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Abstract
Motif discovery is gaining increasing attention in the domain of functional data analysis. Functionalmotifs are typical “shapes”
or “patterns” that recurmultiple times in different portions of a single curve and/or inmisaligned portions ofmultiple curves. In
this paper, we define functional motifs using an additive model and we propose funBIalign for their discovery and evaluation.
Inspired by clustering and biclustering techniques, funBIalign is a multi-step procedure which uses agglomerative hierarchical
clustering with complete linkage and a functional distance based onmean squared residue scores to discover functional motifs,
both in a single curve (e.g., time series) and in a set of curves. We assess its performance and compare it to other recent
methods through extensive simulations. Moreover, we use funBIalign for discovering motifs in two real-data case studies;
one on food price inflation and one on temperature changes.

Keywords Functional data analysis · Functional motif discovery · Clustering · Biclustering

1 Background andmotivation

The last decades have seen an increasing interest in the
analysis of functional data, i.e., data that can be repre-
sented as smooth curves. Functional Data Analysis (FDA)
methods (see, e.g., Ramsay and Silverman 2005; Ferraty
and Vieu 2006; Kokoszka and Reimherr 2017) have been
applied in a variety of scientific fields. These include biol-
ogy, medicine, and genetics, where FDA has been employed
to analyze, e.g., the genomic landscape of “jumping genes”
and COVID-19 epidemics (Chen et al. 2020; Boschi et al.
2021); neurosciences and psychometrics, where it has been
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used, e.g., to map cognitive processes analyzing response
times and brain imaging data (Buckner et al. 2004; Lila et al.
2017); economics and environmental sciences, where it has
been used to explore patterns and generate predictions over
space or time concerning air pollution, climate indicators,
stock market prices, etc (see, e.g., Das et al. 2019; Ghum-
man et al. 2020).

In this paper, we focus on functional motif discovery; that
is, the identification of typical “shapes” or “patterns” that
recur multiple times in different portions of a single curve
and/or in misaligned portions of multiple curves. While the
ability to identify such patterns offers great promise in mul-
tiple scientific fields (Cremona and Chiaromonte 2023), to
the best of our knowledge, the notion of functional motif still
lacks a rigorous statistical formalization. We define a func-
tional motif Q of length l as a collection of nQ curve portions
pQk (t) for k = 1, . . . , nQ with t ∈ [0, l] (the occurrences of
Q) obeying the additive model

pQk (t) = μQ + α
Q
k + βQ(t) + εk(t) ∀t ∈ [0, l]

where μQ is the mean of the motif, α
Q
k its portion-specific

adjustment, βQ(t) its t-varying adjustment and εk(t) an error
term (see Fig. 1).

In order to discover functional motifs, both in a sin-
gle curve or in a set of curves (evaluated over a grid of
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equally spaced points), we develop funBIalign, a multi-step
algorithm that requires as input, in addition to the curve(s)
themselves, only the discretized length � and the minimum
cardinality nmin of the motifs to be discovered. funBIalign
performs a comprehensive scan of all portions of length
� of all curves in the data, and arranges them in a den-
drogram employing agglomerative hierarchical clustering
with complete linkage and a functional generalization of the
Mean Squared Residue Score (MSR) — a measure typically
employedbybiclustering techniques (Pontes et al. 2015). The
dendrogram is dynamically cut to identify a set of candidate
functional motifs, which are then post-processed to select
the most interesting. While hierarchical agglomerations are
commonly used for functional clustering (see Ferreira and
Hitchcock 2009 for a comparison, and Jacques and Preda
2014 for a survey on functional clustering techniques), the
use of means squared residues still represents a novelty in the
functional framework. The MSR was originally introduced
by Cheng and Church (2000), for discovery and validation
of biclusters, i.e. of subsets of rows and columns of a data
matrix, and has been widely used since in the multivariate
setting (e.g., Liu and Wang 2007; Angiulli et al. 2008; Yang
et al. 2005), but its functional generalization, fMSR, has only
very recently been employed in functional clustering prob-
lems byGalvani et al. (2021) andDi Iorio andVantini (2023).

Functional motif discovery, while gaining increasing
attention, is itself an under-explored area. To the best of
our knowledge, the only other approach that deals specifi-
cally with it in the FDA domain is probabilistic K -means
with local alignment (probKMA, Cremona and Chiaromonte
2023). Following a stream of literature devoted to the simul-
taneous alignment and clustering of curves at the global level
(see, e.g., Liu and Yang 2009; Sangalli et al. 2010), and to
the simultaneous domain selection and clustering of curves
(Fraiman et al. 2016; Floriello andVitelli 2017; Vitelli 2023),
probKMA identifies candidate functional motifs combining
a probabilistic K -means algorithm and local alignment (or
domain selection) techniques. A strong point of probKMA is
the fact that, while requiring the specification of a minimum
motif length, it can extend such length in a motif-specific
and data-driven fashion. However, it is designed to operate
on a set of curves and it requires extensive post-processing.
As a counterpart to its efficacy, the need for multiple ini-
tializations of the K -means algorithm and the complexity of
post-processing make probKMA computationally expensive.
Outside the FDA domain, a problem similar to functional
motif discovery has been tackled by the data mining com-
munity – seeking patterns embedded multiple times within a
single time series (see, e.g. Lila et al. and Patel 2002; Mueen
et al. 2009; Yeh et al. 2016). This work are based on a k-
Nearest Neighbors algorithm and requires users to specify
several parameters, some of which may not be intuitive and
significantly affect outcomes (newer versions of these pro-

cedures have been published since 2016, but they primarily
enhance computational performance on large data sets, rather
than modifying required inputs or algorithmic approach).

As mentioned above, and in contrast to existing meth-
ods, funBIalign can naturally handle both single curves and
sets of curves. In the latter case, thanks to the hierarchy it
creates, it can also highlight relationships among curves har-
boring the same motif. On a different front, although the
comprehensive scan employed by funBIalign can be com-
putationally demanding, it must be performed only once –
without the need for multiple runs or initializations as in
probKMA. More generally, funBIalign can effectively tackle
applicationswhere functional alignment fails ormay be inad-
equate, such as identifying motifs embedded consecutively,
or appearing only in one curve. We also note that the two
input parameters required by our procedure, the motif length
� and theminimumnumber of portions nmin , while impacting
outcomes, are user-friendly and intuitive.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the theoretical setting of funBIalign, including
the rigorous definition of functional motifs and of the dissim-
ilarity measure employed. The algorithmic implementation
is described in Section 3. Finally, the performance of our
proposal is assessed through simulations, comparisons with
other available methods, and real-data case studies in Sec-
tions 4, 5 and 6.

2 Theoretical setting

2.1 Model-based definition of functional motifs

Consider a set of real-valued curves fi (t), i = 1, . . . , N , each
defined on a compact interval which we assume to be [0, Ti ]
without loss of generality. Intuitively, a functional motif is a
“shape” or “pattern”, defined on a domain interval of given
length l, which occurs multiple times within the set of curves
– possibly with noise. A motif can occur at different posi-
tionswithin a curve and/or inmisaligned portions of different
curves in the set (N = 1 corresponds to the case in which
motifs are sought within a single curve, e.g., a time series).
For each curve fi (t), we consider all possible overlapping
portions of length l, and we align them on the interval [0, l].
In symbols, a generic portion is fi,L(t) = fi

∣
∣
L ◦ h(t) with

t ∈ [0, l], where L is a sub-interval of length l of [0, Ti ]
and h is a shift transformation from [0, l] to L . Let I be
the collection of all portions of length l of all curves in the
set, i.e. I = {p(t) = fi,L(t) | i = 1, . . . , N and L ⊆
[0, Ti ] with |L| = l}. We provide a rigorous definition of
functional motif using an additive model as follows.

123



Statistics and Computing            (2025) 35:11 Page 3 of 15    11 

Fig. 1 Examples of ideal functional motifs, obtained by (1) with
εk(t) = 0. In panel A all portions are identical and constant; pQk (t) =
μQ (αQ

k = 0 and βQ(t) = 0). In panel B all portions are iden-

tical; pQk (t) = μQ + βQ(t) (αQ
k = 0). In panel C portions are

constant and parallel; pQk (t) = μQ + α
Q
k (βQ(t) = 0). Panel D illus-

trates the general case, with parallel portions sharing the same shape;
pQk (t) = μQ + α

Q
k + βQ(t). In all panels, the dashed line represents

the motif mean μQ

Definition 1 A functional motif Q is a collection IQ ⊂ I of
nQ > 1 curve portions pQk (t) for k = 1, . . . , nQ such that

pQk (t) = μQ + α
Q
k + βQ(t) + εk(t) ∀t ∈ [0, l] (1)

where μQ is a mean level, αQ
k a portion-specific adjustment,

βQ(t) a t-varying adjustment, and εk(t) an error term.

To have unique and identifiable parameters, we impose
∑nQ

k=1 α
Q
k = 0,

∫ l
0 βQ(t)dt = 0, and E[εk(t)] = 0 for

∀k = 1, . . . , nQ and ∀t ∈ [0, l]. It is important to remark
that, even if the definition above does not consider explicitly
the curve to which each portion belongs to, this information
is crucial in the algorithm we introduce in Sect. 3.

Definition 1 is inspired by the biclustering literature, and
in particular by the definition of multivariate coherent evo-
lution biclusters (Madeira and Oliveira 2004) utilized in the
seminal paper by Cheng andChurch (2000). In the functional
framework, Galvani et al. (2021) used a model similar to the
one in (1) to discover functional biclusters in a data matrix
whose cells correspond to curves, while Di Iorio and Vantini
(2023) employed the model in (1) to identify local clusters
in subsets of aligned curves. Following the biclustering lit-
erature, we call a functional motif “ideal” when εk(t) = 0,
i.e. in the absence of noise. Such a motif is composed by
perfectly parallel portions sharing the same shape (Fig. 1D).
Among ideal motifs, special cases can be obtained setting
α
Q
k and/or βQ(t) to 0. If both α

Q
k = 0 and βQ(t) = 0 we

have a constant motif, whose portions are all pQk (t) = μQ

(Fig. 1A). Setting βQ(t) = 0 but allowing α
Q
k �= 0 we have

parallel constant portions pQk (t) = μQ+α
Q
k (Fig. 1C), while

setting α
Q
k = 0 but allowing βQ(t) �= 0 all portions will be

identical to pQk (t) = μQ + βQ(t) (Fig. 1B).

2.2 Evaluating the coherence of functional motifs

To evaluate the coherence of a candidate motif, i.e. of a
collection of portions, to an (unknown) additive model, we
gauge the error term εk(t) using a functional version of the
Mean Squared Residue score (MSR), or H-score, first intro-
duced by Cheng and Church (2000) to seek large biclusters
among the rows (genes) and columns (experimental condi-
tions) of a gene expression data matrix. Galvani et al. (2021)
first proposed a generalization of the MSR to the functional
framework to seek large biclusters in matrices of curves.
Here, we define the functional Mean Squared Residue score
(fMSR) as follows.

Definition 2 The functional Mean Squared Residue score
(fMSR) of a functional motif Q is

H(Q) = 1

nQ

1

l

nQ
∑

k=1

∫ l

0

(

pQk (t) −
(

μ̂Q + α̂
Q
k + β̂Q(t)

))2
dt,

(2)

where the estimates μ̂Q , α̂Q
k and β̂Q(t) of the terms

in (1) are

μ̂Q = pQ = 1

nQ

1

l

nQ
∑

k=1

∫ l

0
pQk (t)dt,

α̂
Q
k = pQk − μ̂Q = 1

l

∫ l

0
pQk (t)dt − μ̂Q,

β̂Q(t) = pQ(t) − μ̂Q = 1

nQ

nQ
∑

k=1

pQk (t) − μ̂Q .

In forming the estimates, pQk , pQ(t) and pQ represent,

respectively, the mean value of each portion pQk (t), the func-

tional mean of all portions pQk (t), k = 1, . . . , nQ , and the

mean value of pQ(t) (or equivalently, the mean of the pQk ’s).
Using them, we can rewrite (2) as

H(Q) = 1

nQ

1

l

nQ
∑

i=1

∫ l

0

(

pQk (t) − pQk − pQ(t) + pQ
)2

dt

(3)

which allows us to easily implement the score calculation.
We observe that the fMSR of an ideal, i.e. noiseless, func-
tional motif Q is H(Q) = 0. Thus, similar to biclustering
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methods which look for biclusters with low MSR, we look
for functional motifs with low fMSR.

Di Iorio et al. (2020) recently proved that the MSR is
biased towards small biclusters (i.e., biclusters with a small
number of rows and/or columns). Here, we prove that the
fMSR suffers from a similar bias towards small functional
motifs; that is, motifs comprising a small number of portions.
This can hindermotif discovery, as it distorts the comparisons
of motifs comprising different numbers of portions. The fol-
lowing theorem fully characterizes this bias and suggests a
way of correcting it (a proof is provided in Section S1 and
the bias in the multivariate framework is extensively treated
and illustrated through simulations in Di Iorio et al. 2020).

Theorem 1 Let Q bea functionalmotif. For n = 2, 3, . . . , nQ
let Hn be the average fMSR of all sub-motifs of Q obtained
selecting exactly n of the nQ portions pQk (t) belonging to Q.
Then

Hn+1 = Hn
n2

n2 − 1
. (4)

An implication of Theorem 1 is that the ratio rn,n+1 = Hn+1

Hn
depends on the number of portions n included in the sub-
motif. It is also straightforward to verify that

Hn+m = Hn

n+m−1
∏

x=n

x2

x2 − 1
(5)

for every m > 0, allowing one to compute Hn+m using Hn

alone. Hence, we have that

rn,n+m = Hn+m

Hn
−−−−→
m→∞

∞
∏

x=n

x2

x2 − 1
. (6)

The infinite product in (6) converges and we have r2,2+m →
2. As a consequence, the bias can be at most 1, and it
decreases when considering motifs comprising a large num-
ber of portions (see Di Iorio et al. 2020, for simulations
and additional details in the multivariate case). However, its
effects can be troublesome in comparisons involving seldom
motifs, whichwill be non-negligibly favored. For this reason,
we propose to correct the bias defining an adjusted version
of the fMSR as follows.

Definition 3 Let Q be a functional motif comprising nQ ≥ 2
portions. Its adjusted functional mean squared residue score
is defined as:

Had j (Q) =
⎧

⎨

⎩

H(Q) if nQ = 2,
H(Q)

∏nQ−1
r=2

r2

r2−1

if nQ > 2. (7)

We note that the correction is straightforward and it requires
only a multiplication of the fMSR score by a factor - with
negligible additional computational burden. The adjusted
fMSR is the measure we employ in the remainder of the
paper (a numerical comparison of the proposed algorithm
with adjusted and non-adjusted fMSR score is available in
Section S2).

2.3 An fMSR-based dissimilarity measure

The adjusted fMSR can be used to construct a dissimilarity
measure between two curve portions p1(t) and p2(t) in [0, l]
as

dfMSR(p1, p2) = Had j (W ), (8)

where W = {p1(t), p2(t)} is the functional motif composed
only by the portions p1(t) and p2(t). According to this defi-
nition, dfMSR(p1, p2) = 0 if and only ifW is an ideal motif.

3 The funBIalign algorithm

Given a set of N ≥ 1 real-valued curves fi (t) defined on
[0, Ti ], i = 1, . . . , N , funBIalign discovers recurrent and
coherent motifs as defined by (1). The algorithm considers
the evaluation of the curves over a grid of equally spaced
points t0 = 0, t1 = δt, t2 = 2δt, . . . and requires as input
the discretizedmotif length � (the number of grid points cor-
responding to the length l in (1)) and the minimum number
of portions nmin . It comprises four steps, as described below
and presented in the schematic of Fig. 2).

Step 1— Portion creation and alignment. For every curve
fi (t), i = 1, . . . , N , we create all ni portions of length
� (starting at t0, t1, t2, etc.), and align them so that their
domains all start at t = 0. We indicate the resulting over-
all set of aligned portions with p j (t), j = 1, . . . , n, where
n = ∑N

i=1 ni . For each portion, we keep track of the origi-
nating curve i( j) and of the � grid points occupied.

Step 2 — Hierarchical clustering based on the fMSR
dissimilarity. We compute the fMSR-based dissimilarity
dfMSR(p j1 , p j2)of everyportionpair (p j1 , p j2), 1 ≤ j1, j2 ≤ n,
and calculate M = max1≤ j1, j2≤n dfMSR(p j1 , p j2), i.e. the
dissimilarity of the most dissimilar portion pair. Note that
since all portions pk(t) are evaluated over a grid, the inte-
grals involved in computing dissimilarities are approximated
by sums. Whenever two portions originate from the same
curve and share at least 50% of their grid points, we name
them “acolytes” and artificially increase their dissimilarity
by M , to prevent obvious similarities among curve portions
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Fig. 2 A summary schematics
of the three main steps of the
funBIalign algorithm

with large overlaps from dominating the agglomeration. Our
dissimilarities are thus

d j1, j2 =
{

dfMSR(p j1 , p j2 ) + M if p j1 and p j2 are acolytes,

dfMSR(p j1 , p j2 ) otherwise

(9)

and we use their matrix DfMSR = [d j1, j2 ]1≤ j1≤n,1≤ j2≤n to
perform agglomerative hierarchical clustering with complete
linkage (see, e.g., Murtagh and Contreras 2012). Let Tree
indicate the resulting dendrogram, whose nodes represent
clusters of portions. Due to the use of complete linkage and
to the addition of M , the longest dendrogram branches occur
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when two nodes comprising acolytes are merged (see Fig. 2
Step 2). We use such branches to cut the dendrogram, gener-
ating Ntree sub-trees trees , s = 1, . . . , Ntree, which do not
contain acolytes.

Step 3 — Collection of candidate functional motifs. For
every sub-tree trees , s = 1, . . . , Ntree, we consider the sets
of all nodes nodess and all leaf nodes leavess (leavess ⊆
nodess), and for every x ∈ nodess we consider the sets of
all descendants des(x) and ascendants asc(x). We define
the seeds of trees as the set of nodes with at least nmin leaf
descendants, and with no descendant meeting the same cri-
terion; in symbols

seeds = {x ∈ nodess : |des(x) ∈ leavess |
≥ nmin ∧ ∀y ∈ des(x), y /∈ seeds}. (10)

Note that a sub-tree can have zero, one or multiple seeds.
Finally, we define the family of v ∈ seeds as the union of v

and all its ascendants that are not shared with other seeds:

f amily(v) = {v} ∪ {x ∈ asc(v) : �y ∈ seeds,

y �= vs.t . x ∈ asc(y)}. (11)

Next, we select a “recommended representative” for the
family. If | f amily(v)| = 1, this is trivially the one fam-
ily member. If | f amily(v)| > 1, we sort the nodes x ∈
f amily(v) in order of increasing cardinality |x | (i.e. num-
ber of portions) and consider Had j (x) (adjusted f MSR
value computed on the portions). If Had j (x) increases with
rank(|x |), we use an “elbow” approach and select the node
just before the maximum increase. Otherwise, we select the
node with minimum Had j (x). Our collection of candidate
motifs C is composed of recommended representatives of all
families from all sub-trees.

Step 4— Post-processing. We sort candidate motifs x ∈ C
based either on adjusted fMSR, i.e. rank(Had j (x)), or on
a combination of adjusted fMSR and inverse cardinality,
i.e. rank(Had j (x)) + rank(−|x |) (alternative ranking cri-
teria can be used, see Section 6). Starting from the top, we
compare each motif to those with higher rank. If all portions
of x are acolytes to portions of an higher ranking motif, we
filter it out; otherwise we retain it. This produces a final col-
lection of discovered motifs D ⊆ C.
We remark that Step 2 relies on M and the definition of
acolytes. While larger values of M do not affect the solution,
the way we define acolytes (e.g., the percent overlap) can
have an impact on the results; this definition may be changed
depending on applications and user needs. In addition, the
dynamic cut in Step 3 selects candidate motifs controlling a
trade off between cohesiveness (small adjusted fMSR) and

prevalence (large number of occurrences). In contrast, the
post-processing in Step 4 eliminates overlapping candidates
which might have been selected in different sub-trees. We
note that Step 4 actually provides an “importance ranking”
which can be used, more generally, to further explore and
select among candidates. This is particularly useful in appli-
cations where the algorithm identifies a very large number
of candidate motifs.

4 Simulations

We assess the performance of funBIalign through an exten-
sive simulation study. To simulate a smooth curve embed-
ding multiple occurrences of functional motifs we use the
flexible B-spline-based model proposed by Cremona and
Chiaromonte (2023). Briefly, this model generates a smooth
curve as f (t) = ∑J

γ=1 cγ φγ (t)where {φγ }	γ=1 is a B-spline
basis of order ν with equally spaced knots t1, ..., t	−ν+2 and
cγ , γ = 1, . . . , 	 are real coefficients. In every simulation
conducted in our study, we generate a single smooth curve
of length 7000 using order ν = 3 and knots at distance
Tknots = 10. The curve is then evaluated across a grid of
7001 equally spaced points (t0 = 0, t1 = 1, . . . ). We then
randomly embed in the curve the same number (8 or 10) of
occurrences of 4 distinct motifs of length 4Tknot = 40 (i.e. ,
� = 41 points). Coefficients defining both the curve and the
motifs are randomly generated from a Beta(0.45, 0.45) and
then rescaled to [−15, 15]. We incorporate into every motif
occurrence a vertical shift drawn uniformly from [−10, 10]
as well as noise – adding to the coefficients independent
draws from N (0, σ 2). We note that this way of generating
motifs within a curve does not match the additive model in
(1); thus, in our simulations we are challenging funBIalign
with motifs that may be harder for it to identify, showcasing
the flexibility of the algorithm. We also note that the curve
background can, by chance, comprise segments that resemble
one of the motifs; that is, extra portions that were not inten-
tionally embedded but do follow themotif pattern.Moreover,
the backgroundmay reveal entirely different and distinguish-
able motifs; that is, patterns that, while not intentionally
inserted inmultiple occurrences, happen to repeat themselves
along the curve. Extra portions or additional motifs emerg-
ing from the background introduce an added complexity in
interpreting simulation results (see below). Because of this
complexity, we prefer to refer to motifs and occurrences as
“embedded” (vs. not embedded) instead of “true” (vs. false).

We construct a total of 100 simulations. We consider 10
alternative motifs sets, each one with 4 distinct motifs; 2
alternative numbers of occurrences (8 or 10) which, for sim-
plicity, are the same for all motifs; and 4 alternative levels of
noise, expressed by σ = 0.1, 0.5, 1 or 2. In a first batch of
10×2×4 = 80 simulations, all motifs share the same σ , and
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Fig. 3 A Performance of funBIalign for all simulations where motifs
have 8 occurrences and shared noise levels. The algorithm is run with
minimumcardinalitiesnmin = 5, 6, 7, 8 and results are pooled. For each
σ , the green and pink boxplots (left and right) represent correctly iden-
tified portions (the ones which were embedded in the simulation, and
correctly identified by funBIalign) and extra portions (the ones which
were not embedded in the simulation, but still identified by funBIalign),

respectively. B First half of the curve for a simulation employing motif
set n. 7 and σ = 0.1. Occurrences of the motifs are color-coded. The
three wired dots (...) express the fact that the curve continues.C Perfor-
mance of funBIalign for simulations employing motif set n. 7, shown
separately for runs with varying nmin . Green and pink jittered dots rep-
resent correctly identified portions and extra portions, respectively

we use all σ values in turn. In a second batch of 10× 2 = 20
simulations, each motif is attributed a different σ . We run
funBIalign setting � = 41 (the true length of the motifs) and
using differentminimumcardinalities nmin = 5, 6, 7, 8 (pro-
gressively closer to the true number of occurrences, 8 or 10).
We post-process the candidate motifs produced in each run,
ranking them according to two criteria – the adjusted fMSR
and the rank sum – and identifying results which are most
similar to the intentionally embeddedmotifs (the oneswe use
as targets). Here we focus on those; that is, on the detection
of occurrences of the motifs we embedded in the curve, plus
potential extra portions of the background that the algorithm
associates with such motifs. funBIalign may “discover” in
the background motifs other than those we created, but we
will ignore them in the discussion to follow. We also restrict
the main text presentation to the 40 simulations where motifs
have 8 occurrences and shared noise levels. Results for sim-
ulations where motifs have 10 occurrences and shared noise
levels, or where motifs have 8 or 10 occurrences and differ-
ent noise levels, are entirely consistent with those presented
here and are provided in Sections S4 and S5.

Fig. 3A summarizes performance for the 40 simulations,
pooling results across algorithm runs with different nmin’s.
For every level of σ we display two boxplots, each compris-
ing 4×10×4 = 160 values: for each of the 4 motifs in each
of the 10 sets and across the 4 runs, we count the number of

portions correctly identified (left boxplot) and the number of
extra portions (right boxplot). We can see that funBIalign is
quite effective in identifying embedded motif occurrences.
However, as expected, as the level of noise increases some
embedded portions are missed, and some extra portions are
found – though these are usually very similar to the embed-
ded portions (see Fig. 5). Similar results, again pooling across
runs with different nmin’s, but separating each of the 10 alter-
native motif sets, are provided in Fig. S4. Fig. 3C shows
results (identification of true occurrences and of extra por-
tions) for onemotif set, n. 7, but separately for the 4 runs with
varying nmin . The minimum cardinality used in the algo-
rithm can indeed impact performance, especially through
the ranking of the candidate motifs (see Figs. S5-S6). When
nmin is much lower than the true number of occurrences,
rank sum is preferable to adjusted fMSR as a ranking cri-
terion, because it tends to privilege results more similar to
the embedded motifs. On the other hand, when nmin is close
to the true number of occurrences, best results do not nec-
essarily have highest rank sums. This fact can hinder their
identification. In addition, as expected, when nmin is too low
we miss some occurrences and, as nmin gets higher, we iden-
tify more extra portions. Fig. 3B shows the first half of the
curve for the simulation using motif set n. 7, with noise level
σ = 0.1, color-coding motif occurrences interspersed across
the curve. Fig. 4 provides details on the motifs identified in
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Fig. 4 Motif identification for the simulation employing motif set n. 7
and σ = 0.5. funBIalign is run with nmin = 6. For each of the 4 motifs,
color-coded in green, red, blue and yellow, left and right panels show
the 8 occurrences embedded in the curve and the most similar portions

identified by the algorithm, respectively. The table provides rankings
and numbers of correctly identified, extra and missing occurrences for
each motif. With low noise, no embedded occurrences are missed, and
no extra occurrences are identified

the simulation with noise level σ = 0.5, and Fig. 5 on those
corresponding toσ = 2, running funBIalignwithnmin = 6 in
both cases. Performance is excellent, though noisier motifs,
as expected, cause a slight deterioration. We also see how,
at the same level of noise, motifs may be easier or harder
to identify depending on their shapes. Importantly, we note
that when funBIalign identifies extra portions, i.e. segments
of the background that resemble a motif by chance, these are
indeed very similar to the occurrences intentionally embed-
ded in the curve (Fig. 5). In effect, they should be thought of
as “unplanned” true positives, not as false positives.

In our simulation study we treat � as a known quantity,
using its true value. However, in many real data applications
a reasonable value for �maynot be known in advance. In such
settings, provided the user can at least identify a reasonable
range for �, we suggest to run the algorithm for each � in
such range, and compute the average adjusted fMSR score
of the top motifs. An elbow method strategy can then be
employed to select a satisfactory � value within the explored
range. Figure S2 shows the results of this procedure on the
simulations employing motif set n. 7.

We studied how the choice of nmin could impact the cor-
rect and complete identification of motifs. We simulated four

versions of a 7001 point long curve embedding 20 instances
of the samemotif, using four levels of noise; σ = 0.1, 0.5, 1,
and 2. We then verified the correct identification of the motif
with values of nmin that differ markedly from the actual num-
ber of embedded portions; namely, nmin = 6, 8, . . . , 32, 34
4. As shown in Figure S3, a too low nmin can result in incom-
plete identification, especially for higher levels of noise.
However, in general, the identification is complete or almost
complete even if nmin < 20. Conversely, a too high nmin

forces the algorithm to identify extra portions – in addition
to the embedded 20, which are all identified. This highlights
the importance of a reasonable choice of nmin , but also shows
that the proposed method has some tolerance towards non-
trivial misspecifications.

5 Comparisons with relatedmethods

We compare funBIalignwith two different methods; namely,
probKMA (Cremona and Chiaromonte 2023), a functional
motif discovery algorithm employing probabilistic K -mean
with local alignment, and a motif discovery method based
on SCRIMP-MP (Zhu et al. 2018), one of the most recent
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Fig. 5 Motif identification for the simulation employing motif set n. 7 and σ = 2. funBIalign is run with nmin = 6. See legend for Fig. 4. With
high noise, 2 embedded occurrences are missed, and 4 extra occurrences are identified (represented in gray among the identified portions panels)

Matrix Profile (MP) algorithms for motif discovery in uni-
variate time series. We focus on the ability of the three
methods to correctly identify embedded motifs. Concern-
ing computational burden, we restrict ourselves to a targeted
comparison between funBIalign and probKMA, the other
functional-native method (see below; a rigorous, more com-
prehensive comparison is hard to perform due to differences
in coding languages, degree of code optimization, and over-
all structure of the pipelines – e.g., number and nature of
algorithmic and post-processing parameters to be fixed or
tuned).

funBIalign and probKMA differ in various respects. fun-
BIalign employs agglomerative clustering with adjusted
fMSR, which generates a complete hierarchy of all curve
portions. In contrast, probKMA relies on local functional
K -means with Sobolev distance. Moreover, while probKMA
can extend the length of motifs endogenously and discover
motifs of varying and unknown sizes, starting from a user-
defined set of minimum motif lengths, funBIalign requires
the length of all motifs to be the same and fixed beforehand.
However, being based on K -means, probKMA must be run
several times with different initialization, which can add to
the computational cost. In addition, probKMA implements
a more complex post-processing, involving several tuning
parameters – and this could make the method less attractive

for non-specialized user. Finally, funBIalign has the benefit
of being equally applicable to a single curve or to sets of
curves, whereas probKMA is designed to operate on sets of
curves; to use it in applications involving a single curve, this
must be split at the outset – which requires further arbitrary
choices, and may potentially lead to the loss of interesting
motifs. We compare the performance of the two algorithms
using two simulation settings for scenario (1) introduced in
Section 4.2 of Cremona and Chiaromonte (2023). In both,
two motifs of length 61, say A and B, occur each 12 times
across 20 curves. In particular, 12 curves contain 1 occur-
rence of a single motif (of A for 6, and of B for 6 curves),
4 curves contain 2 occurrences of a single motif (of A for 2,
and of B for 2 curves), 2 curves contain 1 occurrence of both
motifs, and 2 curves contain no motif. The two settings differ
in terms of length of the curves L and of noise incorporated in
the motifs; one has short curves and low noise (L = 200 and
σ = 0.1), and the other long curves and high noise (L = 500
and σ = 2).

We run funBIalign with � = 61 (the true length of the
motifs) and nmin = 8, 10, and post-process candidate motifs
with the rank sum criterion. probKMA is run using K = 2, 3,
minimummotif length v = 41, 51, 61, and 20 random initial-
izations for each (K , v) pair; results from the 120 runs with
different parameters/initializations are pooled following the
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Table 1 Comparison between
funBIalign and probKMA

Setting Motif Portion probKMA funBIalign - nmin
= 8 = 10

L = 200 σ = 0.1 Motif A Correct 12 12 12

Extra 0 0 0

Motif B Correct 12 12 12

Extra 0 0 0

L = 500 σ = 2 Motif A Correct 11 12 12

Extra 2 1 1

Motif B Correct 12 10 12

Extra 1 0 3

For probKMA, median results across 10 runs are reported

Table 2 Comparison between
funBIalign and SCRIMP-MP

Motif funBIalign - nmin MP R
5 6 7 8 kneighbor 3 10 25 50

σ = 0.5 Motif 1 (8,0) (8,0) (8,0) (8,0) 4 (6,0) (6,0) (6,0) (6,0)

6 (6,0) (8,0) (8,0) (8,0)

8 (7,3) (8,0) (8,2) (8,2)

Motif 2 (8,0) (8,0) (8,0) (8,0) 4 (6,0) (6,0) (6,0) (6,0)

6 (8,0) (8,0) (8,0) (8,0)

8 (8,0) (8,0) (8,2) (8,2)

Motif 3 (6,0) (8,0) (8,0) (8,0) 4 (6,0) (6,0) (6,0) (6,0)

6 (8,0) (8,0) (8,0) (8,0)

8 (8,0) (8,0) (8,2) (8,2)

Motif 4 (8,0) (8,0) (8,0) (8,0) 4 (5,0) (6,0) (6,0) (6,0)

6 (5,0) (8,0) (8,0) (8,0)

8 (5,0) (8,1) (8,2) (8,2)

σ = 2 Motif 1 (7,0) (8,1) (8,1) (8,1) 4 (3,0) (6,0) (6,0) (6,0)

6 (3,0) (8,0) (8,0) (8,0)

8 (3,0) (8,2) (8,2) (8,2)

Motif 2 (7,2) (7,2) (8,1) (8,1) 4 (5,1) (4,2) (4,2) (4,2)

6 (6,2) (5,3) (5,3) (5,3)

8 (7,3) (6,4) (6,4) (6,4)

Motif 3 (6,1) (8,0) (8,0) (8,0) 4 (5,1) (5,1) (5,1) (5,1)

6 (5,1) (6,2) (6,2) (6,2)

8 (5,1) (7,3) (7,3) (7,3)

Motif 4 (6,1) (7,1) (7,1) (7,1) 4 (5,1) (5,1) (5,1) (5,1)

6 (5,3) (5,3) (5,3) (5,3)

8 (6,4) (7,3) (7,3) (7,3)

Cases in which all occurrences are correctly identified without the addition of any extra portions are in bold

motif discovery post-processing recommended in Cremona
and Chiaromonte (2023). The whole procedure is repeated
10 times, and medians are taken over these 10 repetitions
when evalutating performance. Results are summarized in
Table 1. As expected, the choice of nmin has an impact on
the performance of funBIalign: smaller values can lead to
missed portions, and larger values to extra portions. How-
ever, with an appropriate nmin , funBIalign can match and
even exceed the performance of probKMA. In terms of com-

putational burden, we compare the current implementations
of funBIalign and probKMA in the aforementioned simu-
lated setting with L = 200 and σ = 0.1. Specifically, we run
funBialign with � = 61 and nmin = 10, and post-process
candidate motif length with the rank sum criterion. Con-
versely, we run probKMA using K = 2, 3, minimum motif
length v = 61, no motifs elongation, and 10 random initial-
izations for each (K , v) pairs. Both methods are run 10 times
on a local machine (64GB of memory, 8 performance cores
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and 2 efficiency cores). On average, the current implementa-
tion of funBIalign outperforms probKMA: while our method
requires 1.69 seconds to run sequentially and 1.29 seconds
to run in parallel on 10 cores, probKMA runs in 69.96 and
24.25 seconds, respectively.

We next consider the motif discovery method based on
SCRIMP-MP as implemented in the R library tsmp. This
method employs a k Nearest Neighbours (kNN) routine and
a similarity measure based on the z-normalized Euclidean
distance, requiring the user to fix several parameters ex ante;
namely, the number of motifs to be discovered u, their length
�, a motif radius R (i.e. , the distance within which two por-
tions of the time series are identified as belonging to the
same motif), and a maximum number of neighbors to con-
sider kneighbor . Specifically, the algorithm will starts from
pairs of most similar portions, to which other portions of the
curve are added only if they are within a distance R from the
starting pair, and only up to a maximum of kneighbor . In con-
trast to probKMA, this method is designed to operate with a
single time series; to use it in applications involving a set of
curves, those need to be joined – which can be problematic.
Another MP-based method called Ostinato (Kamgar et al.
2019) can find “consensus“ motifs shared by some curves
in a set; however, the definition of “consensus“ motif dif-
fers from that of functional motif since it considers only the
best matching occurrence in each curve.We compare the per-
formance of funBIalign and the SCRIMP-MP based method
using two curves from our own simulation study in Section 4,
namely the ones employing motifs set n. 7 with 8 occur-
rences each, with shared noise level σ = 0.5 and σ = 2,
respectively (see Figures 4 and 5). We run funBIalign with
� = 41 (the true length of the motifs) and nmin = 5, 6, 7, 8.
We use the SCRIMP-MP method, as implemented in the R
library tsmp, to identify a maximum of u = 50 motifs with
� = 41. All possible combinations of R = 3, 10, 25, 50 and
kneighbor = 4, 6, 8 are tested. Table 2 summarizes the results
most similar to the embedded motifs. Also here the choice
of nmin has an impact on the performance of funBIalign, but
R and kneighbor have a yet stronger impact on the perfor-
mance of SCRIMP-MP, which struggles more – especially
with higher noise. In addition, tuning these two parameters
is not trivial, because intuition and knowledge about them is
unlikely to be available a priori. A similar comparison using
motifs with different noise levels is presented in Section S6.

6 Case studies

In this section, we assess the ability of funBIalign to dis-
cover functional motifs in real data sets through two case
studies. The first concerns food price inflation over a period
of around 60 years, and the second temperature changes over

a period of around 30 years. In both cases we utilize monthly
measurements across the world provided by FAO. 1

6.1 Case study 1: food price inflation

The FAOSTAT data used in this case study comprisemonthly
food price inflationmeasurements from January 2001 to June
2022 (a total of 258measurements) for different countries and
geographical regions (details are available in the repository
metadata section, and geographical regions, as defined by
the United Nations, are in Section S7). We first seek motifs
in a single, world-wide food price inflation curve, and then
seekmotifs in the curves for 19 distinct geographical regions.
Before running funBIalign, we smooth the data using local
polynomials with Gaussian kernels (locpoly function of the
R package KernSmooth, Wand and Ripley 2006); a band-
width parameter equal to 1.5 seems appropriate to avoid
over-smoothing possibly interesting peaks in the data.

For the world-wide curve, we seek annual patterns set-
ting � = 12 (months), and fix the minimum cardinality to
nmin = 4; a small nmin is appropriate since we are consider-
ing a total of only 258 measurements. funBIalign identifies
30 motifs capturing various types of shapes. Two, depicting
“valleys” and “peaks” are displayed in Fig. 6A. Notably, the
“peak” motif has occurrences corresponding to well-known
economic crises; the 2001 recession, the global financial cri-
sis of 2007-2008, and the 2020 COVID-19 recession. For the
19 regional curves, which comprise overall many more mea-
surements, we seek longer, biannual patterns setting � = 24
(months) and fix a larger minimum cardinality nmin = 6.
Here funBIalign identifies 415 motifs. To sieve through such
a large output, we suggest that users post-process and rank
results based on various approaches. For instance, if one is
interested in cohesive results regardless of how frequently a
motif recurs, the adjusted fMSR criterion is the best choice.
In contrast, if cardinality is important, it may be preferable
to utilize the rank sum criterion. We note that, due to the
definition of fMSR, motifs with lower variance - which look
constant - tend to rank higher, a fact that could overshadow
some patterns. For instance, among the 415 motifs identi-
fied in the 19 regional curves, some rather interesting high
variance motifs are at the bottom of the fMSR ranking. Two
motifs are shown in Fig. 6B. One, occurring 6 times, is the
top-ranking in fMSR; it depicts a “mild ascent”, with low
variance. The other, occurring 9 times, is the top-ranking in
terms of variance; it depicts a “peak followed by a valley”
and ranks only 401st in fMSR.

We end this section remarking on the very steep ascent in
food price inflation at the end of the time domain covered by
the data (2021 and first half of 2022). This can be noticed in

1 Data used in these cases studies can be downloaded at https://www.
fao.org/faostat/en/#data/ET.
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Fig. 6 Two of the motifs identified by funBIalign in the world-wide
food price inflation curve (panel A) and two of the motifs identified
in the curves for 19 geographical regions (panel B). In both panels, we
show the top-ranking adjusted fMSRmotif (bottom left plot) along with

a high-ranking motif in terms of variance (bottom right plot) – which,
due to the criterion definition,may rank relatively low in terms of fMSR.
In the top plot, N, S, E, W, and C stand for Northern, Southern, Eastern,
Western, and Central, respectively

theworld-wide curve (Fig. 6A), and it appears also in some of
the 19 regional curves (Fig. 6B) – in particular that ofWestern
Asia, which raises to ≈ 100 and is cut in the plot. Digging
deeper, the rise in the Western Asia curve seems itself driven
by countries such as Lebanon and the Syrian Arab Republic,
which were experiencing conflicts and thus likely additional
inflation pressures on top of world-wide COVID-19 related
trends.

6.2 Case study 2: Temperature changes

Data used in this case study comprisemonthlymeasurements
of temperature changes with respect to a baseline climatol-
ogy corresponding to the average temperature in the period
1951-1980 for different countries and geographical regions
(further details can be found in the repository metadata sec-
tion). We focus again on the 19 geographical regions defined
by the United Nations, and on a period from 1961 to 2021,
for a total of 732 monthly measurements (the measurements
for a region are obtained by averaging those for the coun-
tries belonging it). Also in this case study, before running
funBIalign, we smooth the data – but this time we use cubic
smoothing B-splines with knots at each month and rough-
ness penalty on the curve second derivative. The smoothing
parameter is selected minimizing the average generalized
cross-validation error across curves.

In this analysis we seek long, 10-year patterns setting
� = 120 (months). Considering the relative size of motifs
to time period covered by the data, we fix again a small min-
imum cardinality nmin = 3. Also here funBIalign identifies
a very large number of motifs; 2367. We post-process and
rank them using three different approaches: adjusted fMSR,
rank sum, and variance. Top-ranking motifs based on each
and the 19 curves are shown in Fig. 7. Notably, a motif can
occur simultaneously inmultiple regions, and then separately
in others – e.g., the top variance motif, with peaks as much
as 4◦C above baseline, characterizes East Europe and North
Africa from the mid ’80s to the mid ’90s, and then Cen-
tral Asia almost 30 years later. Also notably, occurrences of
different motifs can overlap – e.g., occurrences of the top
fMSR and the top rank sum motifs in East Africa, North
Africa and South America in the ’70s present a large over-
lap, almost extending one another along the time domain.
We end pointing out the increasing upward departures from
baseline climatology shown by temperatures in all 19 regions
over the 60 years covered by the data.

7 Conclusions

We contribute to the recent literature on functional motif dis-
covery a definition of functional motifs based on an explicit
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Fig. 7 Three motifs identified by funBIalign in the temperature change
curves for 19 geographical regions. We show the top-ranking variance
(top right – 3 portions), adjusted fMSR (middle right – 3 portions) and

rank sum (bottom right – 4 portions) motifs. In the left plot, N,S,E,W,C
and M stand for Northern, Southern, Eastern, Western, Central, and
Middle respectively

additive model, and an algorithm designed to discover such
motifs; funBIalign. Related to our additive model, we also
introduce the adjusted functional Mean Squared Residue
(fMSR) score. The fMSR is a functional extension of the
MSR score widely used in the multivariate biclustering lit-
erature. Building upon our own past work (Di Iorio et al.
2020), we prove it to be biased towards motifs that occur less
often in the data, and formulate a de-biasing adjustment. fun-
BIalign is a very flexible multi-step algorithmwhich requires
only two, easy to interpret input parameters: the length � and
the minimum number of occurrences nmin of the motifs to
be discovered. It uses agglomerative clustering to produce a
hierarchy capturing the relationships among curve portions,
followed by a dynamic cutting procedure to identify the most
interesting candidate motifs based on such hierarchy, and by
a post-processing step to eliminate redundant results.

Notwithstanding the simplistic additive model that under-
lies the fMSR score, funBIalign shows very good perfor-
mance both in extensive simulations and in two real-data
case studies. However, the selection of � could be prob-
lematic in some applications, requiring the user to run the
algorithm with a range of alternative values for this tuning
parameter. On a different front, as noted discussing our sim-
ulation study, funBIalign can identify extra instances of a
given motif, or even entirely different motifs, that were not
intentionally embedded in the simulated curves. While this
is an explainable bi-product of the procedure used to create
our simulated curves (certain patterns may occur and recur
by chance in the curve background), it points to the need
for a more rigorous statistical treatment of motif discovery.
In particular, in future work, we plan to develop a measure
of significance to be used in conjunction with the adjusted

fMSR for motif discovery. In addition, we are planning to
extend the algorithm as to allow the identification of motifs
invariant to vertical scaling (this would refer to an underlying
multiplicative model, instead of the current additive one).

Parsing through all curve portions of a given length allows
funBIalign to tackle applications where classical functional
alignment fails or may be inadequate, such as identifying
motifs embedded consecutively, or appearing only in one
curve. However, this comes at a cost; storing the dissimi-
larity matrix D f MSR may necessitate a massive amount of
memory when analyzing large functional data sets. Nonethe-
less, we note that this matrix is only calculated once, and
in our simulations (each involving one curve encompassing
7001measurements) and case studies (involving a maximum
of 19 curves of 732 measurements) memory did not pose a
challenge;

in the examples we considered, funBIalign runs in under
1 minute (or even less as shown in the comparison with
probKMA) without RAM problems on a local machine
(64GB of memory, 8 performance cores and 2 efficiency
cores). We do believe that running time could be further
improved leveraging parallelization even more. In future
work, we plan to optimize funBIalign to allow it to scale
efficiently also on much larger datasets.

Supplementary information

Supplement material is available online. Current R code for
the algorithm is available in the GitHub repository https://
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github.com/JacopoDior/funBIalign and an R package is in
preparation.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-024-10537-
y.
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