume 103, 1986 1304 



Table IlL Distribution of Marker Enzymes in Cell Fractionation of Rat Submandibular 

l~-N-Acetyl Cytochrome c NADH-cytochrome c 
Protein glucosaminidase oxidase reductase y-GT 

Fraction mg % H % H RSA* % H RSA % H RSA % H RSA 

Homogenate (H) 317 100 100 1 100 1 100 1 100 1 
(11.45) (100.0) (588) (0.61) 

NS 158 49.8 73.0 1.46 58.9 1.18 71.7 1.44 72.5 1.46 
NP 159 50.2 27.0 0.54 41.1 0.82 28.3 0.56 27.5 0.55 

G1 12.3 3.9 2.6 0.66 0.3 0.08 2.2 0.55 4.5 1.15 

Gradient recovery % 97.7 103.5 91,5 99.3 93,4 

G2 5.9 1.9 0.3 0.15 0.03 0.02 0.5 0.26 3.4 1.81 

Gradient recovery % 105.5 105.5 97.6 98.3 100.1 

Abbreviations for isolated fractions are as in Materials and Methods. 
Numbers in parentheses represent total homogenate activities. 
* RSA, sp act (per mg protein) relative to that of the homogenate (H). 

Table IV. Distribution of Marker Enzymes in Pancreatic Zymogen Granule Subfractions 

Cytochrome c Amine oxidase 
Protein oxidase type A a-Amylase y-GT 

Fraction % Lysate % Lysate RSA* %Lysate RSA % Lysate RSA % Lysate RSA 

Lysate-G2p 100 100 1.0 100 1.0 100 1.0 100 1.0 
(12.6 mg) 

Gradient fractions 

Buffer overlay 0.0 0.0 - 0.0 - 0.0 - 0.0 - 
Membrane interface 1.8 2.6 1.44 0.0 - 0.26 0.15 53.1 29.83 
0.75 M Layer 6.0 2.7 0.44 0.0 - 3.1 0.51 21.9 3.65 
0.75/0.90 M Interface 14.5 2.2 0.15 0.0 - 13.8 0.95 4.7 0.32 
0.90 M Layer 72.9 12.5 0.17 15.8 0.22 85.1 1.17 11.8 0.16 
Pellet • 4.0 81.4 20.29 87.4 21.78 1.1 0.28 9.3 3.68 

Recovery 99,2 101.4 103.2 103.4 100.8 

Final membranes 0.4 0.55 1.30 0.0 - 0.0 - 48.0 110.2 

The results shown are representative of two experiments in which marker enzyme distribution was followed throughout zymogen granule subfractionation, 
Number in parenthesis represent total lysate protein. 
* RSA, sp act (per mg protein)~ relative to that of the lysate. 

therefore it has been used as a marker to follow the purifica- 
tion of membranes from granule lysates. 

Comparative Analysis of  Granule 
Membrane Polypeptides 

Membrane Purification. In our previous fractionation stud- 
ies of rat parotid tissue (7) mitochondria were identified as 
the only organelle present in the purified granule fraction 
(0.9% of homogenate cytochrome c oxidase activity and 
0.3% of homogenate amine oxidase-type A activity) that 
could potentially contribute significantly as a contaminant to 
the final membrane preparation. By purifying parotid mito- 
chondria and determining their specific activities of cyto- 
chrome c oxidase and amine oxidase-type A (7), we esti- 
mated that mitochondria contributed, at most, 5 % of the 
protein present in the purified granule membrane prepara- 
tion. Lysosomal membranes (for which marker enzyme ac- 
tivities have not been identified) were discounted as a poten- 
tially significant contaminant on the combined basis of the 
low level of lysosomal hydrolase activity present in the gran- 
ule fraction (1% of the homogenate 13-N-acetyl glucosamini- 

dase activity) and the small volume fraction (<4 %) of acinar 
cells comprising lysosomes (11, 28). 

For the present granule membrane purifications, we used 
the same rationale plus the results of Tables I-III to justify 
following only the distribution of mitochondrial enzymes in 
assessing possible organelle contamination of the purified 
granule membrane subfractions. As shown in Table IV, pan- 
creatic zymogen granule membranes are purified away from 
mitochondrial marker activities (by floatation) with high 
efficiency; <0.6% of cytochrome c oxidase and none of the 
amine oxidase-type A activities are recovered in the final 
membrane pellets. For lacrimal and submandibular granule 
membranes, only cytochrome c oxidase activity was moni- 
tored during subfractionation; in both cases, levels of en- 
zyme activity were very similar to those reported previously 
for parotid granule membranes (7). 

Table IV also shows the thorough removal of the secretory 
enzyme a-amylase during the purification of zymogen gran- 
ule membranes and finally that ~50% of the granule mem- 
brane marker, y-GT, is recovered in the final membrane pel- 
let. Similar recoveries were obtained for both lacrimal and 
submandibular preparations. Much of the remaining y-GT 
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activity was associated with membrane of higher density that 
floats out of the load of the original gradient but only par- 
tially penetrates the overlying sucrose layer. Where this 
membrane has been recovered, treated with saponin-sulfate, 
and ultimately analyzed by SDS PAGE in parallel with the 
usual membrane fraction, the polypeptide profiles observed 
were essentially identical. Thus, the incomplete recovery 
reflects loss as a result of either an unexplained higher buoy- 
ant density for this membrane or failure of extremely small 
membrane vesicles generated during lysis to float to the ap- 
propriate density during centrifugation. Even where recov- 
ery is decreased relative to that observed before (7), the con- 
tribution of mitochondria to total protein is negligible for 
pancreatic membranes and is estimated to be no more than 
7-8% in the other cases. Clearly these estimates represent 
an upper limit because they assume no damage is incurred 
by contaminating mitochondria (and thus no loss of mito- 
chondrial protein) during granule lysis and membrane puri- 
fication. Since the main purpose of the present study is to 
identify polypeptides similar to those characterized in 
parotid granule membranes, the incomplete recovery does 
not represent a major limitation. 

Two-Dimensional PAGE 
The capability of obtaining highly purified granule mem- 
brane preparations from all four exocrine tissues made possi- 
ble the detailed comparison of polypeptide composition. Au- 
toradiograms of radioiodinated secretion granule membrane 
polypeptides resolved by two-dimensional polyacrylamide 
gel electrophoresis are shown in Fig. 4. Since the pH gra- 
dient established during isoelectric focusing exhibited minor 
variations in different experiments, the polypeptide profiles 
for lacrimal, submandibular, and pancreas have been matched 
to those of parotid membranes subjected to electrophoresis 
in parallel. Each profile comprises '~25 species with elec- 
trophoretic mobilities corresponding to apparent molecular 
masses ranging from 18 to 150 kD. In the case ofparotid, the 
number and distribution by apparent molecular mass are 
consistent with the one-dimensional profile shown previ- 
ously using either tyrosine- or amino group-directed label- 
ing (7). Also, polypeptides of low apparent molecular mass 
are more prevalent than larger species in all cases. As well, 
the majority of granule membrane polypeptides are acidic, 
focusing between pH 5 and 7. This observation is consistent 
with the previous reports for the general nature of the poly- 
peptides of adrenal chromaffin granules (3), pancreatic 
zymogen granules (34), and parotid granules (9), although 
in the latter case where residual mitochondrial contamina- 
tion appears to be significant, the pattern is considerably 
more complex than the one we have observed. 

The most striking observation seen by comparing the 
profiles for the four types of membranes is the presence of 
apparent extensive polypeptide homology. Not only are iden- 
tities suggested by overlapping mobilities for individual spe- 
cies, but also the two-dimensional patterns of spots in a num- 
ber of regions are similar, if not identical. Specifically, major 
radiolabeled species ("~10 distinct polypeptides) that coin- 
cide in pI and molecular mass are located in the range 24- 
30 kD and, in part, >185 kD. Evidently, these common poly- 
peptides do not reflect incompletely removed secretory pro- 
teins since as shown in Fig. 4 C, neither radiolabeling nor 

protein staining of parotid granule content reveals a pattern 
having comparable isoelectric points and apparent molecular 
masses. 

In addition, at least four to six species in the range 40-70 
kD exhibit common mobilities but show much wider quan- 
titative variations in intensity between the different types of 
membranes. Some of these species are observed in more 
than one but not all preparations. Finally, each sample con- 
rains unique polypeptides for which there is no counterpart 
in the other patterns. Although some of the latter compo- 
nents could reflect tissue-specific residual secretory con- 
taminants (because we have not conducted a comprehensive 
analysis for such species as done previously for parotid gran- 
ule membranes [7]), we consider this possibility unlikely be- 
cause the polypeptide profiles for parotid and pancreatic 
specimens (Fig. 4, A and B) are unchanged when the mem- 
branes are treated with sodium carbonate. This treatment has 
been used widely as a means of stripping extrinsic and solu- 
ble proteins from membrane fractions (5, 15, 20). Thus, the 
unique polypeptides are more likely to be integral membrane 
components. 

Comparative Peptide Mapping of 
Membrane Polypeptides 
The observation of an overlapping two-dimensional pattern 
of at least 10 granule membrane polypeptides from different 
exocrine secretory cells strongly suggests the presence of 
common polypeptides, conceivably involved in general se- 
cretory function. To increase the certainty of this observa- 
tion, we checked for structural homology at a still more 
refined level between selected pairs of parotid and pancreatic 
polypeptides by performing two-dimensional mapping of 
chymotryptic as well as tryptic peptide digests. All analyses 
were performed at equal radioactivity/molecular mass ratios 
(37). 

Fig. 5 shows as a representative example, autoradiograms 
of radioiodinated peptides in chymotryptic and tryptic pro- 
files of a major overlapping 29-kD polypeptide prepared 
from parotid and pancreatic membranes. Comparative ex- 
amination indicates that the chymotryptic spectra and tryp- 
tic spectra correspond nearly exactly for each polypeptide 
source with only minor quantitative differences existing for 
selected peptide fragments (open arrows in Fig. 5, A-D). 
These observations are confirmed by mixing digests from the 
two sources and co-mapping (Fig. 5, E and F). These pep- 
tide mapping analyses have been extended in two ways: first, 
we have examined comparatively the majority of matching 
parotid and pancreatic granule membrane polypeptides (chy- 
motryptic hydrolysates only) and second, we have examined 
parotid secretory polypeptides using both chymotryptic and 
tryptic hydrolysis. In the first case, with few exceptions (e.g., 
certain pancreatic and parotid glycoproteins with high 
molecular mass), the peptide maps are essentially identical 
for polypeptides of similar apparent molecular mass from 
the two types of granule membranes (data not shown). 
Again, minor quantitative differences in the incidence of 
several peptide fragments have been noted for all matching 
peptide profiles. In the second case, the peptide profiles for 
all parotid secretory proteins (5-56 kD) have been analyzed 
for possible compositional similarities to polypeptides iden- 
tified as membrane constituents. Selected examples (either 
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Figure 4. Comparative two-dimensional SDS PAGE analyses of purified exocrine secretory granule membrane polypeptides. (A and B) 
Autoradiograms obtained by parallel electrophoresis of radioiodinated (chloramine T) parotid (A) and pancreas (B) secretory granule mem- 
brane polypeptides. (C) Two-dimensional SDS PAGE analyses of radioiodinated (chloramine T, top) and silver-stained ([2] bottom) parotid 
secretory polypeptides obtained from granule lysates (7). (D-F) Autoradiograms of radioiodinated (lactoperoxidase-glucose oxidase) poly- 
peptides subjected to electrophoresis in parallel for secretory granule membranes of parotid (D), submandibular (E), and lacrimal (F). 
The polypeptide indicated with an asterisk in D represents absorbed radiolabeled lactoperoxidase. The arrowhead in B reflects the position 
of pancreatic zymogen granule membrane protein GP-2. Note that it is incompletely resolved from higher molecular mass ('~85-95 kD) 
glycoproteins related to "t-GT (10). (pH values are indicated horizontally, molecular mass x 10 -3 vertically). 

chymotryptic or tryptic hydrolysates) that purposely focus 
on the 20-35-kD region (where the strongest similarities in 
exocrine membrane composition have been observed) are 
shown in Fig. 6. In all cases, secretory polypeptides were 
found to possess entirely distinct peptide profiles from those 
obtained for membrane polypeptides. Furthermore, in no 
case have we observed the pattern of shared peptides ob- 
served in all granule membrane maps (see below). 

Coupled with the two-dimensional analyses of undigested 
polypeptides presented in Fig. 4, these results argue strongly 

that granule membranes from different exocrine cell types 
have an overlapping polypeptide composition. 

The autoradiograms shown in Fig. 7, A-D (tryptic peptide 
patterns obtained for parotid granule membrane polypep- 
tides of 26, 37, 41, and 44 kD) serve to establish separate 
points concerning the extent of structural interrelationship 
between polypeptides of the same granule membrane type. 
Comparison of these profiles with one another and with that 
in Fig. 5 B reveals that, with the exception of 41- and 44-kD 
species, each profile shows a unique composition that is ap- 
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Figure 5. Autoradiograms of two-dimensional peptide maps from a parotid and pancreas secretory granule membrane polypeptide of 
29,000 D. Gel slices were radioiodinated and processed as described in Materials and Methods. Electrophoresis was in the horizontal direc- 

The Journal of Cell Biology, Volume 103, 1986 1308 



Figure 6. Autoradiograms of two-dimensional chymotryptic (A-C) and tryptic (D-F) peptide maps from several parotid secretory polypep- 
tides. Parotid secretory polypeptides, purified from granule lysates (7), were resolved by one-dimensional SDS PAGE (24) and excised' 
gel slices were radioiodinated and processed as described in Materials and Methods for membrane polypeptides. Details of mapping are 
given in Fig. 5. Polypeptide apparent molecular masses (in kilodaltons): (A) 35; (B) 33; (C) 25; (D) 35; (E) 27; (F) 22. 

parent over and above a li.mited similarity for all profiles (in- 
volving about seven peptide spots). Thus, the possibility 
seems to be discounted that the lower molecular mass species 
(<40 kD) analyzed are derived from higher molecular mass 
species by proteolysis. By contrast, examination of Fig. 7, C 
and D suggests that the 41- and 44-kD species may be struc- 
turally similar and a relationship reflecting proteolysis can- 
not be excluded. Ongoing studies may serve to identify 
classes of similar-sized polypeptides that exhibit extensive 
structural homology. The second, more general, point is that 
the limited peptide similarities, noted above for unique spe- 
cies having substantial molecular mass differences, merit 
further investigation since they might indicate more subtle 
structural homology between all granule membrane poly- 
peptides. 

Discussion 

One of the special features of exocrine secretory glands, es- 
pecially the parotid, is the presence of a single secretory cell 
type in large quantity and containing an unusually large in- 
ternal compartment of stored secretion. Our previous studies 
have capitalized on these properties, and we have established 
that the membrane devoted to the storage function has an un- 
usually low protein concentration and a rather limited spec- 
trum of polypeptides that are probably largely distinct from 
those of other intracellular membranes (7). As a conse- 
quence of the extensive documentation of the purity of iso- 
lated parotid granule membranes (7), we felt that they would 
serve as an excellent compositional standard for examining 
comparatively the membranes in other cell types where the 

tion and ascending chromatography was in the vertical direction; the origin for each map is indicated by an asterisk. (A and C) Chymotryptic 
and (B and D) tryptic maps for the parotid (A and B) and pancreas (C and D) secretory granule membrane polypeptide. Co-electrophoresis 
of parotid and pancreatic chymotryptic (E) and tryptic (F) peptide fragments. Solid arrowheads mark labeled positions observed after 
equivalent processing of blank polyacrylamide gel slices. Open arrowheads identify common peptide fragments that exhibit quantitative 
variations between the two polypeptides. 
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Figure 7. Autoradiograms of two-dimensional tryptic peptide maps from several parotid secretory granule membrane polypeptides. Details 
of mapping are given in Fig. 5. Polypeptide apparent molecular masses (in kilodaltons): (A) 26; (B) 37; (C) 41; and (D) 44. 

operation of vesicular shuttles between the Golgi complex 
and the cell surface is particularly prevalent. The underlying 
motivation for this investigation is the two-part working hy- 
pothesis, first, that exocrine storage membranes have a very 
limited repertoire of functions mostly related to secretion 
(i.e., packaging and discharge of macromolecules and subse- 
quent membrane retrieval) and second, that these basic oper- 
ations involve common membrane machinery in all cells. So 
far our main focus has been on other exocrine glands which, 
like the parotid, are distinguished by sizable intracellular 
secretory storage compartments but where the type of secre- 
tory cell is less homogeneous. 

The initial approach involved indirect immunofluores- 
cence studies using a polyspecific anti-parotid granule mem- 
brane antiserum which indicated a uniform and, for the most 
part, specific granule membrane staining restricted to all aci- 
nar ceils of all tissues. Although the limited resolution of 
such a probe must be underscored (especially because se- 
lected antigens, particularly the membrane glycoproteins, 
are disproportionately emphasized in relation to the total 
polypeptide spectrum), these observations argue simultane- 
ously in favor of both parts of the working hypothesis- 

functional specialization of granule membrane yet common 
composition irrespective of the diverse chemical nature of 
the stored exocrine secretion. 

Previously, a similar approach has been taken to illustrate' 
the widespread occurrence of synaptic vesicle antigens in 
neural and endocrine secretory tissues (6, 23, 25, 38). In- 
terestingly, no staining of exocrine secretory tissues was ob- 
served (23, 25, 38). This finding contrasts with our prelimi- 
nary efforts in the reverse direction (8) where we have shown 
low intensity, but specific, immunostaining of both neural 
and endocrine tissues (e.g., cerebellum, anterior pituitary, 
adrenal medulla), using the parotid granule membrane an- 
tiserum. Evidently, these observations deserve further inves- 
tigation at higher resolution and sensitivity. They suggest 
further support for the working hypothesis, but more impor- 
tantly, they may identify polypeptides that are either identi- 
cal or antigenically related to some of the species that are 
shared between different exocrine cells. 

The guiding nature of the immunolocalization studies, 
using the polyspecific anti-membrane antiserum, is clearly 
surpassed in the fractionation experiments that form the 
main part of this study and lead to the most definitive results 
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regarding the general composition of exocrine secretory 
membranes. To obtain granule membranes of sufficient pu- 
rity for comparative analysis, we wish to emphasize the im- 
portance of taking advantage of their characteristically very 
low buoyant density in relation to potential contaminants, 
particularly mitochondria. Both Table IV of the present 
studies and Table IV already reported (7) indicate very 
clearly that pancreatic and parotid granule membranes can 
be separated efficiently from mitochondrial marker activities 
by flotation through 0.75 M sucrose. In studies where such 
procedures have not been used, especially if the original 
granule fraction was obtained by differential centrifugation, 
it is very likely that the final granule membrane fraction is 
substantially contaminated. Using granule membrane prepa- 
rations having negligible levels of mitochondrial contamina- 
tion and obtained in fairly good yield, the two-dimensional 
electrophoretic analysis identified extensive compositional 
overlap for all of the cell types investigated. Between 10 and 
15 radioiodinated polypeptides present in lacrimal, pan- 
creas, and submandibular preparations are observed to have 
virtually the same isoelectric point and apparent molecular 
mass as those found in the parotid standard. Most of the over- 
lap involves species that have a molecular mass <35 kD and 
are not likely to be extensively glycosylated since they do not 
exhibit an extended series of stuttered isoelectric points in 
Fig. 4 and they were not labeled in the limited lectin overlay 
studies conducted earlier (7). For three major reasons we 
wish to emphasize that attention is almost certainly focused 
on integral membrane components belonging to granules. 
First, the polypeptides of 25-35 kD have been identified 
previously as major radiolabeled parotid species using both 
tyrosine- and amino group-directed covalent labeling (7) 
even though they stain poorly with Coomassie Blue. Their 
relative prominence among a rather limited spectrum of total 
polypeptides is not characteristic of other more functionally 
diverse cellular membranes. Second, the possibility of con- 
tributions of residual secretory contaminants to the common 
spectrum is almost certainly negligible. Neither Coomassie 
Blue, silver-stained, nor radiolabeled one-dimensional (7) or 
two-dimensional gel profiles of granule content fractions 
identify any polypeptide with common mobilities in all gran- 
ule preparations. This is exemplified for parotid secretory 
polypeptides shown in Fig. 4. Further, we are unaware of any 
polypeptides (with the possible exception of carbonic anhy- 
drase) that occur as common, low molecular mass, acidic, 
acinar cell secretory products of all four glands under con- 
sideration. The kallikreins/prekallikreins appear to be ruled 
out as possible candidates because although they are present 
in all four tissues, they are detected only in duct cells, and 
not in acinar cells of rat parotid and exorbital lacrimal glands 
(31). Similarly, it is possible to rule out major urinary pro- 
teins from consideration since they are not found in pancreas 
and are generally <20 kD (36). 

The final reason for justifiably considering the 25-35-kD 
common polypeptides as granule membrane components 
results from their refractoriness to extraction by the saponin- 
sulfate or carbonate (pH 11.5) treatments used during final 
membrane purification. The procedures are among the most 
thorough means known for bringing about the selective 
removal of polypeptides adsorbed to biological membranes 
(5, 7, 15) and thereby ensuring that contamination by soluble 
protein is overcome. The latter contention is supported by 

studies in progress, examining proteinase K digestion of in- 
tact parotid granules. These studies indicate partial exposure 
(fragments i>6 kD) on the cytoplasmic aspect of the granule 
membrane of the 25-35-kD polypeptides. 

Peptide mapping studies represent the most refined com- 
parative analysis we have conducted. Separate maps obtained 
after chymotrypsin and trypsin digestion show very clearly 
that membrane and content proteins are structurally un- 
related and that one of the principal overlapping species 
('~29 kD) in parotid and pancreatic two-dimensional poly- 
peptide profiles is essentially identical. Because the peptide 
mapping approach has been extended to other higher molec- 
ular mass species, it has been possible to establish the extent 
of structural interrelationships between polypeptides of the 
same granule membrane type. In most cases, distinct pat- 
terns having limited relationships to that of the 29-kD species 
were observed. Thus it has been possible to argue against the 
possibility that a membrane composition enriched in low 
molecular mass polypeptides reflects extensive proteolysis of 
higher molecular mass species either in situ or during 
organelle isolation. These limited interrelationships (i.e., 
overlapping peptides) that do exist between different poly- 
peptides of the same membrane may be significant. Conse- 
quently, peptide mapping is currently being carried out on 
a more comprehensive scale because it may enable the 
identification of domains that could contribute to the under- 
lying basis for the specific granule membrane composition, 
which is so clearly suggested by the immunostaining shown 
in Fig. 2. 

Finally, some consideration should be given to polypep- 
tides that show substantial quantitative variations between 
the granule membrane preparations of the different exocrine 
tissues (or that are even unique to a particular tissue). Espe- 
cially in submandibular and lacrimal fractions, some of these 
species could reflect the presence of more than a single type 
of granule membrane population. Indeed, mucus granules 
that package and maintain unusually large quantities of 
charged proteoglycans in osmotically inactive form (preva- 
lent in mixed glands such as the submandibular) may require 
increased levels of special membrane machinery. As well, 
the presence of selected polypeptides in some but not all 
preparations could be related to an emphasis on a particular 
second messenger system in bringing about amplified secre- 
tory discharge in response to external stimuli. 

In all cases integral membrane glycoproteins may exhibit 
rather substantial quantitative variations in the different prep- 
arations. This is clearly the case for a prominent '~78-kD 
species known as GP-2 (35) that is present in pancreatic 
zymogen granule membrane profiles (Fig. 4 B) but has no 
identifiable counterpart in other exocrine tissues. A similar, 
but not quite so extreme, variation applies to ~,-GT and struc- 
turally related antigens (10) of higher molecular mass (>--95 
kD). Its enzyme activity has proven to be invaluable in the 
present study as a general granule membrane marker during 
cell fractionation, yet the total activity ranges over three 
orders of magnitude in the exocrine tissues examined. Both 
the enzyme and related antigens are known to reside in large 
part at the apical plasma membrane of exocrine glands (10, 
16, 26). Thus the amount found in granule membranes not 
only reflects the total tissue level but also may reflect the ex- 
tent and regularity with which the granule membrane 
delivers and exchanges these glycoproteins with the cell sur- 
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face. In addition, the extent of glycosylation (and thus the 
isoelectric point and apparent molecular mass) of 7-GT and 
related antigens have been found to vary among different 
epithelial tissues (10). Thus unique polypeptides (related to 
7-GT or otherwise) identified by comparing the two-dimen- 
sional profiles for different granule membrane preparations 
may only reflect varying extents of glycosylation that are 
characteristic of a particular tissue. 

Even though differences in the polypeptide composition 
between the storage membranes could reflect a host of differ- 
ent factors, the principal and most significant message result- 
ing from our study is the clear identification of overlapping 
composition. As a consequence of the functional specializa- 
tion of granule membranes in the packaging and discharge 
of exportable proteins, it is very tempting to view the com- 
mon membrane polypeptides as components potentially in- 
volved in basic mechanisms of secretory storage or even the 
general operation of vesicular carriers between the Golgi 
complex and the cell surface. However, it should be stressed 
that we presently have no information concerning the overall 
subcellular distribution of these polypeptides because they 
are not the prominent antigens that give rise to the granule- 
specific staining observed in Fig. 2. Although we consider 
it very unlikely that common polypeptides, especially those 
25-35 kD, are contributed by some contamination source 
that has gone undetected in our analyses, past and present, 
this possibility must be addressed. Thus, our studies in the 
near future will focus on examining the localization, struc- 
ture, and (ultimately) function of individual components 
from this common class. As well, we plan to check for struc- 
tural counterparts to the common polypeptides in the secre- 
tory membranes of endocrine and neural systems and to ex- 
amine epithelial tissues that are specialized for endocytosis 
(e.g., intestinal mucosa and kidney proximal tubule) to judge 
whether the same or related species might be candidates for 
a role in internalization shuttling. 
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