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Abstract

Immune checkpoint inhibitors (ICIs) induce a durable response in a
wide range of tumor types, but only a minority of patients outside
these ‘responsive’ tumor types respond, with some totally
resistant. The primary predictor of intrinsic immune resistance to
ICIs is the complete or near-complete absence of lymphocytes from
the tumor, so-called immunologically cold tumors. Here, we
propose two broad approaches to convert ‘cold’ tumors into ‘hot’
tumors. The first is to induce immunogenic tumor cell death,
through the use of oncolytic viruses or bacteria, conventional
cancer therapies (e.g. chemotherapy or radiation therapy) or small
molecule drugs. The second approach is to target the tumor
microenvironment, and covers diverse options such as depleting
immune suppressive cells; inhibiting transforming growth factor-
beta; remodelling the tumor vasculature or hypoxic environment;
strengthening the infiltration and activation of antigen-presenting
cells and/or effector T cells in the tumor microenvironment with
immune modulators; and enhancing immunogenicity through
personalised cancer vaccines. Strategies that successfully modify
cold tumors to overcome their resistance to ICIs represent
mechanistically driven approaches that will ultimately result in
rational combination therapies to extend the clinical benefits of
immunotherapy to a broader cancer cohort.
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immune surveillance and resistance, cold tumor, therapeutic
strategy, cancer immunotherapy

INTRODUCTION

Solid tumors that lack or have few tumor-
infiltrating lymphocytes (TILs) are considered
immunologically ‘cold’ (Figure 1a and b).1–3 Cold
tumors usually result from a low burden of tumor

neoantigens or their total absence because of
gene silencing.4 Other causes include defective
antigen presentation because of loss or mutation
of b2-microglobulin,5 deletion of specific major
histocompatibility complex (MHC) alleles,6 defects
in interferon (IFN)-c signalling7 and defects of
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differentiation, migration and antigen processing
by dendritic cells (DCs)3 in response to soluble,
tumor-derived immune suppressive factors, such as
interleukin-10 (IL-10) and transforming growth
factor-b (TGF-b). TIL ‘desertification’ is also caused
by the loss or low expression of specific
chemokines and their corresponding receptors,
such as CXCR3 and its chemokine ligands CXCL9
and CXCL10,8 as well as CCR59 and its ligands
CCL3, CCL4 and CCL5.10 Finally, physical barriers
such as a dense extracellular matrix, defective
tumor vasculature and hypoxia can all be
contributors.3 In contrast, immunologically ‘hot’
tumors contain many infiltrating T cells
(Figure 1b) whose implied antitumor activity is
being held in check by immune checkpoints
invoked either by the tumor or by the
immunosuppressive tumor microenvironment
(TME).

For decades, practitioners of immunotherapy
operated under the presumption that the best
way to unleash the power of the immune system
on cancer was to make cancer cells more
immunogenic, provoking an enormous number of
studies that typically combined a putative tumor
antigen and an adjuvant powerful enough to
generate a T-cell effector response, including
cytokines,11 synthetic virus-like preparations such
as Iscomatrix,12 and varieties of DCs.13

Remarkably, about a decade ago, studies began
to elicit some significant clinical responses in
advanced cancers, such as disseminated melanoma
and non-small-cell lung cancer, even without the
administration of a tumor antigen. These
successful studies utilised immune checkpoint
inhibitors (ICIs), which are typically blocking
antibodies directed against cytotoxic T-
lymphocyte-associated protein 4 (CTLA4),
programmed cell death protein 1 (PD-1) or
programmed cell death 1 ligand 1 (PD-L1). This
approach proved successful because it de-
repressed and greatly amplified a pre-existing T-
cell response to the tumor. To support this
concept, responses to ICIs have mostly been
observed in immunologically ‘hot’ tumors: those
with high pre-existing immune response.14,15

Frequently, responsive tumors also carried a high
mutational burden that implied tumor
‘neoantigens’ were being generated, processed
and presented as potential T-cell targets; and
increased PD-L1 expression in cancer cells and/or
antigen-presenting cells (APCs), indicative of
suppression of an otherwise potentially effective

T-cell response. ICIs have a broad impact on the
immune system, many treated patients experience
a discrete spectrum of adverse events known as
immune-related adverse events (irAEs),16 which
represent systemic or organ-specific immune
damage at sites unrelated to their tumor –
whether a therapeutic response to the cancer is
achieved or not.

Where a therapeutic response does occur, it can
be rapid and potent; however, the therapeutic
impact of ICIs in immunologically ’cold’ tumors,
where the tumor has not been as immunogenic, is
generally poor.17 Notwithstanding the often-
sizeable clinical problem of treating autoimmune
manifestations of ICI, the most pressing challenge
for cancer therapy has now understandably
refocused on next-generation therapeutic
strategies to remodel ’cold’ tumors into ‘hot’
ones, either prior to or coincident with ICI being
administered. Attempts at improving
immunogenicity have focused on improving
immunogenicity in the tumor, reducing
immunosuppression in the TME and enhancing T-
cell activation through utilising various
approaches to: (1) target tumor cells, (2) target
the TME or (3) augment immunity with
presensitised adoptively transferred immune
cells.18 Here, we review and compare the progress
and challenges of strategies that focus on tumor
cells and their surrounding TME to transform
‘cold’ tumor into ‘hot’ ones (Figure 1c).

INDUCING IMMUNOGENIC TUMOR
CELL DEATH (ICD)

Promoting a tumor’s immunogenicity means
improving its ability to induce an immune
response. Immunogenicity can be influenced by
many factors, but two with paramount
importance are antigenicity and adjuvanticity.19

Antigenicity means that the tumor can generate
antigen targets to which the host has not been
tolerised. Given the genetic instability of many
forms of cancer, antigenicity can be achieved via
the expression of neoantigens, viral oncoproteins
and overexpressed self-antigens.20,21 Neoantigens
have been widely investigated in personalised
cancer vaccine approaches as they result from
mutated or ectopic proteins and peptides, and are
often specific to that individual’s tumor.22

Adjuvanticity results from the presence of danger-
associated molecular patterns (DAMPs) that
initiate tumor antigen recognition by APCs and
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the subsequent activation of the innate and
adaptive immune systems.23 Tumor cell death that
is associated with the release of DAMPs that bind
to specific receptors on the surface of APCs to
activate the antitumor immune response is
referred to as ICD. Until recent years, ICD was
often referred to as immunogenic apoptosis as
the majority of ICD occur via apoptosis.24

Recently, many other forms of cell death,
including necroptosis, pyroptosis and ferroptosis,
have been studied for their capacity to induce a

durable immune response.25 Enormous efforts
have been made to induce the tumor itself to
undergo ICD and thus activate antitumor
immunity (Figure 2). These approaches have
included (1) oncolytic viruses (OVs) or bacteria
that selectively replicate in tumor cells, releasing
soluble antigens and generating danger signals;
(2) conventional cancer therapies (radiotherapy,
chemotherapy and phototherapy) that induce
DNA damage and generate a ‘vaccine pool’ of
neoantigen in situ to initiate the immune

Figure 1. Therapeutic strategies to remodel immunogenically cold tumors. (a) Features of an immunologically cold tumor. (b) Representative

fluorescent images showing the cold and hot head and neck tumors with T infiltration visualised by CD3+ T cells (green) and a tumor marker

(magenta). (c) Two therapeutic strategies that focus on inducing immunogenic tumor cell death and targeting the tumor microenvironment to

convert ‘cold’ tumors into ‘hot’ ones. TGF-b: Transforming growth factor-beta.

ª 2020 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of

Australian and New Zealand Society for Immunology, Inc.
2020 | Vol. 9 | e1226

Page 3

M Wang et al. Strategies to remodel cold tumours



response; and (3) small molecule drugs that target
a cancer’s oncogenic pathways and/or positively
influencing the TME.

Oncolytic viruses/bacteria

Oncolytic viruses play important roles in different
steps in the cancer immunity cycle26,27: (1)
inducing ICD through selective replication in
tumor cells; and (2) triggering innate and
subsequent adaptive immune responses through
the release of soluble antigens and danger
signals28 (Figure 2). To date, both DNA and RNA
viruses have been used to generate OVs.29

Advantages of DNA viruses include a large
genome that can be edited without compromising

replication, and high-fidelity DNA polymerases
that ensure the integrity of the viral genome.
Conversely, the small genome of RNA viruses has
limited ability to encode large transgenes.
However, the smaller RNA viruses can go through
the blood–brain barrier and potentially target the
tumors in the central nervous system. Pre-existing
immune response to some RNA viruses is also less
common, making them more suitable for systemic
delivery.28

Currently, two oncolytic immunotherapies have
been approved by the US Food and Drug
Administration (FDA): one is intravascular
injection of bacillus Calmette–Gu�erin (BCG, live
attenuated tuberculosis vaccine) for the treatment
of bladder cancer30; and the other is talimogene

Figure 2. The cancer immunity cycle and selective methods to increase tumor immunogenicity. Tumor antigens are released as cancer cells die

and are captured by the antigen-presenting dendritic cells in the tumor site, and further presented to T cells in the lymph node. T cells are

activated and proliferate, and effector T cells traffic and infiltrate into the tumor site. Activated effector T cells recognise and kill the cancer cells.

Oncolytic viruses/bacteria, conventional therapy and targeted therapies are able to induce immunogenic cell death. Personalised cancer vaccines

typically comprise tumor-associated antigens or tumor-specific antigens in a vaccine vector (RNA, DNA, viral, bacteria, protein, peptide and

antigen-presenting cells) with an immune adjuvant. IFN, interferon; IL, interleukin; MHC, major histocompatibility complex; TCR, T-cell receptor;

TNF, tumor necrosis factor.
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laherparepvec (T-VEC), an attenuated herpes
simplex virus type 1 (HSV-1) that is engineered
and approved for advanced, refractory melanoma.
T-VEC is engineered to improve antigen
presentation and T-cell priming by inserting the
gene for human granulocyte–macrophage colony-
stimulating factor (GM-CSF).31 While intradermal
BCG has been used for bladder cancer for several
decades, more recent approval for T-VEC was
based on data from the pivotal phase III OPTiM
trial, which demonstrated tumor control at certain
anatomical sites and favorable tolerability.32

However, T-VEC was not associated with
prolonged survival as visceral metastatic sites
respond poorly, so its broader uptake as a single
agent in patients with metastatic disease has been
low, and thus far limited to melanoma.33,34

Despite this, the initial proof-of-concept studies
with T-VEC have proved attractive for
combination therapies. Several studies have
shown that the adjuvant-like activities of the OVs
could turn melanoma,35,36 triple-negative breast
cancer (TNBC)37 and brain tumors38 ‘hot’,
effectively priming them for subsequent ICI
treatment. Ribas et al.35 investigated the effect of
T-VEC on immune cell infiltration and subsequent
treatment efficacy of anti-PD-1 antibody in a
phase 1b clinical trial. In 21 patients with
advanced melanoma, tumor size decreased by
62%, while 33% experienced a complete
response. Another virus to show promise in
preclinical mouse models is the Maraba
rhabdovirus, shown by Bourgeois-Daigneault
et al.37 to provide long-term protection against
TNBC and to sensitise 4T1 tumors to ICI.37 A
recent report on a phase I trial using
coxsackievirus A21 against non-muscle-invasive
bladder cancer demonstrated acceptable safety
profile and virus-induced ‘immunological heat’
within the tumor microenvironment.39 Samson
et al.38 showed that reovirus could up-regulate
the expression of IFN-regulated genes and PD-1/
PD-L1 axis expression in a preclinical glioma
model. Addition of anti-PD-1 to reovirus
enhanced systemic response in these tumors.38 In
addition, studies that augment the OV’s function
via cytokine and chemokine coexpression have
been reported. Ge et al.40 showed that OV
delivering tethered IL-12 was able to avoid
systemic toxicity and cure all mice with late-stage
colon cancer, by facilitating T-cell infiltration,
increasing IFN-c and decreasing suppressive factor
TGF-b in the tumor.

Other approaches utilise rotavirus, influenza or
the yellow fever vaccines to elicit antitumor
immunity and may potentially be quickly
approved, given their extensively understood
safety profile. For instance, when administered via
intratumoral injection, the FDA-approved
unadjuvanted seasonal influenza vaccine could
inhibit tumor growth by increasing the number of
antitumor TILs and decreasing regulatory B cells in
a mouse model.41 This process creates systemic
immune responses and sensitises tumors to
subsequent ICIs. Importantly, intratumoral
vaccination also generates protection against
subsequent influenza virus lung infection. A
recent study reported that pyroptosis-induced
inflammation initiates rigorous antitumor
immunity and can synergise with ICIs.42 A murine
study demonstrated that by implanting Gasdermin
E-positive B16 melanoma cells, mice were
protected from subsequent challenge with wild-
type B16 cells. This was because of the pyroptosis
of Gasdermin E-positive B16 melanoma cells,
which enhanced antitumor immunity through
tumor-associated macrophages, tumor-infiltrating
natural killer (NK) and cytotoxic T-lymphocyte
(CTL) cells.43

Conventional cancer therapies

Radiotherapy is a major treatment option for
many cancer patients. In addition to mediating
DNA damage-induced cancer cell death,
radiotherapy can modulate tumor
immunogenicity by activating the cyclic guanosine
monophosphate–adenosine monophosphate
synthase (cyclic GMP-AMP synthase) – stimulator
of interferon gene (cGAS-STING) pathway.44,45

Several studies have demonstrated activation of
the cGAS-STING pathway and radiation-induced
type I interferon induction,46 with increased MHC-
I expression47,48 and antigen processing and
presentation within the tumor.49 These events
result in the activation of innate and,
subsequently, adaptive antitumor immunity, and
increase the tumor’s immune responsiveness.50,51

Indeed, the immunogenic effects of radiation can
result in systemic immunity, reflected in shrinkage
of non-irradiated distal lesions, referred to as the
abscopal effect,52–54 a feature that can be further
harnessed by combination ICI. Recent studies
reported the induction of systemic antitumor T-
cell responses in chemorefractory metastatic lung
cancer following irradiation and CTLA4
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blockade.55 However, overall radiotherapy dose
and fraction must be cautiously tuned, as high
doses of radiation can attenuate STING activation
and even damage TILs recruited to the irradiated
organ. Preclinical data suggest that moderately
hypofractionated radiotherapy offers the best
chance of favorable immunomodulation.56

Unfortunately, these positive impacts of
radiotherapy remain relatively rare and are
counterbalanced by activation of immune
suppression, via increased TGF-b secretion by
cancer-associated fibroblasts (CAFs).57 Hence,
radiotherapy combined with TGF-b inhibition may
potentially enhance systemic antitumor responses.
Cross-presentation by specialised DCs is critical for
priming tumor-specific T-cell responses against
solid tumors,58 and this process could be induced
through radiotherapy.52 A recent report on utility
of a in situ vaccine, combining Fms-like tyrosine
kinase 3 ligand (Flt3L), radiotherapy and a Toll-
like receptors (TLR)-3 agonist, demonstrated
systemic clinical tumor regression through
recruitment, antigen loading and activation of
intratumoral, cross-presenting DCs.59

Ultimately, the interplay between multiple
variables including radiotherapy dose,
fractionation, schedule and choice of systemic
immune mediator will all need to be considered,
and carefully evaluated in preclinical and
translationally focused clinical trials.

It has long been appreciated that some, but not
all, chemotherapy can induce antitumor immune
responses.60,61 Chemotherapy may elicit antitumor
immunity via three main mechanisms: the ’on-
target’ or direct impact on tumor cells that induce
their immunogenicity; the ’off-target’ effects on
different immune cell subsets; and impact on
whole-body physiology that reshape antitumor
immunosurveillance.62 Like radiotherapy,
chemotherapy-induced DNA damage may also
trigger the cGAS-STING pathway to increase
tumor immunogenicity.63 There is evidence that
chemotherapy can activate immune cells, such as
M1-like macrophages,64 APCs65 and T cells.66

However, chemotherapy also has limitations67:
chemotherapeutic agents are usually strongly
cytotoxic and eliminate tumor cells that might
otherwise present neoantigens generated by DNA
damage. In any event, new chemotherapy-
induced mutations tend to be limited as
treatment generally applied to established
cancers, potential exceptions being chemotherapy

given in an adjuvant setting. Interestingly, ICI
combined with chemotherapy is associated with a
high risk of adverse events,68 as ICIs are known to
have a distinct toxicity profile from that caused by
conventional chemotherapy. ICI-related adverse
events are identified as irAEs and occur commonly
in skin, gut, lung, skeletal muscle and various
endocrine organs including the pituitary gland.69

While advert events are increased in patients
treated with chemotherapy and ICI, to date there
are no in vivo mechanistic studies exploring this
issue. It is possible that this combination
treatment is particularly effective at breaking
peripheral immune tolerance; however, this
remains to be proven. Despite this, combined
chemotherapy and ICI has become the standard of
care and is under continual refinement for
patients with breast, non-small-cell lung cancer,
colorectal, gastric, gastro-oesophageal carcinoma
or some lymphomas.62

Photothermal therapy (PTT), a form of
hyperthermia, can also induce ICD.70 By focusing
precisely controlled near-infrared (NIR) laser light
onto a tumor, tumor-associated antigens (TAAs)
can be released in situ.71 Huang et al.72 reported
a strategy for controlled release of anti-PD-L1 via
controlled NIR, which increased the recruitment of
TILs and boosted the immune activity against
tumors. Zhang et al.73 further investigated the
combination of PTT agent IR820 and indoleamine
2,3-dioxygenase (IDO) inhibitor 1-methyl-
tryptophan (1MT), which evoked a helpful
immune response against tumor metastasis and
recurrence. These data provide a promising
alternative to transform a ’cold’ tumor into a ’hot’
one. High-intensity focused ultrasound (HIFU) is a
non-invasive therapy that is used in the clinic to
thermally ablate solid tumors with high spatial
precision,74 and to mechanically disrupt tumors.75

HIFU-mediated tumor fractionation may cause ICD
and increase inflammation76 and potentially lead
to immune sensitisation.77 Eranki et al.78 recently
demonstrated a combination of HIFU and ICI
significantly enhanced systemic antitumor
responses and cured the majority of mice with
large, established unilateral and bilateral
neuroblastoma tumors. Most interestingly, a
significant abscopal effect was observed using
HIFU, suggesting a long-term memory response.
These studies provide proof-of-concept data for
using HIFU to stimulate systemic immunity that
may act as an adjuvant to ICI therapy.
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Small molecule drugs

Tumor-intrinsic oncogenic signalling pathways can
also play a role in driving or blunting an immune
response; hence, targeted therapies could
potentially exert direct effects on antitumor
immunity (Figure 2). For example, Deng J et al.79

discovered that drugs inhibiting cyclin-dependent
kinases 4 and 6 (CDK4/6) could increase T-cell
activation and facilitate their penetration into
tumors. Goel et al.80 demonstrated CDK4/6
inhibitors enhanced tumor antigen presentation
through stimulation of type III IFN production, as
well as suppressed regulatory T-cell (Treg)
proliferation. These data indicate CDK4/6
inhibitors are able to boost tumor
immunogenicity81 and might have a synergistic
effect with ICIs. As CDK4/6 inhibitors have already
been approved for breast cancer, and they act
synergistically with anti-PD-1 therapy in mouse
models, the findings demonstrate the potential of
combining CDK4/6 and ICIs in clinical trials.

The mitogen-activated protein kinase (MAPK)
kinase (MEK) pathway is frequently up-regulated
in various human solid tumors. A recent study
showed that MAPK activity could suppress the
expression of MHC-I and MHC-II, and tumor cells
can evade antigen presentation through
activating the MAPK pathway in TNBC.82

Preclinical models have demonstrated that MEK
inhibitors may increase T-cell infiltration into the
tumor site and improve survival of TILs.83 Similar
results were observed with BRAF inhibitors in
melanoma.84,85 BRAF inhibitors can abrogate an
immune suppressive TME and augment effector T-
cell infiltration and function.86–88 These results
offer a rational therapeutic strategy linking
inhibitors targeting the BRAF-MAPK pathway with
cancer immunotherapy. A recent phase 1b clinical
trial demonstrated MEK inhibitor, cobimetinib, in
combination with anti-PD-L1, atezolizumab, had
manageable safety and clinical activity in cold
tumors, irrespective of KRAS or BRAF status.89

However, a phase III (IMblaze370) clinical trial
investigating this combination in previously
treated metastatic colorectal cancers did not meet
the primary endpoint of improved overall
survival.90 Data suggest that BRAF/MEK inhibitors
favorably alter the TME within two weeks;
however, this effect is lost by several weeks after
treatment.91 These results emphasise the
importance of considering the sequencing and
ideal timing of combination therapies.

A third example comes in the form of agents
that block the DNA damage response, whose
normal function is to ensure genome integrity,
but which can act to preserve cancer cell viability.
Therapeutic inhibition of DNA damage response
with agents such as poly (ADP-ribose) polymerase
(PARP) inhibitors has improved clinical benefits for
BRCA-mutated tumors.92 Consequently, PARP
inhibitors generate high levels of DNA damage,
and increase T-cell infiltration, IFN-c production
and PD-L1 expression.93 Combining DNA damage
inhibitors such as PARP inhibitor with ICIs may
increase response rates to ICIs, as is under
investigation in multiple clinical trials.94

TARGETING THE TME

The second major strategy to amplify antitumor
immunity is to target the TME, so as to facilitate
an immune response to the cancer cells embedded
within it. As the TME is almost always suppressive
for T-cell responses, such efforts typically include
inhibiting immune suppressive cells, such as Tregs
and myeloid-derived suppressive cells (MDSCs);
decreasing the expression or the effects of
intensely immune suppressive molecules such as
TGF-b; using immune modulators to enhance the
recruitment, trafficking and activity of APCs and
TILs; and reversing adverse metabolic factors such
as hypoxia by remodelling the tumor vasculature
or other means.

Depleting immune suppressive cells

Cancers very frequently accumulate immune
suppressive cells, such as Tregs and MDSCs, in the
TME. Tregs promote tumor growth through
inhibiting antitumor immune responses.95 MDSCs
are a heterogeneous group of immature myeloid
cells with strong immune suppressive functions96,97

that impede the local immune response. Certain
molecular signalling pathways were shared between
Tregs, MDSCs and immune effector cells; hence, it
poses a significant challenge to specifically target
Tregs or MDSCs without compromising a variety of
immune effector cells in the TME.98 With recent
advances in technology, immune suppressive cells
with specific biological properties such as Th1-like
Tregs (T-bet+IFN-c+Foxp3+) have been defined.99

Increased expression of IFN-c by Tregs drives the
fragility of surrounding wild-type Tregs, boosts
antitumor immunity and, most importantly, is
required for responsiveness to anti-PD1.100 In
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addition, the body is capable of developing
different strategies against antitumor immunity.
Recent studies demonstrated depletion of Tregs in
large tumors induced the generation of MDSCs101

and reprogrammed fibroblast differentiation,102

thus promoting tumor growth. Undoubtedly,
immune suppressive cells are responsible for
maintaining peripheral tolerance, so depleting
these cells other than in cancerous tissues increases
the risk of systemic irAEs.

Targeting TGF-b

Depleting or functionally blocking immune
suppressive molecules such as TGF-b holds greater
promise. TGF-b tends to suppress tumor growth at
early stages of tumorigenesis.103 However, during
the tumor’s progression, TGF-b instead promotes
tumor growth by facilitating immune evasion and
epithelial-to-mesenchymal transition.104,105 Three
forms of inhibitor might in principle block the
TGF-b pathway – small molecule inhibitors,
antibodies and receptor-based TGF-b traps,106 all
of which have shown promising effects in
preclinical studies and progressed to clinical trials.
Galunisertib is the most promising small molecule
inhibitor, targeting the TGF-bRI kinase. The most
extensively studied antibody, fresolimumab
(GC1008), which sequesters all isoforms of TGF-b,
has also progressed to clinical trials.107 However,
both small molecules and antibodies have had
little clinical impact. By contrast, receptor-based
TGF-b traps appear to hold greater promise.
Bintrafusp alfa (M7824) is an innovative first-in-
class bifunctional fusion protein composed of an
IgG1 PD-L1 antibody and the extracellular domain
of the human TGF-b receptor II (TGF-bRII or TGF-b
trap).106 Preclinical studies manifested that
bintrafusp alfa inhibited tumor growth and
spontaneous metastasis more effectively than
either the TGF-b trap or anti-PD-L1 alone.108 In
patients with heavily pretreated advanced solid
tumors, bintrafusp alfa has demonstrated
manageable safety with durable clinical
efficacy,109–111 and encouraging long-term survival
in a two-year follow-up study.112 Clinical studies of
bintrafusp alfa in combination with radiotherapy
or chemotherapy are currently proceeding.

TME modulators

Stromal cells within the TME also play a key role
in inhibiting immune responses to support tumor

growth. The extracellular matrix produced by
CAFs hinders the immune response via blocking
TIL infiltration, compressing tumor blood vessels
and inducing hypoxia.113 Hence, combining ICIs
with antiangiogenic therapies, including vascular
endothelial growth factor (VEGF) inhibitor –
bevacizumab114; anti-VEGFR-2 antibody –
ramucirumab115; and small molecule
antiangiogenic multi-kinase inhibitors such as
axitinib,116 offer a rational therapeutic strategy
and have shown meaningful activity in clinical
trials. A phase I study that combined CTLA4
blockade (ipilimumab) and bevacizumab117 found
that, compared with patients receiving
ipilimumab alone, those who received
combination therapy had substantially higher
infiltration of effector T cells and macrophages in
their tumor, and increased circulating memory T
cells. The combination of pembrolizumab and
axitinib for advanced renal cell carcinoma was
assessed in a phase III study.116 The
pembrolizumab–axitinib group resulted in
prolonged overall- and progression-free survival,
as well as a 59.3% objective response rate.116 The
same strategy is now under investigation in
multiple clinical trials to refine the optimal
patient characteristics for this approach.

Studies have shown that hypoxia drives
recruitment of MDSCs and tumor-associated
macrophage.118,119 Jayaprakash et al.120 reported
that the hypoxia-activated prodrug TH-302 caused
an influx of T cells into hypoxic zones and
significantly reduced MDSC density. Consistent
with these observations, combining the hypoxia/
prodrug and ICIs cured more than 80% of mice
with experimental prostate cancer.120 These
findings suggest that targeted hypoxia reduction
may restore antitumor immune responses and
resensitise hypoxic tumors to ICIs. A further
adverse effect of tumor hypoxia is that cancer cell
consumption of adenosine triphosphate (ATP) is
accelerated, significantly increasing the
production of adenosine diphosphate (ADP) in the
TME.121 In turn, ADP is reduced to potently
immunosuppressive free adenosine through the
action of cancer cell surface exoenzymes such as
CD39 and CD73 induced by the hypoxia, in effect,
a ‘vicious cycle’ of events. Adenosine binding
(through receptors with various isoforms)
adversely affects virtually every facet of humoral
and cellular immunity, and binding to the A2A
isoform expressed on TILs dampens IFN-c secretion
and CTL/NK cytotoxicity. Beavis et al.122 have
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recently shown that pharmacological inhibition of
adenosine binding can greatly amplify ICI,
particularly when the two agents are
coadministered with CAR T cells.

Immune modulators

CD40 is broadly expressed on a wide range of
immune cells, such as DCs, B cells and
macrophages. It is a cell surface member of the
TNF receptor superfamily and plays a major role in
activating and licensing DCs to prime effective T
cells and re-educate macrophages.123 CD40
agonists have been developed and evaluated as a
novel cancer immunotherapy,123 and manifested
T-cell-mediated124 or macrophage-dependent125

antitumor activity. CD40 agonists, in conjunction
with chemotherapy, have shown a significant
effect on suppressing tumor growth in pancreatic
cancer,126 mesothelioma127 and other advanced
solid tumors.128 These results suggest CD40
activation could be a critical mechanism to
convert ‘cold’ tumors into ‘hot’ and in particular
sensitise them to chemotherapy or ICIs.

Pattern recognition receptors (PRRs) are a
diverse family of receptors and are widely
expressed on innate immune cells.129 Five families
of PRRs have been reported: Toll-like receptors
(TLRs), nucleotide-binding oligomerisation domain
(NOD)-like receptors (NLRs), C-type lectin receptors
(CLRs), RIG-I-like receptors (RLRs) and cytosolic
DNA sensors (CDSs). The immunostimulatory
characteristics of PRRs can alter the immune
suppressive TME and prompt the activation of
APCs, driving tumor-specific T-cell responses.
Studies have shown that PRRs agonists can
activate antigen presentation through resident
myeloid cells in the TME.130 Toll-like receptor 9
(TLR9) activation can foster innate and adaptive
immune responses, subsequently improving
immune-mediated tumor control. Kapp et al.131

showed lefitolimod, a potent TLR9 agonist, could
activate immune cells and facilitate their
differentiation into antitumor effector cells and
their trafficking into the TME. Zanker et al.132

recently demonstrated intratumoral
administration of TLR 7/8 agonist 3M052 was able
to induce a T-cell-inflamed TME and suppress lung
metastasis in preclinical TNBC. However,
depending on the TLR and the tumor type
studied, TLR agonists showed apparently
contradictory results by either promoting or
suppressing tumor progression in preclinical

studies.133 These inconsistent results make it
difficult to ensure safety or efficacy when moving
into human studies.

The STING pathway is activated when DNA is
detected within the cell cytoplasm and binds to
cGAS, which then generates cGAMP.134

Downstream STING signalling leads to APC
activation and cytokine production, and
subsequently promotes the priming and
recruitment of effector immune cells.135 Thus,
STING agonists may potentially boost de novo
innate and subsequent adaptive immune
responses, and have the potential to transform
the therapeutic landscape if optimised. The first
STING agonist investigated in the immunotherapy
field was the molecule DMXAA. DMXAA showed
antitumor activity in preclinical models but was
subsequently demonstrated to activate mouse, but
not human, STING.136 The first generation of
human STING agonists includes MIW815 (ADU-
S100) and MK-1454. However, because of
ubiquitous STING expression in tumor and normal
tissue,137 these agents induce inflammatory
cytokines with little specificity when administered
systemically in mouse cancer models. This feature
restricts their application in clinical trials to direct
intratumoral injection and, as a result, limits their
potential use to a narrow set of tumors. Thus,
STING agonists that are suitable for systemic
administration are needed. A small number of
intravenously administered STING agonists have
recently begun evaluation in clinical trials
(NCT03843359, NCT04420884 and NCT04096638).
Undoubtedly, non-nucleotide small molecule
STING agonist that can be administrated
systemically is the next focus of STING agonist
development, providing this can be done safely at
a therapeutic dose, given the expected immune
activation with such an approach. Recent studies
reported by Pan et al.138 and Chin et al.139 have
demonstrated promising results in preclinical
models.

Indoleamine-pyrrole 2,3-dioxygenase (IDO)-1
catalyses the conversion of amino acid tryptophan
to kynurenine, which then suppresses immune
effector function and activates suppressive
immune cells. Preclinical studies demonstrated
that IDO1 inhibitors alleviate the suppression of
CTL and NK cells.140 It has been hypothesised that
as immune-metabolic adjuvants, IDO-1 inhibitors
may exert little effect on their own, but may
extend the efficacy of ICIs. Unfortunately,
combining anti-PD1 with epacadostat, a selective
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IDO-1 inhibitor, did not improve progression-free
or overall survival over anti-PD1 monotherapy in
advanced melanoma.141 The use of IDO-1
inhibition to sensitise tumors to ICIs thus remains
uncertain, although it must be noted that
combined ICI/IDO trials with other IDO inhibitors
remain in development.

Among cytokines, interferons are considered
the most potent for inducing cellular immune
responses.142 Continuous successful discoveries
have been made since 1969, when Ion Gresser
reported the antitumor effect of purified murine
interferons in mice.143 Clinical trials soon followed
using partially purified IFN-a from healthy human
donor blood leucocytes.144 Leucocyte-derived IFN-
a was used to treat 38 patients with malignant
lymphoma, multiple myeloma and metastatic
breast cancer, and objective tumor regression
occurred in 50%.145 Recombinant IFN-a2 thus
became the first approved human
immunotherapeutic for cancer treatment.
Subsequently, IFN-a demonstrated antitumor
effects in various tumor types including
melanoma, Kaposi sarcoma, bladder and renal cell
carcinomas.142 Furthermore, IFN-a2 proved to be
clinically effective in viral infections,146 and IFN-b
in relapsing and remitting multiple sclerosis.147

However, further clinical interest and use were
reduced as IFN-a2 and IFN-b have been associated
with systemic adverse effects, which are often
dose-limiting.148

IFN-c has also been evaluated as a single-agent
cancer treatment in several prospective
randomised trials149 before the modern era of
cancer immunotherapy. Limited clinical benefit
has been achieved, although Zhang et al.150

observed that tumor MHC-I expression was
increased, along with T-cell infiltration and PD-L1
expression when systemic IFN-c was given at
weekly intervals. These data suggest that systemic
IFN-c may potentially convert cold tumors into
‘hot’ tumors and work in concert with ICI therapy.

Other immune cytokines, such as IL-2, IL-12, IL-7,
IFN-c and tumor necrosis factor (TNF), are able to
mediate the recruitment and expansion of
lymphocytes within the tumor. The strategy of
activating these cytokines specifically at the tumor
site to maximise their effects while reducing
systematic toxicity has been challenging, high-
dose IL-2 having been administered to patients for
close to 40 years.151 Some of these approaches
combine an antibody targeting a tumor antigen
with a modified cytokine. Cergutuzumab

amunaleukin is a CEA-targeted immune cytokine,
which comprises a single IL-2 variant moiety with
abolished CD25 binding and a carcinoembryonic
antigen (CEA)-specific antibody (CEA-IL2v).152

Superior efficacy was observed with CEA-IL-2v plus
anti-PD-L1 in CEA-positive preclinical tumor
models compared with anti-PD-L1
monotherapy.152 Kim et al.153 demonstrated
systemic delivery of recombinant human IL-7
increased both tumor-reactive and bystander CD8
TILs in tumors.

One major challenge facing immune
modulators, especially cytokines and immune
agonists, is unacceptable systemic toxicity, which
may in part be avoided by intratumoral
administration. STING or TLR agonists are
currently being evaluated in this way, although
systemic toxicity is not completely eliminated. An
alternative is to use a prodrug approach. NKTR-
214 is a recombinant human IL-2 preparation that
is masked with polyethylene glycol (PEG). It
becomes active only when the PEG chains are
hydrolysed154 and is now being investigated in a
phase I/II clinical trial.155

Personalised cancer vaccines

As many cancers accumulate a range of genetic
alterations, it ought in principle be possible to
raise a robust immune response against antigens
unique to the tumor.156 Cancer vaccines usually
comprise soluble TAAs or tumor-specific antigens
(e.g. oncogenic viral or neoantigens) in a vaccine
vector (e.g. protein or peptide-based, nucleic
acid-based, viral or bacterial vector-based or
cell-based) combined with immune adjuvants
(e.g. TLR agonist, CD40 agonist, STING agonist
or GM-CSF) (Figure 2).157 They have proven
immunogenic in many preclinical models and
resulted in some encouraging results in early
clinical trials.157 The typical workflow for
neoepitope selection and vaccine manufacture
involves three steps157: first, identify the available
mutations through whole-exome sequencing
(WES) and narrow the spectrum to expressed
genes via RNA sequencing (RNA-seq); second,
DNA from normal tissue is used to determine the
human leucocyte antigen (HLA), and neoepitopes
are ranked for binding to the patient’s HLA
alloforms; and third,, validated epitopes are
incorporated into a personalised cancer vaccine
with an immune adjuvant and administered to
patients.

2020 | Vol. 9 | e1226

Page 10

ª 2020 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of

Australian and New Zealand Society for Immunology, Inc.

Strategies to remodel cold tumours M Wang et al.



Three different platforms of personalised
neoantigen vaccines have been tested in
melanoma patients: (1) DC vaccines
(ClinicalTrials.gov identifier: NCT00683670)158; (2)
synthetic long peptide vaccine (NeoVax,
NCT01970358)159; and (3) RNA vaccine (IVAC
MUTANOME, NCT02035956).160 These studies
demonstrated that the approach is feasible, is safe
and induces strong neoepitope-specific T-cell-
dependent immune responses, encouraging
accelerated development of this approach.
Hepatocellular cancer (HCC) is also being
evaluated in a randomised European multi-centre
phase I/II clinical trial.161 However, recent data
demonstrated exome-derived mutated HLA
ligands to be rarely presented in HCC.162 In
addition, generating effective immunity against
tumors with a relatively low mutational load, such
as glioblastoma (GBM) and virtually all paediatric
cancers, is another challenge. Despite this, a phase
I clinical trial testing multi-epitope, personalised
neoantigen vaccination in GBM recently reported
increased TIL infiltration with enriched memory
phenotype.163

As suggested above, HLA epitope prediction is a
critical challenge for cancer vaccine development,
as current algorithms have limited predictive
power. Recently, performance improvement has
been achieved in this field. To predict HLA class I
peptide presentation across a large fraction of the
population, Sarkizova et al.164 eluted 95 HLA-A,
HLA-B, HLA-C and HLA-G mono-allelic cell lines
and profiled more than 185 000 peptides using
mass spectrometry. They identified canonical
peptides, and unique and shared binding
submotifs for each HLA alloform, and other motifs
whose presentation varied with peptide length.164

This algorithm then correctly predicted
endogenous peptide presentation for more than
75% of peptides generated in 11 patient-derived
tumor cell lines.164

Of course, the immunosuppressive TME
undoubtedly reduces the efficacy of neoantigen
vaccines.156 Combining these vaccines with other
approaches such as inhibiting immune suppressive
molecules, depleting immune suppressive cells and
blocking immune checkpoints is also proceeding.
Recent studies have shown that synergistic or
additive effects can be observed between ICIs and
cancer vaccines.165,166 Having moved beyond the
first critical hurdle of clinical development, future
studies on personalised neoantigen vaccines will
focus on neoantigen prediction; manufacturing

efficiencies, turnaround time and affordability;
and identifying the most suitable clinical settings
for this approach.

The idea of targeting the non-mutated TAAs is
fascinating as certain solid tumor types have low
mutational burden. And even in melanoma, which
is considered to have a high mutation rate, a
significant proportion of patients harbour only a
moderate-to-low mutational burden.167

Nonetheless, the clinical studies in TAA-based
cancer vaccine have been mostly disappointing
over the past twenty years, largely because of low
immunogenicity.168 Nonetheless, an RNA vaccine
targeting multiple non-mutated TAA prevalent in
melanoma recently induced durable objective
response in ICI-experienced melanoma patients in
a phase I clinical trial.169 Most importantly, the
antigen-specific cytotoxic T-cell responses are
durable at a level that are generally reported for
adoptive T-cell therapy in some responders.169

These results shed light on the feasibility of using
conventional tumor-associated antigens as targets
for cancer vaccination in patients with relatively
low mutational burden.

CONCLUSION

Investigators and clinicians in the field of
immuno-oncology are now armed with a
considerable range of approaches to address the
intrinsic immune resistance of cold tumors. The
main challenge now is how to rationally combine
and dose these many options to maximise
therapeutic impact and understand what is being
achieved pharmacodynamically while minimising
off-target effects. A necessary prerequisite for
success is to more comprehensively understand
tumor–immune interactions across the gamut of
clinical cancer development – not only is each case
unique at the time of presentation, but the
interplay between cancer and host immunity is
bound to have been shaped by the
immunomodulatory mutations cancer accumulates
over time. Understanding the dynamic changes in
cancer immunity as a result of previous therapies
is also of utmost importance. High-resolution
analyses, such as single-cell sequencing and high-
dimensional cell phenotyping, are now enabling
the capture of various immune cells in the TME
and determination of their molecular and
functional status. To capture the dynamic changes
in cellular composition and functional status, both
baseline and on-treatment biopsies are in need.
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In this review, we have outlined many possible
strategies to remodel immunologically cold
tumors and sensitise them to ICIs; the potential
promise of each is counterbalanced by limitations
for clinical translation. Given the countless
possibilities, we believe a reasonable starting
point is to focus on extending sometimes
remarkable benefits currently enjoyed by a
minority of patients treated with ICIs to a broader
patient population. One reasonable way to assess
progress and track potential success is to build
approaches that make ‘cold’ tumors progressively
‘warmer’. We trust this review opens new
possibilities and encourages the rational design of
such therapeutic interventions.

Apart from the strategies discussed here, some
other options have also been demonstrated to
improve tumor immunogenicity, such as
epigenetic modulators.170 Strategies that involve
the adoptive transfer of immune cells generated,
stimulated and/or genetically modified (prime
among them, CAR T cells), also hold great
promise.171 As a result of constraints in length
and scope, these topics are not discussed in detail
here.
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